SlideShare a Scribd company logo
Ip For 3g Networking Technologies For Mobile
Communications 1st Edition Dave Wisely download
https://ebookbell.com/product/ip-for-3g-networking-technologies-
for-mobile-communications-1st-edition-dave-wisely-2536338
Explore and download more ebooks at ebookbell.com
Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Convergence Technologies For 3g Networks Ip Umts Egprs And Atm 1st
Edition Jeffrey Bannister
https://ebookbell.com/product/convergence-technologies-
for-3g-networks-ip-umts-egprs-and-atm-1st-edition-jeffrey-
bannister-4642936
Ip For 4g David Wisely
https://ebookbell.com/product/ip-for-4g-david-wisely-1266602
Tcp Ip For Dummies Candace Leiden Marshall Wilensky
https://ebookbell.com/product/tcp-ip-for-dummies-candace-leiden-
marshall-wilensky-47608262
Guide To Voice And Video Over Ip For Fixed And Mobile Networks 1st
Edition Lingfen Sun
https://ebookbell.com/product/guide-to-voice-and-video-over-ip-for-
fixed-and-mobile-networks-1st-edition-lingfen-sun-4241412
Ip Design For Mobile Networks 1st Edition Mark Grayson Kevin
Shatzkamer
https://ebookbell.com/product/ip-design-for-mobile-networks-1st-
edition-mark-grayson-kevin-shatzkamer-2021280
Qos For Ipmpls Networks Gallo Mark Zhang Raymond Alvarez Santiago
https://ebookbell.com/product/qos-for-ipmpls-networks-gallo-mark-
zhang-raymond-alvarez-santiago-22009004
Network Design For Ip Convergence 1st Edition Yezid Donoso
https://ebookbell.com/product/network-design-for-ip-convergence-1st-
edition-yezid-donoso-2445376
Intrusion Detection For Ipbased Multimedia Communications Over
Wireless Networks 1st Edition Jin Tang
https://ebookbell.com/product/intrusion-detection-for-ipbased-
multimedia-communications-over-wireless-networks-1st-edition-jin-
tang-4345370
Speech Processing For Ip Networks Media Resource Control Protocol Mrcp
David Burke
https://ebookbell.com/product/speech-processing-for-ip-networks-media-
resource-control-protocol-mrcp-david-burke-973902
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
IP for 3G
Networking Technologies for Mobile Communications
Dave Wisely, Philip Eardley and Louise Burness
BTexact Technologies
JOHN WILEY & SONS, LTD
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
IP for 3G
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
IP for 3G
Networking Technologies for Mobile Communications
Dave Wisely, Philip Eardley and Louise Burness
BTexact Technologies
JOHN WILEY & SONS, LTD
Copyright q 2002 by John Wiley & Sons, Ltd
Baffins Lane, Chichester,
West Sussex, PO 19 1UD, England
National 01243 779777
International (+44) 1243 779777
e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com
All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except under the terms of the Copyright Designs and Patents Act 1988 or
under the terms of a licence issued by the Copyright Licensing Agency, 90 Tottenham Court Road,
London, W1P 0LP, UK, without the permission in writing of the Publisher, with the exception of any
material supplied specifically for the purpose of being entered and executed on a computer system,
for exclusive use by the purchaser of the publication.
Neither the authors nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or
damage occasioned to any person or property through using the material, instructions, methods or
ideas contained herein, or acting or refraining from acting as a result of such use. The authors and
Publisher expressly disclaim all implied warranties, including merchantability of fitness for any
particular purpose. There will be no duty on the authors of Publisher to correct any errors or
defects in the software.
Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where John Wiley & Sons, Ltd is aware of a claim, the product names appear in initial
capital or capital letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.
Other Wiley Editorial Offices
Hoboken, San Francisco, Weinheim
Wisley, Dave.
IP for 3G : networking technologies for mobile communications / Dave Wisely, Philip
Eardley & Louise Burness.
p. cm.
Includes bibliographical references and index.
ISBN 0-471-48697-3
1. Wireless Internet. 2. Global system for mobile communications. 3. TCP/IP
(Computer network protocol) I. Eardley, Philip. II. Burness, Louise. III. Title.
TK5103.4885 .W573 2002
621.382’12–dc21
2002071377
British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library
ISBN 0-471-48697-3
Typeset in 10.5 pt Optima by Deerpark Publishing Services Ltd, Shannon, Ireland.
Printed and bound in Great Britain by Biddles Limited, Guildford and King’s Lynn.
This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which
at least two trees are planted for each one used for paper production.
Contents
Acknowledgements xi
1 Introduction 1
1.1 Scope of the Book 1
1.2 IP for 3G 2
1.2.1 IP 2
1.2.2 3G 3
1.2.3 IP for 3G 4
1.3 Engineering Reasons for ‘IP for 3G’ 5
1.3.1 IP Design Principles 5
1.3.2 Benefits of the IP approach 7
1.3.3 Weaknesses of the IP approach 7
1.4 Economic Reasons for ‘IP for 3G’ 9
1.4.1 3G Business Case 9
1.4.2 Impact of ‘IP for 3G’ on Business Case 15
1.5 Conclusion 17
1.6 References 19
2 An Introduction to 3G Networks 21
2.1 Introduction 21
2.2 Mobile Standards 22
2.2.1 Who’s who in 3G Standards 23
2.3 History of 3G 25
2.3.1 Pre-1996 The Research Trimester 26
2.3.2 1996-1998 The IMT 2000 Trimester 28
2.3.3 1998 Onwards The Standardisation Trimester 30
2.4 Spectrum The ‘Fuel’ of Mobile Systems 31
2.5 UMTS Network Overview 33
2.6 UMTS Network Details 37
2.6.1 UMTS Architecture - Introducing the Major Network
Elements and their Relationships 38
2.6.2 UMTS Security 40
2.6.3 UMTS Communication Management 43
2.6.4 UMTS QoS 46
2.6.5 UMTS Mobility Management 47
2.6.6 UMTS Core Network Transport 49
2.6.7 Signalling in the UMTS Core Network 52
2.7 UMTS Radio Access Network (UTRAN) 53
2.7.1 The W-CDMA Air Interface and Uu Interface 54
2.7.2 UTRAN Mobility Management 56
2.7.3 UTRAN Transport 59
2.7.4 UTRAN QoS 61
2.7.5 UTRAN Signalling 63
2.8 cdma2000 Packet Core Network 63
2.9 Conclusion 66
2.10 References 67
2.11 Further reading 68
3 An Introduction to IP Networks 71
3.1 Introduction 71
3.2 A Brief History of IP 72
3.3 IP Standardisation Process 74
3.4 IP Design Principles 77
3.4.1 Connectivity 77
3.4.2 The End-to-end Principle 81
3.4.3 Layering and Modularity 83
3.4.4 Discussion 87
3.5 Making the Internet Work 91
3.5.1 Link Layer 92
3.5.2 Inter-networking Layer 95
3.5.3 Transport Layer 105
3.5.4 Application Layer 105
3.6 Security 107
3.6.1 Basic Security Techniques 108
3.6.2 Security for e-commerce 112
3.6.3 Network Protection 113
3.6.4 Discussion 116
3.7 The Future 117
3.8 Further reading 117
4 Multimedia Service Support and Session Management 121
4.1 Introduction 121
4.2 Session Management 122
4.2.1 What is a Session? 122
4.2.2 Functions of Session Management Protocols 122
4.2.3 Summary 123
CONTENTS
vi
4.3 Current Status 124
4.3.1 Session Management 124
4.3.2 VHE Concept 126
4.4 Session Initiation Protocols 128
4.4.1 H.323 128
4.4.2 SIP 129
4.4.3 Session Initiation for 3G 129
4.5 SIP in Detail 129
4.5.1 Basic Operation of SIP 129
4.5.2 SIP and User Location 131
4.5.3 Characteristics of SIP 133
4.6 SIP in Use 134
4.6.1 Connectivity IP and Telephony 134
4.6.2 SIP Supported Services 135
4.7 Conclusions 137
4.7.1 SIP 137
4.7.2 VHE 139
4.8 Further reading 140
5 IP Mobility 143
5.1 Scope 143
5.2 Introduction - What is IP Mobility? 144
5.2.1 Personal and Terminal Mobility 144
5.2.2 The Problem of IP Mobility 145
5.2.3 Locators vs. Identifiers 147
5.3 SIP - A Protocol for Personal Mobility 149
5.4 Introduction to Terminal Mobility 150
5.4.1 Macromobility vs. Micromobility 150
5.5 Mobile IP - A Solution for Terminal Macromobility 152
5.5.1 Outline of Mobile IP 152
5.5.2 Mobile IPv4 153
5.5.3 Mobile IPv6 155
5.5.4 Relationship of SIP and Mobile IP 157
5.6 Terminal Micromobility 158
5.6.1 Introduction 158
5.6.2 Mobile IP-based Protocols 160
5.6.3 Per-host Forwarding Protocols 168
5.7 Comparison of Micromobility Protocols 176
5.7.1 Operation 176
5.7.2 Architecture 178
5.7.3 Scalability 181
5.7.4 Reliability 184
5.7.5 Philosophy 186
5.8 Other Aspects of Terminal Mobility 188
5.8.1 Context (or State) Transfer 189
CONTENTS vii
5.8.2 Paging and Dormant Mode Management 191
5.8.3 A Brief Word on Security for Mobility Management 193
5.9 Conclusions 194
5.10 Further reading 196
6 Quality of Service 201
6.1 Introduction 201
6.1.1 What is QoS? 201
6.1.2 Why is QoS hard? 203
6.1.3 Contents of this Chapter 203
6.2 Current IP QoS Mechanisms 204
6.2.1 TCP 204
6.2.2 Random Early Detect and Explicit Congestion
Notification 209
6.2.3 RTP 209
6.2.4 Conclusions 212
6.3 Key Elements of a QoS Mechanism 213
6.3.1 Functionality Required of the Network to
Support QoS 213
6.3.2 Interaction with the Wireless Link Layer 214
6.3.3 Mechanisms to Provide Network QoS 217
6.3.4 Signalling Techniques 219
6.3.5 Admission Control 221
6.4 Proposed Internet QoS Mechanisms 228
6.4.1 IntServ 228
6.4.2 Multi-Protocol Label Switching (MPLS) 229
6.4.3 DiffServ 230
6.4.4 ISSLL 231
6.4.5 RSVP 232
6.4.6 Summary 236
6.5 IP QoS for 3G - A Possible Solution 236
6.5.1 Overall Architecture 237
6.5.2 Bounded Delay Differentiated Service 239
6.5.3 Mobility Management 241
6.5.4 Signalling 242
6.5.5 Discussion 243
6.6 Conclusions 245
6.7 Further reading 246
7 IP for 3G 249
7.1 Introduction 249
7.2 Designing an All-IP Network 250
7.2.1 Principles 250
7.2.2 Overall Architecture 251
7.2.3 Routing and Mobility 252
CONTENTS
viii
7.2.4 Quality of Service 254
7.2.5 Security 255
7.2.6 Interfaces 255
7.2.7 An Answer 256
7.3 Advantages of an All-IP Network 257
7.4 3G Network Evolution 260
7.4.1 UMTS R4 All IP Transport 260
7.4.2 UMTS R5 IP Call Control and Signalling 262
7.4.3 Is R4/5 Worthy of the Term ‘all IP’? 267
7.4.4 CDMA2000 Evolution 268
7.5 UMTS Beyond R5 268
7.6 Wireless LANs 270
7.7 Fourth Generation Mobile 271
7.7.1 4G is a Continuation from 1G ! 2G ! 3G
- The System View 272
7.7.2 4G is a Network of Networks (IP) - The Network View 273
7.7.3 4G is User-driven 274
7.8 Further reading 275
Abbreviations 279
Index 287
CONTENTS ix
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
Acknowledgements
Our ideas about IP for 3G have evolved over several years, helped by stimu-
lating discussions with many colleagues and friends, including Fiona Mack-
enzie, Guilhem Ensuque, George Tsirtsis and Alan O’Neill.
We’d like to thank those who’ve helped review various sections of the
book, suggesting many useful improvements, and those who educated us
about various topics: Fernando Jover Aparicio, Steve Buttery, Rahul Chaud-
huri, Jeff Farr, David Higgins, Nigel Lobley, Rob Mitchell, Peter Thorpe, the
publishers and their anonymous reviewers. Particular thanks go to Mel Bale.
We have also been active within the EU IST BRAIN project (http://www.ist-
brain.org) and our ideas about mobility management and QoS have been
particularly influenced by our BRAIN colleagues. We would like to acknowl-
edge the contributions of the project partners in these areas:
Siemens AG, British Telecommunications PLC, Agora Systems S.A., Erics-
son Radio Systems AB, France Tlcom - CNET, INRIA, King’s College London,
Nokia Corporation, NTT DoCoMo, Sony International (Europe) GmbH, and
T-Nova Deutsche Telekom Innovationsgesellschaft mbH .
We also thank our family and friends for their forbearance during times of
stress and computer crashes.
Finally, many thanks to our employers, BTexact Technologies http://
www.btexact.com, for allowing us to publish and for all the support that
they’ve given to us during the project.
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
1
Introduction
1.1 Scope of the Book
For some years, commentators have been predicting the ‘convergence’ of the
Internet and mobile industries. But what does convergence mean? Is it just
about mobile phones providing Internet access? Will the coming together of
two huge industries actually be much more about collision than conver-
gence? In truth, there are lots of possibilities about what convergence
might mean, such as:
† Internet providers also supply mobile phones – or vice versa, of course.
† The user’s mobile phone is replaced with a palmtop computer.
† The mobile Internet leads to a whole range of new applications.
† The Internet and mobile systems run over the same network.
This book is about the convergence of the Internet – the ‘IP’ of our title –
with mobile – the ‘3G’, as in ‘third generation mobile phones’. The book
largely focuses on technology – rather than commercial or user-oriented
considerations, for example – and in particular on the network aspects. In
other words, in terms of the list above, the book is about the final bullet:
about bringing the networking protocols and principles of IP into 3G
networks. To achieve this, we need to explain what ‘IP’ and ‘3G’ are sepa-
rately – in fact, this forms the bulk of the book – before examining their
‘convergence’.
The first chapter provides some initial ‘high level’ motivation for why ‘IP
for 3G’ is considered a good thing. The reasons fall into two main areas –
engineering and economic.
The final chapter covers the technical detail about how IP could play a role
in (evolving) 3G networks. Where is it likely to appear first? In what ways can
IP technologies contribute further? What developments are needed for this to
happen? What might the final ‘converged’ network look like?
In between the two outer chapters come five inner chapters. These provide
a comprehensive introduction to the technical aspects of IP and 3G. IP and
3G are treated separately; this will make them useful as stand-alone refer-
ence material. The aims of these inner chapters are:
† To explain what 3G is – Particularly to explore its architecture and the
critical networking aspects (such as security, quality of service and mobi-
lity management) that characterise it (Chapter 2).
† To introduce ‘all about IP’ – Particularly the Internet protocol stack, IP
routing and addressing, and security in IP networks (Chapter 3).
† To survey critically, and give some personal perspectives about, on-going
developments in IP networks in areas that are likely to be most important:
† Call/session control – Examining what a session is and why session
management matters, and focusing on the SIP protocol (Session Initiation
Protocol) (Chapter 4).
† Mobility Management – Discussing what ‘IP mobility’ is, and summaris-
ing, analysing and comparing some of the (many) protocols to solve it
(Chapter 5).
† QoS (Quality of Service) – Examining what QoS is, its key elements, the
problems posed by mobility and wireless networks; analysing some of the
current and proposed protocols for QoS; and proposing a solution for ‘IP
for 3G’ (Chapter 6).
† To provide a build-up to Chapter 7, which aims to bring many of the issues
together and provide our perspective on how ‘IP for 3G’ could (or should)
develop.
The topics covered by this book are wide-ranging and are under active
development by the world-wide research community – many details are
changing rapidly – it is a very exciting area in which to work. Parts of the
book give our perspective on areas of active debate and research.
1.2 IP for 3G
This section concerns ‘IP for 3G’ and explains what is meant by the terms ‘IP’
and ‘3G’. It also hopefully positions it with regard to things that readers may
already know about IP or 3G, i.e. previous knowledge is helpful but not a
prerequisite.
1.2.1 IP
What is meant by ‘IP’ in the context of this book?
IP stands for the ‘Internet Protocol’, which specifies how to segment data
into packets, with a header that (amongst other things) specifies the two end
points between which the packet is to be transferred. ‘IP’ in the context of
this book should not be interpreted in such a narrow sense, but rather more
generally as a synonym for the ‘Internet’. Indeed, perhaps ‘Internet for 3G’
would be a more accurate title.
INTRODUCTION
2
The word ‘Internet’ has several connotations. First, and most obviously,
‘Internet’ refers to ‘surfing’ – the user’s activity of looking at web pages,
ordering goods on-line, doing e-mail and so on, which can involve accessing
public sites or private (internal company) sites. This whole field of applica-
tions and the user experience are not the focus of this book. Instead, atten-
tion is focused on the underlying network and protocols that enable this user
experience and such a range of applications. Next, ‘Internet’ refers to the
network, i.e. the routers and links over which the IP packets generated by the
application (the ‘surfing’) are transferred from the source to the destination.
Then, there are the ‘Internet’ protocols – the family of protocols that the
Internet network and terminal run; things like TCP (Transmission Control
Protocol, which regulates the source’s transmissions) and DHCP (Dynamic
Host Configuration Protocol, which enables terminals to obtain an IPaddress
dynamically).
The term ‘Internet’ can also be used more loosely to refer to the IETF – the
Internet Engineering Task Force – which is the body that standardises Internet
protocols. It is noteworthy for its standardisation process being: (1) open –
anyone can contribute (for free) and attend meetings; (2) pragmatic – deci-
sions are based on rough consensus and running code.
The Internet standardisation process appears to be faster and more
dynamic than that of traditional mobile standardisation organisations –
such as ETSI, for example. However, in reality, they are trying to do rather
different jobs. In the IETF, the emphasis is on protocols – one protocol per
function (thus, TCP for transport, HTTP for hypertext transport and so forth).
The IETF has only a very loose architecture and general architectural prin-
ciples. Many details of building IP systems are left to integrators and manu-
facturers. In contrast, the standards for GSM, for example, are based around
a fixed architecture and tightly defined interfaces (which include protocols).
The advantage of defining interfaces, as opposed to just protocols, is that that
much more of the design work has been done and equipment from different
manufactures will always inter-operate. As will be seen later, there is a large
amount of work to be done to turn the IETF protocols into something that
resembles a mobile architecture, and Chapter 7 introduces some fixed
elements and interfaces to accomplish this.
Finally, ‘Internet’ can also imply the ‘design principles’ that are inherent in
the Internet protocols.
Chapters 3–6 cover various Internet protocols. Later in this chapter, the
reasons for why IP’s design principles are a good thing and therefore should
be worked into 3G are discussed.
1.2.2 3G
What is meant by ‘3G’ in the context of this book?
IP FOR 3G 3
‘3G’ is short for ‘third generation mobile systems’. 3G is the successor of
2G – the existing digital mobile systems: GSM in most of the world, D-AMPS
in the US, and PHS and PDC in Japan. 2G in turn was the successor of 1G –
the original analogue mobile systems. Just as for ‘IP’, the term ‘3G’ also has
several connotations.
First, ‘3G’ as in its spectrum: the particular radio frequencies in which a
3G system can be operated. 3G has entered the consciousness of the general
public because of the recent selling off of 3G spectrum in many countries
and, in particular, the breathtaking prices reached in the UK and Germany.
From a user’s perspective, ‘3G’ is about the particular services it promises to
deliver. 1G and 2G were primarily designed to carry voice calls; although
2G’s design also includes ‘short message services’, the success of text messa-
ging has been quite unexpected. 3G should deliver higher data rates (up to 2
Mbit/s is often claimed, though it is likely to be much lower for many years
and in many environments), with particular emphasis on multimedia (like
video calls) and data delivery.
The term ‘3G’ also covers two technical aspects. First is the air interface,
i.e. the particular way in which the radio transmission is modulated in order
to transfer information ‘over the air’ to the receiver. For most of the 3G
systems being launched over the next few years, the air interface is a variant
of W-CDMA (Wideband Code Division Multiple Access). The second tech-
nical aspect of ‘3G’ is its network. The network includes all the base stations,
switches, gateways, databases and the (wired) links between them, as well as
the definition of the interfaces between these various components (i.e. the
architecture). Included here is how the network performs functions such as
security (e.g. authenticating the user), quality of service (e.g. prioritising a
video call over a data transfer) and mobility management (e.g. delivering
service when moving to the coverage of an adjacent base station). Several
specific 3G systems have been developed, including UMTS in Europe and
cdma2000 in the US. A reasonable summary is that the 3G network is based
on an evolved 2G network.
All these topics, especially the networking aspects, are covered in more
detail in Chapter 2.
1.2.3 IP for 3G
What is meant by IP for 3G? 3G systems will include IP multimedia allowing
the user to browse the Internet, send e-mails, and so forth. There is also a
second phase of UMTS being developed, as will be detailed in Chapter 7, that
specifically includes something called the Internet Multimedia Subsystem.
Why, then, is IP argued for in 3G? The issue of IP for 3G is really more about
driving changes to Internet protocols to make them suitable to provide 3G
functionality – supporting aspects like handover of real-time services and
INTRODUCTION
4
guaranteed QoS. If a 3G network could be built using (enhanced) IP routers
and servers and common IP protocols, then:
† It might be cheaper to procure through economies of scale due to a
greater commonality with fixed networks.
† It could support new IP network layer functionality, such as multicast and
anycast, natively, i.e. more cheaply without using bridges, etc.
† It would offer operators greater commonality with fixed IP networks and
thus savings from having fewer types of equipment to maintain and the
ability to offer common fixed/mobile services.
† It would be easier for operators to integrate other access technologies
(such as wireless LANs) with wide-area cellular technologies.
So, IP for 3G is about costs and services – if IP mobility, QoS, security and
session negotiation protocols can be enhanced/developed to support mobile
users, including 3G functionality such as real-time handover, and a suitable
IParchitecture developed, then we believe there will be real benefits to users
and operators. This book, then, is largely about IP protocols and how current
research is moving in these areas. The final chapter attempts to build an
architecture that uses native IP routing and looks at how some of this func-
tionality is already being included in 3G standards.
1.3 Engineering Reasons for ‘IP for 3G’
Here, only preliminary points are outlined (see [1] for further discussion),
basically providing some hints as to why the book covers the topics it does
(Chapters 2–6) and where it is going (Chapter 7). One way into this is to
examine the strengths and weaknesses of IP and 3G. The belief, therefore, is
that ‘IP for 3G’ would combine their strengths and alleviate their weak-
nesses. At least it indicates the areas that research and development need
to concentrate on in order for ‘IP for 3G’ to happen.
1.3.1 IP Design Principles
Perhaps the most important distinction between the Internet and 3G (or more
generally the traditional approach to telecomms) is to do with how they go
about designing a system. There are clearly many aspects involved – security,
QoS, mobility management, the service itself, the link layer technology (e.g.
the air interface), the terminals, and so on. The traditional telecomms
approach is to design everything as part of a single process, leading to
what is conceptually a single standard (in reality, a tightly coupled set of
standards). Building a new system will thus involve the design of everything
from top to bottom from scratch (and thus it is often called the ‘Stovepipe
Approach’). By contrast, the IP approach is to design a ‘small’ protocol that
does one particular task, and to combine it with other protocols (which may
ENGINEERING REASONS FOR ‘IP FOR 3G’ 5
already exist) in order to build a system. IP therefore federates together
protocols selected from a loose collection. To put it another way, the IP
approach is that a particular layer of the protocol stack does a particular
task. This is captured by the IP design principle, always keep layer transpar-
ency, or by the phrase, IP over everything and everything over IP. This means
that IP can run on top of any link layer (i.e. bit transport) technology and that
any service can run on top of IP. Most importantly, the service is not
concerned with, and has no knowledge of, the link layer. The analogy is
often drawn with the hourglass, e.g. [2], with its narrow waist representing
the simple, single IP layer (Figure 1.1). The key requirement is to have a well-
defined interface between the layers, so that the layer above knows what
behaviour to expect from the layer below, and what functionality it can use.
By contrast, the Stovepipe Approach builds a vertically integrated solution,
i.e. the whole system, from services through network to the air interface, is
designed as a single entity. So, for example in 3G, the voice application is
specially designed to fit with the W-CDMA air interface.
Another distinction between the Internet and 3G is where the function-
ality is placed. 3G (and traditional telcomms networks) places a large
amount of functionality within the network, for example at the Mobile
Switching Centre. The Internet tries to avoid this, and to confine function-
ality as far as possible to the edge of the network, thus keeping the network
as simple as possible. This is captured by the IP design principle: always
think end to end.
INTRODUCTION
6
Figure 1.1 IP over everything and everything over IP. The Internet’s ‘hourglass’ protocol stack.
It is an assertion that the end systems (terminals) are best placed to under-
stand what the applications or user wants. The principle justifies why IP is
connectionless (whereas the fixed and mobile telephony networks are
connection-oriented). So, every IP packet includes its destination in its
header, whereas a connection-oriented network must establish a connection
in advance, i.e. before any data can be transferred. One implication is that,
in a connection-oriented network, the switches en route must remember
details of the connection (it goes between this input and that output port,
with so much bandwidth, and a particular service type, etc.).
1.3.2 Benefits of the IP approach
IP is basically a connectionless packet delivery service that can run over just
about any Layer 2 technology. In itself, it is not the World Wide Web or e-
mail or Internet banking or any other application. IP has been successful
because it has shown that for non-real-time applications, a connectionless
packet service is the right network technology. It has been helped by the
introduction of optical fibre networks, with their very low error rates, making
much of the heavyweight error correction abilities of older packet protocols
like X25 unnecessary.
IP also decouples the network layer very clearly from the service and
application. Operating systems like Windows have IP sockets that can be
used by applications written by anyone; a lone programmer can devise a
new astrology calculator and set up a server in his garage to launch the
service. Because IP networks provide so little functionality (IP packet deliv-
ery), the interfaces to them are simple and can be opened without fear of
new services bringing the network down, the point being that IP connectivity
has become a commodity and it has been decoupled (by the nature of IP)
from the content/applications.
IP applications also tend to make use of end-to-end functionality: when a
user is online to their bank, they require that their financial details be heavily
encrypted. This functionality could have been provided by the network, but
instead, it is done on a secure sockets layer above the IP layer in the browser
and the bank’s server. Clearly, this is a more flexible approach – the user can
download a certificate and upgrade to 128-bit security instantly – if the
network were providing the service, there would be a requirement for signal-
ling, and new features would have to be integrated and tested with the rest of
the features of the network.
1.3.3 Weaknesses of the IP approach
IP is not a complete architecture or a network design – it is a set of protocols.
If a number of routers were purchased and connected to customers, custo-
mers could indeed be offered a connectionless packet delivery service. It
ENGINEERING REASONS FOR ‘IP FOR 3G’ 7
would quickly become apparent that the amount of user traffic entering your
network would need to be limited (perhaps through charging). To make sure
that everybody had a reasonable throughput, the network would have to be
over-provisioned. A billing engine, network management platform (to iden-
tify when the routers and connections break), and help desk would be
needed also, in other words, quite a lot of the paraphernalia of a more
‘traditional’ fixed network.
If customers then said that they wanted real-time service support (to run
voice, say), something like an ATM network underneath the IP would need to
be installed, to guarantee that packets arrive within a certain maximum
delay. In fact, IP is fundamentally unsuited to delivering packets within a
time limit and, as will be seen in Chapter 6, adding this functionality, espe-
cially for mobile users, is a very hot IP research topic. In the end, adding real-
time QoS to IP will mean ‘fattening’ the hourglass and losing some of the
simplicity of IP networks.
IP networks also rely on the principle of global addressing, and this IP
address is attached to every packet. Unfortunately, there are not enough IP
addresses to go round – since the address field is limited to 32 bits. Conse-
quently, a new version of the IP protocol – IPv6 – is being introduced to
extend the address space to 128 bits. The two versions of IPalso have to sit in
the hourglass – fattening it still further. Chapter 3 looks at the operation of IP
in general and also discusses the issue of IPv6.
Another issue is that the Internet assumes that the end points are fixed.
If a terminal moves to a new point of attachment, it is basically treated in
the same as a new terminal. Clearly, a mobile voice user, for example, will
expect continuous service even if they happen to have handed over, i.e.
moved on to a new base station. Adding such mobility management
functionality is another key area under very active investigation (Chapter
5).
Because IP connectivity is just a socket on a computer, it is quite often the
case that applications on different terminals are incompatible in some way –
there is no standard browser, as some people use Netscape, some use Inter-
net Explorer, some have version 6, and so forth. When browsing, this is not
too much trouble, and the user can often download new plugins to enhance
functionality. When trying to set up something like a real-time voice call,
however, this means quite a lot of negotiation on coding rates and formats,
etc. In addition, the user’s IP address will change at each log in (or periodi-
cally on DSL supported sessions also) – meaning that individuals (as opposed
to servers using DNS) are nearly impossible to locate instantly for setting up a
voice session. What is needed in IP is a way of identifying users that is fixed
(e.g. comparable with an e-mail address), binding it more rapidly to one (or
more) changing IP addresses, and then being able to negotiate sessions
(agreeing such things as coding rates and formats). Chapter 4 provides details
on how the Session Initiation Protocol (SIP) is able to fulfil this role.
It is interesting that some of the approaches to solving these downsides
INTRODUCTION
8
involve ‘weakening’ our two IP design principles – for example by adding
quality-of-service state to some routers (i.e. weakening the end-to-end prin-
ciple) or adding inter-layer hints between the link and IP layers (e.g. radio
power measurements are used to inform the IP layer that a handover is
imminent, i.e. weakening the layer transparency principle). So, a key unan-
swered question is: to what extent should the IP design principles – which
have served the Internet so well – be adapted to cope with the special
problems of wireless-ness and mobility? Part of Chapter 7 debates this.
1.4 Economic Reasons for ‘IP for 3G’
As already indicated, IP for 3G is about reducing costs. There is nothing that IP
for 3G will enable that cannot already be done in 3G – at a price. IP is just a
connectionless packet delivery service, and a 3G network could be thought of
as a Layer 2 network. The Layer 2 (3G) might not support multicast, but that
can still be emulated with a series of point-to-point connections. What adop-
tion of IP protocols and design principles might do for 3G is reduce costs; this
section delves deeper into exactly where 3G costs arise and explains in detail
how an IP-based evolution could, potentially, reduce them.
1.4.1 3G Business Case
3G Costs
First, there is the cost of the spectrum. This varies wildly from country to
country (see Table 1.1) from zero cost in Finland and Japan, up to $594 per
capita in Britain.
ECONOMIC REASONS FOR ‘IP FOR 3G’ 9
Table 1.1 Licence cost ($) per capita in selected countries
Country Cost per capita (US$)
UK 594.20
Germany 566.90
Italy 174.20
Taiwan 108.20
US 80.90
South Korea 60.80
Singapore 42.60
Australia 30.30
Norway 20.50
Switzerland 16.50
Spain 11.20
Sweden 5.70
Japan 0.00
Finland 0.00
Note: US auction was for PCS Licences that can be upgraded
later to 3G.
Source: 3G Newsroom [3].
Second, there is the cost of the 3G network itself – the base stations,
switches, links, and so on. It is higher than for a 2G network, because the
base station sites need to be situated more densely, owing to the frequency of
operation and the limited spectrum being used to support broadband
services. For example, the consultancy Ovum estimates the cost as more
than $100 billion over the next five years in Europe alone [4], whereas for the
UK, Crown Castle estimate that a 3G operator will spend about £2850
million on infrastructure (i.e. capital expenditure) with an annual operating
cost of £450 million [5] (including: £840 million on sites; £1130 million on
Node Bs, £360 million on RNCs; £420 million on backhaul and £100
million on the Core Network).
These large amounts are a strong incentive for 3G operators to try to find
ways of sharing infrastructure and so share costs. For example, Mobilcom (a
German operator) estimates that 20–40% can be saved, mainly through
colocating base stations (‘site sharing’) [6], and in our UK example,
Crown Castle argues that the capital spend can be cut by almost one-
third to £2 billion [5]. However, sharing may not be in the interests of all
operators – Ovum outlines some of the pros and cons depending on the
operator’s market position [7] – but the burst of the dot.com bubble and the
global economic downturn have certainly increased interest in the idea.
Infrastructure sharing may not be permitted in all countries – for example,
the conditions attached to a licence may not allow it – but regulators are
being increasingly flexible (e.g. UK, France). Some governments (e.g. the
French and Spanish) are also reducing the licence cost from the agreed
amount [8].
3G Services and Income
A large number of services have been suggested for 3G. Here, we look at a
few of them.
Lessons from 2G – Voice
2G systems like GSM and D-AMPS have shown that voice communication is
a very desirable service and that customers will pay a considerable premium
for the advantage of mobility – a combination of being reachable anywhere
anytime and having one’s own personal, and personalised, terminal. For any
3G operator who does not have a 2G licence, voice will of course be a very
important service. But for all operators, it is likely to be the main initial
revenue stream.
For 2G systems, the Average Revenue Per User (ARPU) has dropped (and is
dropping) rapidly as the market saturates and competition bites. For exam-
ple, Analysys [9] predict that the European ARPU will continue to decline,
halving over the next 10 years from about 30 Euros per month in 2001. They
INTRODUCTION
10
also suggest that a 3G operator cannot make a satisfactory return on voice
alone, because their cumulative cash flow only becomes positive in 2010.
If an operator cannot be profitable from voice alone, it clearly must
increase the revenue considerably with additional services. Since these
are likely to be data services of one form or another, the extra revenue
required is often called the ‘data gap’. Many services have been suggested
to bridge this ‘data gap’, which will be discussed shortly.
Lessons from 2.5G – i-mode, WAP and GPRS
The data capability enhancements that have been added on to 2G systems
can be viewed as a stepping stone to 3G – and hence they are collectively
called ‘2.5G’: an intermediate point in terms of technology (bit rates, etc.)
and commerce (the chance to try out new services, etc.).
Undoubtedly, the most successful so far has been i-mode in Japan. i-mode
allows users to do their e-mail and text messaging. Other popular activities
include viewing news and horoscopes, and downloading ring tones, cartoon
characters and train times. Users can connect to any site written in cHTML
(compact HTML – a subset of HTML (HyperText Markup Language) designed
so that pages can display quickly on the small screens of the i-mode term-
inals), but some sites are approved by NTTDoCoMo (the operator); these
have to go through a rigorous approval process, e.g. content must be chan-
ged very regularly. The belief is that if users can be confident that sites are
‘good’, that will encourage extra traffic and new subscribers in a virtuous
circle for the operators, content providers and customers. Current download
speeds are limited to 9.6 kbit/s with an upgrade to 28.8 kbit/s planned for
Spring 2002.
i-mode has grown very rapidly from its launch in February 1999 to over 28
million users in October 2001 [10]. The basic charge for i-mode is about 300
Yen ($2.50) per month, plus 2.4 Yen (2 cents) per kbyte downloaded. The
DoCoMo-approved ‘partner sites’ have a further subscription charge of up to
about 300 Yen ($2.50) per month, which is collected via the phone bill, with
DoCoMo retaining 9% as commission [11]. For other sites, DoCoMo just
receives the transport revenues.
GSM’s WAP (Wireless Application Protocol) is roughly equivalent to i-
mode, but has been far less successful, with fewer than 10% of subscribers.
The Economist [11] suggests various reasons for i-mode’s relative (and abso-
lute) success, for example:
† Low PC penetration in Japan (for cultural reasons).
† High charges for PSTN dial-up access in Japan.
† The Japanese enthusiasm for gadgets.
† Non-standardisation of i-mode – Meaning that an operator can launch a
new service more easily, including specifying to manufacturers what
handsets they want built (e.g. with larger LCD screens).
ECONOMIC REASONS FOR ‘IP FOR 3G’ 11
† Expectation management – This was sold to users as a special service
(with applications and content useful for people ‘on the move’), whereas
WAP was (over) hyped as being ‘just like the Internet’.
† Its business model – This provides a way for content producers to charge
consumers.
GPRS, which is a packet data service being added on to GSM networks,
has started rolling out during 2001. It will eventually offer connections at up
to 144 kbit/s, but 14–56 kbit/s to start with. Like i-mode, GPRS is an ‘always
on’service. Again, this is likely to provide important lessons as to what sort of
services are popular with consumers and businesses, and how to make
money out of them.
3G Services
Many services have been suggested for 3G in order to bridge the ‘data gap’
discussed earlier, and so provide sufficient revenue to more than cover the
costs outlined above. Typical services proposed are m-commerce, location-
based services and multimedia (the integration of music, video, and voice –
such as video-phones, video-on-demand and multimedia messaging). Refer-
ence [12] discusses various possibilities. It is generally accepted that a wide
range of services is required – there is no single winner– but there are different
views as to which will prove more important than others. For example:
† Multimedia Messaging – Text messaging (e.g. SMS) has been very
successful, and on the Internet we are seeing a rapid growth in ‘instant
messaging’ (IM) – for example, AOL’s Instant Messenger and ICQ services
each have over 100 million registered users [13]. In particular, it is
predicted that the multimedia messaging service (MMS) will become
very popular in 3G. For example, Alatto believe that the primary data
revenue source will be MMS [14]. Typical MMS applications might be
the sharing of video clips and music – similar ideas have proved very
already popular on the Internet, e.g. Napster. 3G terminals are likely to
include a camera and appropriate display exactly to enable services like
these. In a similar vein, but using wireless LAN technology instead of 3G,
Cybiko includes MMS to nearby friends. (Cybiko is a wireless hand-held
computer for teens.)
† Location-based services – An operator knows the location of a mobile
user, and thus services can be tailored to them. For example, ‘where is the
nearest Thai restaurant?’; the reply can include a map to guide you there
and an assurance that a table is free. Early examples are available today,
for instance J-phone’s J-Navi service. Analysys expects that 50% of all
subscribers will use such services, with a global revenue of $18.5 billion
by the end of 2006 [15].
INTRODUCTION
12
† m-commerce – This is e-commerce to mobile terminals, for example,
ordering goods or checking your bank account. Durlacher predicted the
European m-commerce market to grow from Euro 323 million in 1998 to
Euro 23 billion by 2003 [16]. Sonera have trialled a service where drinks
can be bought from a vending machine via a premium-rate GSM phone
number or SMS message [15]. m-commerce will grow as techniques for
collecting micropayments are developed and refined. One possible
option is to have these collected by your service provider and added
and billed using either pre- or post-pay. Smart cards, including SIM
cards, could be used to authenticate these transactions. Another m-
commerce application is personalised advertising, i.e. tailored to the user.
† Business-to-business m-commerce – This will allow staff working at a
customer’s site to obtain information from their company’s central data-
base, to provide quotes and confirm orders on the spot. This could help to
cut their costs (less infrastructure and fewer staff whom it is easier to
manage) as well as provide a better service to the customer [17].
As well as the extra revenue from these new services, operators hope that
they will encourage customers to make more voice calls and also that by
offering different, innovative services, they will reduce customer ‘churn’ – i.e.
customers will be more likely to stick with them. Such an impact does seem
to have happened with i-mode.
Overall Business Case for 3G
The reason that there is so much interest in 3G and the mobile Internet is
summarised very well by Standage [19]:The biggest gamble in business
history; control of a vast new medium; the opportunity at last to monetise
the Internet: clearly, a great deal is at stake. Some say it is all just wishful
thinking. But in many parts of the world – not only Japan – millions of people
are even now using phones and other handheld devices to communicate on
the move. All over the globe, the foundations for this shift to more advanced
services are already in place.
Here, we are not interested in developing the business case per se – only
to show that any technology that improves the business case must be a good
thing and to point out the areas where we believe IP technologies can make
a difference.
3G Value Chain
A value chain is a map of the companies involved in delivering services to
the end consumer and is drawn up to identify who makes the profits (in
business-speak, making a profit is called ‘value generation’).
ECONOMIC REASONS FOR ‘IP FOR 3G’ 13
Lessons from 2G
The 2G value chain is pretty simple – basically, users buy handsets and
billing packages from operators through retail outlets. The importance of
terminal manufacturers has been strengthened by operators subsidising
handsets, ‘‘effectively supporting terminal manufacturers’ brands (e.g.
Nokia) to the extent that these now outweigh the brands of the operator in
customers’ minds’’ [9]. The content – voice and SMS – is generated by the
users themselves. Recently, a slight addition to the chain has been ‘virtual
operators’; this is basically about branding, and means that (taking a UK
example) a user buys a Virgin phone that is actually run by One 2 One
(the real operator).
In 2G, the operators control the value chain and the services offered via
the SIM card. This is sometimes called the ‘walled garden’ approach – the
operator decides what flowers (services) are planted in the garden (network)
and stops users seeing flowers in other gardens the other side of the wall.
Possible 3G Value Chain
For 3G networks, it is often suggested that the value chain will become more
complicated. Many possibilities have been suggested, and Figure 1.2 shows
one possibility by Harmer and Friel [18]. They suggest that the roles of the
players are as follows:
† Network operator – Owns the radio spectrum and runs the network.
† Service provider – Buys wholesale airtime from the network operator and
issues SIM cards and bills.
† Mobile Virtual Network Operator (MVNO) – MVNOs own more infra-
structure than service providers – perhaps some switching or routing
capacity.
† Mobile Internet Service Provider (M-ISP) – Provide users with IP addresses
and access to wider IP networks.
† Portal Provider – Provide a ‘homepage’ and hence access to a range of
services that are in association with the portal provider.
† Application Provider – Supplies products (e.g. software) that are down-
loaded or used on line.
† Content provider – Owners of music or web pages and so forth.
Of course, there are many other possible models (see [19], for example),
and it must also be pointed out that some of these ‘logically’ different roles
INTRODUCTION
14
Figure 1.2 Possible 3G value chain. Source: Harmer & Friel [18].
might actually be played by the same operator. Indeed, it is not unrealistic to
think that many 3G operators – those owning licences – could play all the
roles (except, of course, that of MVNO).
Some people believe that the value will shift, compared with 2G, from
network operators to content providers, especially following the success of i-
mode. For example, KPMG estimate that ‘‘only 25% of the total revenue will
be in the transmission of traffic and the remaining 75% will be divided up
among content creation, aggregation, service provision, and advertising’’
[19]. However, there is disagreement about who in the value chain will
benefit:
† See [20] for an argument on the importance of portals: ‘‘A compelling,
strongly branded portal via which to provide a combination of own-brand
applications and market-leading independent applications …’’.
† See [21] for a discussion about interactive entertainment. On-line
gambling is predicted to be especially important, with multimedia and
‘adult’ services also strong drivers. ‘‘In most cases, it will be the content
provider that will be in the strongest position …’’ [22].
† See [23] for a reminder of the operator’s assets: ‘‘the micropayment billing
infrastructure, a large end user base, an established mobile brand, the
users’ location information, established dealer channels and, naturally,
the mobile network infrastructure itself’’.
1.4.2 Impact of ‘IP for 3G’ on Business Case
The key impact that ‘IP for 3G’ could have is to help the convergence of the
Internet and communications. Cleevely [24] speculates that it could lead to a
fall in the unit cost of communications by a factor of nearly 1000 by 2015,
because convergence will cause a massive growth in demand and hence
large economies of scale. The following gives some 3G perspective [1].
Costs
IP is becoming the ubiquitous protocol for fixed networks, so economies of
scale mean that it is very likely that IP-based equipment will be the cheapest
to manufacture and buy for mobile networks. Further, an operator that runs
both fixed and mobile network services should be able to roll out a single,
unified network for both jobs, leading to savings on capital costs and main-
tenance. It should also allow the reuse of standard Internet functionality for
things like security. IP evolution in both fixed and mobile networks offers the
possibility of having a single infrastructure for all multimedia delivery – to
any terminal over any access technology. This will not necessarily drive
down costs for any one particular service: after all, the PSTN is supremely
optimised for voice delivery, but for future multimedia services where voice,
ECONOMIC REASONS FOR ‘IP FOR 3G’ 15
video, real-time, non-real-time and multicast all mix together, IP evolution of
both the fixed and mobile networks to a common architecture holds out the
prospect of lower costs.
Services and Revenues
From an end user’s perspective, applications are increasingly IP-based. In an
all-IP network, the same applications will be available for mobile users as for
fixed, and they will behave as intended. Existing applications will not need
to be rewritten for the special features of the mobile system (as tends to
happen today). Another issue is security, which is critical for m-commerce
applications. ‘Mobile specials’ may lead to new security holes that need
plugging as they become apparent, and also users have to be reconvinced
that their e-commerce transactions are secure. WAP provides an example of
this problem.
The Internet is adding call/session control, particularly via the Session
Initiation Protocol (SIP). As well as enabling peer-to-peer calls, which are
certainly needed in 3G, this elegant and powerful protocol will enable
service control similar to that of the ‘intelligent network’: things like ‘ring
back when free’ and other supplementary services, or more complex things
like ‘divert calls from boss to answerphone whilst I am watching cricket on
Internet-TV’. Again, an ‘IP for 3G’ approach should mean that the user
experience is the same regardless of whether they are on a fixed or mobile
network. More speculatively, ‘IP for 3G’ might enable the same location-
based services to be offered more easily on the fixed network as well.
Overall, ‘IP for 3G’ should mean that new applications can concentrate
on the particular benefits of mobility, such as location-based services. This
will give benefits for the user (obtaining the applications that the user
desires and is familiar with) and for the application writer (lower develop-
ment costs, wider market – and hence a wider choice of applications for
the user). Hence, companies gain the extra traffic and extra revenues they
want.
Value Chain
The impact of IP on the 3G value chain is unclear. There is some tension
between the 2G walled garden approach and that of the Internet where
anyone can set up a web server and deliver services to whoever discovers
it. i-mode is an interesting half-way house, with its partner sites, but also
allowing access to any site. Further, the Internet approach allows services
to run over any link layer (bit transport mechanism), whereas 3G’s stove-
pipe approach clearly locks the user into the 3G air interface. The impact
of other high-speed wireless technologies (such as wireless LANs, Blue-
tooth, and a future system using a re-farmed analogue TV spectrum) is
very interesting and uncertain. It is not at all obvious whether they should
INTRODUCTION
16
be viewed as a threat to 3G (they take traffic away from the user), or as a
complement (they enhance the capacity and coverage), or even as a
benefit (they get people hooked on the 3G services, which is what they
make money on).
1.5 Conclusion
In this chapter, we started by outlining fairly broad definitions of ‘IP’ and by
‘3G’:
† ‘IP’ is about the Internet, its design principles, protocols and standardisa-
tion approach.
† ‘3G’ is about the new mobile system, its architecture, network, and air
interface.
So, ‘IP for 3G’ is about the convergence of the Internet and mobile
communications revolutions. This book concentrates on technological,
and especially network, aspects of this convergence.
The first chapter, has given some motivation for why we believe that IP for
3G is important. The reasons fall into two categories:
† Engineering – Essentially about why IP’s design principles are a good
thing, focusing on IP’s clear protocol layering and the end-to-end princi-
ple.
† Economic – About how IP can dramatically reduce the costs of building
the mobile multimedia network – from the benefits of integration and
economies of scale – and can increase the range of services it carries.
The two sets of reasons are closely connected – it is IP’s good engineering
design principles that enable the network to be much cheaper and the
services offered on it far more numerous. We believe that the flexibility of
an all-IP mobile network will liberate application developers from having to
understand the details of the network, so that they can concentrate on what
the end users want – indeed, there is the flexibility just to try ideas out until
they haphazardly discover things that people like. This process will ignite a
Cambrian explosion of applications and services. It will lead to a dramatic
increase in users and traffic – which in turn will lead to further economies of
scale and cost reductions.
So, ‘IP for 3G’ is in effect our campaign slogan – we believe that there
should be more IP in 3G.
However, adding IP technologies and protocols into 3G is not trivial –
there are many difficulties and unresolved issues. So, ‘IP for 3G’ is an inter-
esting and important topic that requires further study and research. Each of
Chapters 2–6 provides a summary and analysis of a topic that is particularly
key to understanding what is needed for ‘IP for 3G’ to work. These stand
CONCLUSION 17
largely independently of each other and so can be dipped into according to
the reader’s mood:
† Chapter 2 concerns 3G, as it exists today (Release 99), particularly its
architecture and the critical networking aspects (such as security, quality
of service and mobility management) that characterise it. Essentially, this
chapter provides an understanding of where ‘IP for 3G’ starts from.
† Chapter 3 concerns IP, particularly the Internet protocol stack, and rout-
ing, addressing and security in IP networks. So, this chapter presents
another starting point for ‘IP for 3G’.
The contrast between Chapters 2 and 3 allows some perspective as to what
aspects are missing from current IP networks, compared with the function-
ality present in 3G. In the following three chapters, three of these missing
pieces are examined – call control, mobility management, and quality of
service. There are other missing pieces; these three do not complete the
jigsaw, but they are the most important. They are also the areas under the
most active research at present.
† Chapter 4 concerns call control for IP networks – allowing peer-to-peer
sessions (like a voice call), rather than just the client-server sessions (such
as web browsing) that dominate today. A particular focus is on the SIP
protocol.
† Chapter 5 concerns mobility management – enabling IP users and term-
inals to move around on an IP network whilst their sessions continue to
work. Various protocols to solve ‘IP mobility’ are summarised, analysed,
and compared.
† Chapter 6 concerns quality of service (QoS) – enabling IP networks to do
more than merely the ‘best effort’delivery of packets. The problems that IP
QoS presents – particularly those in a mobile and wireless environment –
are examined, and some of the current and proposed protocols to solve
these problems are examined.
So, at the end of these chapters the reader will hopefully have a good
understanding of both IP and 3G networks, and what is being done to add
some critical ‘3G-like’ functionality to IP.
The final chapter draws the threads together and provides our perspective
on how ‘IP for 3G’ could – or should – develop. Overall, our end vision is for
a network that obeys the IP design principles, uses IP protocols, and where
the radio base stations are also IP routers. We call this an ‘all-IP’ or ‘4G’
network. However, ‘all-IP’ and ‘4G’ are both terms that have been consider-
ably abused – almost any proposal is described as such. The chapter also
discusses the next developments of UMTS (Release 4 and 5) and how they
fall short of our all-IP vision.
INTRODUCTION
18
1.6 References
[1] Eardley P, Hancock R, Modular IP architectures for wireless mobile
access, 1st International Workshop on Broadband radio access for IP
based networks, November 2000. http://wwwA049.infonegocio.com/
732/programm.htm
[2] Deering S, Watching the waist of the protocol hourglass, August 2001,
IETF-51 plenary. http://www.ietf.org/proceedings/01aug/slides/plen-
ary-1/index.html
[3] Licence costs from 3G Newsroom. http://www.3gnewsroom.com/
country/index.shtml
[4] Nichols E, Pawsey C, Respin I, Koshi V, Gambhir A, Garner M, Ovum,
3G survival strategies: build, buy or share, An Ovum Report, August
2001. Abstract from http://www.ovum.com/cgi-bin/showPage.asp?-
Doc¼3GS
[5] Allsopp J, Crown Castle, Demystifying the Cost of 3G Networks. From
http://www.3gnewsroom.com/html/whitepapers
[6] McClure E, Mobilcom, Europe: Bending the rules, 1 June 200, ci-
online. http://www.totaltele.com/view.asp?ArticleID¼40579&PubCI&
CategoryID¼734
[7] Ovum, featured article from, 3G: Strategies for operators and vendors,
published 1 October 2001. From http://www.ovum.com/cgi-bin/show-
Page.asp?doc¼/research/3gs/Findings/default.htm
[8] Taaffe J, Communications Week International, France and Spain push
for a 3G rethink, 22 October 2001. http://www.totaltele.com/view.-
asp?Target¼top&Article ID¼44957&Pub¼cwi
[9] Kacker A, Analysys, Changing dynamics in the mobile landscape,
October 2001. http://www.analysys.com/Articles/StandardArticle.as-
p?iLeftArticle¼880
[10] The latest figure for the number of i-mode subscribers is available from
http://www.nttdocomo.com/i/i_m_scr.html
[11] Standage T, The Economist, Peering around the corner, 13 October
2001. Part of A Survey of the mobile Internet in The Economist.
[12] Standage T, The Economist, Looking for the pot of gold, 13 October
2001. Part of A Survey of the mobile Internet in The Economist.
[13] Birch D, Instant gratification, The Guardian, 25 October 2001.
[14] Lehrer D and Whelan J, Alatto, 3G revenue generating applicatons,
Alatto technologies, 2001. From http://www.3gnewsroom.com/html/
whitepapers/3G_Revenue_Generating_Applications.zip
[15] Robson J, Knott P and Morgan D, Analysys, Mobile Location Services
and Technologies, February 2001. Abstract at http://www.analysys.-
com/Articles/StandardArticle.a sp?iLeftArticle¼656
[16] Müller-Veerse F, Durlacher, Mobile Commerce Report. http://
www.durlacher.com/fr-research-reps.htm
REFERENCES 19
[17] KPMG, Mobile Internet: The future, 2001. http://www.kpmg.com/
industries/content.asp?l1id¼90&l2id¼0&cid¼509
[18] Harmer & Friel, 3G products – what will the technology enable?,
January 2001, BT Technology Journal. http://www.bt.com/bttj/
vol19no1/harmer/harmer.pdf
[19] Bond K, Knott P, Adebiyi A, Analysys, Controlling the 3G Value Chain,
2001. http://www.analysys.com/Articles/StandardArticle.asp?iLeftArti-
cle¼805
[20] Logica, Making 3G Make Money, June 2001. http://www.3gnews-
room.com/html/whitepapers/making_3g_make_money.zip
[21] Schema, Interactive entertainment: Delivering revenues in the broad-
band era, 2001. http://www.schema.co.uk/IEFindings.pdf
[22] Naujeer H, Schema quote from: Mobile operators shut out from content
revenues, Total Telecom, 31 August 2001. http://www.totaltele.com/
view.asp?articleID¼ 43362&Pub¼TT&categoryid¼625&kw¼schema
[23] Nokia, Make money with 3G services, March 2001. http://www.
nokia.com/3g/pdf/3g.pdf
[24] Cleevely D, Scenarios for 2015: Convergence and the Internet, June
2000. http://www.analysys.com/articles/whitepaper.pdf
INTRODUCTION
20
2
An Introduction to 3G Networks
2.1 Introduction
What exactly are 3G networks? 3G is short for Third Generation (Mobile
System). Here is a quick run-down:
† 1G, or first generation systems, were analogue and offered only a voice
service – each country used a different system, in the UK TACS (Total
Access Communications System) was introduced in 1980. 1G systems
were not spectrally efficient, were very insecure against eavesdroppers,
and offered no roaming possibilities (no use on holidays abroad.).
† 2G heralded a digital voice and messaging service, offered encrypted
transmissions, and was more spectrally efficient that 1G. GSM (Global
System for Mobile communication) has become the dominant 2G stan-
dard and roaming is now possible between 1501 countries where GSM is
deployed.
† 3G – if the popular press is to be believed – will offer true broadband data:
video on demand, videophones, and high bandwidth games will all be
available soon. 3G systems differ from the second generation voice and
text messaging services that everybody is familiar with in terms of both the
bandwidth and data capabilities that they will offer. 3G systems are due to
be rolled out across the globe between 2002 and 2006. 3G will use a new
spectrum around 2 GHz, and the licences to operate 3G services in this
spectrum have recently hit the headlines because of the huge amounts of
money paid for licences by operators in the UK and Germany (£50 billion
or so). Other countries have raised less or given away licences in so-called
‘beauty contests’ of potential operators [1].
3G systems might be defined by: the type of air interface, the spectrum
used, the bandwidths that the user sees, or the services offered. All have been
used as 3G definitions at some point in time. In the first wave of deployment,
there will be only two flavours of 3G – known as UMTS (developed and
promoted by Europe and Japan) and cdma2000 (developed and promoted
by North America). Both are tightly integrated systems that specify the entire
system – from the air interface to the services offered. Although each has a
different air interface and network design, they will offer users broadly the
same services of voice, video, and fast Internet access.
3G (and indeed existing second generation systems such as GSM) systems
can be divided very crudely into three (network) parts: the air interface, the
radio access network, and the core network. The air interface is the technol-
ogy of the radio hop from the terminal to the base station. The core network
links the switches/routers together and extends to a gateway linking to the
wider Internet or public fixed telephone network. The Radio Access Network
(RAN) is the ‘glue’ that links the core network to the base stations and deals
with most of the consequences of the terminal’s mobility.
This chapter concerns the core and access networks of 3G systems –
because that is where IP (a network protocol) could make a difference to
the performance and architecture of a 3G network. The chapter first reviews
the history of 3G developments – from their ‘conception’ in the late 1980s,
through their birth in the late 1990s, to the teething troubles that they are
currently experiencing. The history of 3G development shows that the
concepts of 3G evolved significantly as the responsibility for its development
moved from research to standardisation – shedding light on why 3G systems
are deigned the way they are. Included in this section is also a ‘who’s who’ of
the standards world – a very large number of groups, agencies, and fora have
been, and still are, involved in the mobile industry. In the second half of the
chapter, we introduce the architecture of UMTS (the European/Japanese 3G
system) and look at how the main functional components – QoS, mobility
management, security, transport and network management – are provided. A
short section on the US cdma2000 3G system is also included at the end of
the chapter.
The purpose of this chapter is to highlight the way UMTS (as an example
3G system) works at a network level – in terms of mobility management, call
control, security, and so forth. This is intended as a contrast with the descrip-
tions of how IP research is evolving to tackle these functions in the chapters
that follow. The final chapter combines the two halves – IP and 3G – to
pursue the main argument of the book – that 3G should adopt IP design
principles, architectures and protocols – thereby allowing greater efficiency,
fixed mobile convergence, and new IP services (e.g. multicast).
2.2 Mobile Standards
Mobile system development, particularly that of 3G systems, is inextricably
bound up with the process of standardisation. Why? Why is standardisation
so important? The best answer to that question is probably to look at GSM –
whose success could reasonably be described as the reason for the vast
interest and sums of money related to 3G. GSM was conceived in the
AN INTRODUCTION TO 3G NETWORKS
22
mid-1980s – just as the first analogue cellular mobile systems were being
marketed. These analogue systems were expensive and insecure (easy to
tap), and there was no interworking between the great variety of different
systems (referred to as ‘first generation systems’) deployed around the world.
GSM introduced digital transmission that was secure and made more effi-
cient use of the available spectrum. What GSM offered was a tight standard
that allowed great economies of scale and competitive procurement. Opera-
tors were able to source base stations, handsets, and network equipment
from a variety of suppliers, and handsets could be used anywhere the GSM
standard was adopted. The price of handsets and transmission equipment fell
much faster than general tends in the electronics industry. GSM also offered a
roaming capability – since the handsets could be used on any GSM system;
made possible by a remote authentication facility to the home network.
There were other advantages of moving to a digital service, such as a greater
spectral efficiency and security, but in the end, it was the mass-market low
cost (pre-pay packages have sold for as little as £20) that was the great
triumph of GSM standardisation. In terms of world markets, GSM now
accounts for over 60% of all second generation systems and has 600 million
users in 150 countries; no other system has more than 12% [2].
However, the standardisation process has taken a very long time – 18
years from conception (1980) to significant penetration (say 1998). It has
resulted in a system that is highly optimised and integrated for delivering
mobile voice services and is somewhat difficult to upgrade. As an example,
consider e-mail: e-mail has been in popular use since, maybe, 1992 but 10
years on, how many people can receive e-mail on their mobile? This facility
is beginning to appear – along with very limited web-style browsing on
mobiles [e.g. using WAP (Wireless Application Protocol) and i-mode in
Japan]. Standards can also be a victim of their own success – 2G (and
GSM in particular) has been so successful that operators and manufacturers
have been keen to capitalise on past investments and adopt an evolutionary
approach to the 3G core network.
2.2.1 Who’s who in 3G Standards
At this point, it is perhaps a good idea to provide a brief ‘who’s who’ to
explain recent developments in the standards arena.
† 3GPP – In December 1998, a group of five standards development orga-
nisations agreed to create the Third Generation Partnership Project (3GPP
– www.3gpp.org). These partners were: ETSI (EU), ANSI-TI (US), ARIB and
TTC (Japan), TTA (Korea), and CWTS (China). Basically, this was the group
of organisations backing UMTS and, since August 2000, when ETSI SMG
was dissolved, has been responsible for all standards work on UMTS.
3GPP have now completed the standardisation of the first release of the
UMTS standards – Release 99 or R3. GSM upgrades have always been
MOBILE STANDARDS 23
known by the year of standardisation, and UMTS began to follow that
trend, until the Release 2000 got so behind schedule that it was broken
into two parts and renamed R4 and R5. In this chapter, only the completed
R3 (formally known as Release 99) will be described. Chapter 7 looks at
developments that R4 and R5 will bring. 3GPP standards can be found on
the 3GPP website – www.3GPP.org – and now completely specify the
components and the interfaces between them that constitute a UMTS
system.
† 3GPP2 – 3GPP2 (www.3gpp2.org) is the cdma2000 equivalent of 3GPP –
with ARIB and TTC (Japan), TR.45 (US), and TTA (Korea). It is currently
standardising cdma2000 based on evolution from the cdmaOne system
and using an evolved US D-AMPS network core. (The latter part of this
chapter gives an account of packet transfer in cdma2000.)
† ITU – The International Telecommunications Union (ITU – www.itu.int)
was the originating force behind 3G with the FLMTS concept
(pronounced Flumps and short for Future Land Mobile Telecommunica-
tion System) and work towards spectrum allocations for 3G at the World
Radio Conferences. The ITU also attempted to harmonise the 3GPP and
3GPP2 concepts, and this work has resulted in these being much more
closely aligned at the air interface level. Currently, the ITU is just begin-
ning to develop the concepts and spectrum requirements of 4G, a subject
that is discussed at length in Chapter 7.
† IETF – The Internet Engineering Task Force (www.ietf.org) is a rather differ-
ent type of standards organisation. The IETF does not specify whole archi-
tectural systems, rather individual protocols to be used as part of
communications systems. IETF protocols such as SIP (Session Initiation
Protocol) and header compression protocols have been incorporated in to
the 3GPP standards. IETF meetings take place three times a year and are
completely open, very large (20001 delegates), and very argumentative
(compared with the ITU meeting, say). Anyone can submit an Internet
draft to one of the working groups, and this is then open to comments. If it
is adopted, it becomes a Request For Comments (RFC); if not, it is not
considered any further.
† OHG – The Operator Harmonization Group [3] proposed, in June 1999, a
harmonised Global Third Generation concept [4] that has been accepted
by both 3GPP and 3GPP2. The OHG has attempted to align the air inter-
face parameters of the two standards, as far as possible, and to define a
generic protocol stack for interworking between the evolved core
networks of GSM and ANSI-41 (used in US 2G networks).
† MWIF – The industry pressure group Mobile Wireless Internet Forum
(www.mwif.org) comprises operators, manufacturers, ISPs (Internet
Service Providers) and Internet equipment suppliers. MWIF, since early
2000, has been producing a functional architecture that separates the
various components of a 3G systems – for example, the access technology
AN INTRODUCTION TO 3G NETWORKS
24
– to provide opportunities for IP technologies such as Wireless LANs to be
used.
† 3GIP – 3GIP (www.3gip.org) was formed in May 1999 as a private pres-
sure group of operators and manufacturers – BT and AT&T were leading
members – with the aim of developing the core network of UMTS to
incorporate the ideas and technologies of IP multimedia. 3GIP was
born out of a desire to rapidly bring UMTS into the Internet era and was
initially successful in raising awareness of the issues. However, for 3GIP
contributions to have significant influence within 3GPP, it was necessary
for the organisation to offer open membership in 2000. 3GIP has been
very influential on 3GPP, whilst specifications for the second release of
UMTS are still being developed.
† ETSI – ETSI (the European Telecommunications Standards Institute) is a
non-profit-making organisation for telecommunications standards devel-
opment. Membership is open and currently stands at 789 members from
52 countries inside and outside Europe. ETSI is responsible for DECT and
HIPERLAN/2 standards developments as well as GSM developments.
2.3 History of 3G
It is not widely known that 3G was conceived in 1986 by the ITU (Interna-
tional Telephony Union). It is quite illuminating to trace the development of
the ideas and concepts relating to 3G from conception to birth. What is
particularly interesting, perhaps, is how the ideas have changed as they
have passed through different industry and standardisation bodies. 3G was
originally conceived as being a single world-wide standard and was origin-
ally called FLMTS (pronounced Flumps and short for Future Land Mobile
Telecommunication System) by the ITU. By the time it was born, it was quins
– five standards – and the whole project was termed the IMT-2000 family of
standards. After the ITU phase ended in about 1998, two bodies – 3GPP and
3GPP2 – completed the standardisation of the two flavours of 3G that are
actually being deployed today and over the next few years (UMTS and
cdma2000, respectively). Meanwhile, these bodies, along with the Operator
Harmonisation Group (OHG), are looking at unifying these into a single 3G
standard that allows different air interfaces and networks to be ‘mixed and
matched’.
It is convenient to divide up the 3G gestation into three stages (trimesters):
† Pre-1996 – The Research Trimester.
† 1996–1998 – The IMT-2000 Trimester.
† Post-1998 – The Standardisation Trimester.
Readers interested in more details about the gestation of 3G should refer
to [5].
HISTORY OF 3G 25
2.3.1 Pre-1996 – The Research Trimester
Probably the best description of original concept of 3G can be found in Alan
Clapton’s quote – head of BT’s 3G development at the time
‘‘3G …The evolution of mobile communications towards the goal of universal
personal communications, a range of services that can be anticipated being intro-
duced early in the next century to provide customers with wireless access to the
information super highway and meeting the ‘Martini’ vision of communications
with anyone, anywhere and in any medium.’’ [6]
Here are the major elements that were required to enable that vision:
† A world-wide standard – At that time, the European initiative was
intended to be merged with US and Japanese contributions to produce
a single world-wide system – known by the ITU as FLMTS. The vision was
a single hand-set capable of roaming from Europe to America to Japan.
† A complete replacement for all existing mobile systems – UMTS was
intended to replace all second generation standards, integrate cordless
technologies as well as satellite (see below) and also to provide conver-
gence with fixed networks.
† Personal mobility – Not only was 3G to replace existing mobile systems,
but its ambition stretched to incorporating fixed networks as well. Back in
1996, of course, fixed networks meant voice, and it was predicted in a
European Green Paper on Mobile Communications [7] that mobile would
quickly eclipse fixed lines for voice communication. People talked of
Fixed Mobile Convergence (FMC) with 3G providing a single bill, a single
number, common operating, and call control procedures. Closely related
to this was the concept of the Virtual Home Environment (VHE).
† Virtual Home Environment – The virtual home environment was where
users of 3G would store their preferences and data. When a user
connected, be it by mobile or fixed or satellite terminal, they were
connected to their VHE, which then was able to tailor the service to the
connection and terminal being used. Before a user was contacted, the
VHE was interrogated, so that the most appropriate terminal could be
used, and the communication tailored to the terminals and connections
of the parties.
† Broadband service (2 Mbit/s) with on-demand bandwidth – Back in the
early 1990s, it was envisaged that 3G would also need to offer broadband
services – typically meaning video and video telephony. This broadband
requirement meant that 3G would require a new air interface, and this
was always described as broadband and typically thought to be 2 Mbit/s.
Associated with this air interface was the concept of bandwidth on
demand – meaning that it could be changed during a call. Bandwidth
on demand could be used, say, to download a file during a voice conver-
sation or upgrade to a higher-quality speech channel mid-way through a
call.
AN INTRODUCTION TO 3G NETWORKS
26
† A network based on B-ISDN – Back in the early 1990s, another concept –
certainly at BT – was that every home and business would be connected
directly to a fibre optic network. ATM transport and B-ISDN control would
then be used to deliver broadcast and video services, an example being
video on demand whereby customers would select a movie, and it would
be transmitted directly to their home. B-ISDN [Broadband ISDN was
supposed to be the signalling for a new broadband ISDN service based
on ATM transport – it was never actually developed, and ATM signalling is
still not yet sufficiently advanced to switch circuits in real time. ATM
(asynchronous transfer mode) is explained in the latter part of this chapter:
it is used in the UMTS radio access and core networks.] Not surprisingly,
given the last point, it was assumed that the 3G network would be based
on ATM/B-ISDN.
† A satellite component – 3G was always intended to have an integrated
satellite component, to provide true world-wide coverage and fill in gaps
in the cellular networks. A single satellite/3G handset was sometimes
envisaged. (Surprisingly, since satellite handsets tend to be large).
The classicpicture – seeminglycompulsory in any description of 3G – is of a
layered architecture of radio cells (Figure 2.1). There are megacells for satel-
lites, macrocells for wide-area coverage (rural areas), microcells for urban
coverage, and picocells for indoor use. There is a mixture of public and private
use and always a satellite hovering somewhere in the background.
In terms of forming this vision of 3G, much of the early work was done in
the research programmes of the European Community, such as the RACE
(Research and development in Advanced Communications technologies in
Europe) programme with projects such as MONET (looking at the transport
and signalling technologies for 3G) and FRAMES (evaluating the candidate
air interface technologies). In terms of standards, ETSI (European Telecom-
munications Standards Institute) completed development of GSM phase 2,
and at the time, this was intended to be the final version of GSM and for 3G
HISTORY OF 3G 27
Figure 2.1 Classic 3G layer diagram.
to totally supersede it and all other 2G systems. As a result, European stan-
dardisation work on 3G, prior to 1996, was carried out within an ETSI GSM
group called, interestingly, SMG5 (Special Mobile Group).
2.3.2 1996–1998 – The IMT 2000 Trimester
It is now appropriate to talk of UMTS (Universal Mobile Telecommunications
System) – as the developing European concept was being called. In the case
of UMTS, the Global Multimedia Mobility report [8] was endorsed by ETSI
and set out the framework for UMTS standardisation. The UMTS Forum – a
pressure group of manufacturers and operators – produced the influential
UMTS forum report (www.umts-forum.org) covering all non-standardisation
aspects in UMTS such as regulation, market needs and spectrum require-
ments. As far as UMTS standardisation was concerned, ETSI transferred the
standardisation work from SMG5 to the various GSM groups working on the
air interface, access radio network, and core network.
In Europe, there were five different proposals for the air interface – most
easily classified by their Medium Access Control (MAC) schemes – in other
words, how they allowed a number of users to share the same spectrum.
Basically, there were time division (TDMA – Time Division Multiple Access),
frequency division (OFDM – Orthogonal Frequency Division Multiple
Access), and code division proposals (CDMA). In January 1998, ETSI
chose two variants of CDMA – Wideband CDMA (W-CDMA) and time
division (TD-CDMA) – the latter basically a hybrid with both time and
code being used to separate users. W-CDMA was designated to operate in
paired spectrum [a band of spectrum for up link and another (separated)
band for down link] and is referred to as the FDD (Frequency Division
Duplex) mode, since frequency is used to differentiate between the up and
down traffic. In the unpaired spectrum, a single monolithic block of spec-
trum, the TD-CDMA scheme was designated, and this has to use time slots to
differentiate between up and down traffic (FDD will not work for unpaired
spectrum – see Section 2.4 for more details), and so is called the TDD (Time
Division Duplex) mode of UMTS.
In comparison, GSM is a FDD/TDMA system – frequency is used to sepa-
rate up and down link traffic, and time division is used to separate the
different mobiles using the same up (or down) frequency.
Part of the reason behind the decision to go with W-CDMA for UMTS was
to allow harmonisation with Japanese standardisation.
Unfortunately, in North America, the situation was more complicated;
firstly, parts of the 3G designated spectrum had been licensed to 2G opera-
tors and other parts used by satellites; secondly, the US already has an
existing CDMA system called cdmaOne that is used for voice. It was felt
that a CDMA system for North America needed to be developed from
cdmaOne – with a bit rate that was a multiple of the cdmaOne rate. Conse-
quently, the ITU recognised a third CDMA system – in addition to the two
AN INTRODUCTION TO 3G NETWORKS
28
European systems – called cdma2000. It was also felt that the lack of 3G
spectrum necessitated an upgrade route for 2G TDMA systems – resulting in
a new TDMA standard – called UMC-136, which is effectively identical to a
proposed enhancement to GSM called EDGE (Enhanced Data rates for
Global Evolution). This takes advantage of the fact that the signal-to-noise
ratio (and hence potential data capacity) of a TDMA link falls as the mobile
moves away from the base station. Users close to base stations essentially
have such a good link that they can increase their bit rate without incurring
errors. By using smaller cells or adapting the rate to the signal-to-noise ratio,
on average, the bit rate can be increased. In CDMA systems, the signal-to-
noise ratio is similar throughout the cell.
Finally the DECT (Digital European Cordless Telecommunications) –
developed by ETSI for digital cordless applications and used in household
cordless phones, for example – inhabits the 3G spectrum and has been
included as the fifth member of the IMT-2000 family of 3G standards
(Table 2.1) as the ITU now called the FPLMTS vision.
During this period, 3G progressed from its ‘Martini’ vision – ‘anytime,
anyplace, anywhere’, to a system much closer, in many respects, to the
existing 2G networks. It is true that the air interface was a radical change
from TDMA – it promised a better spectral efficiency, bandwidth on demand,
and broadband connections – but the core networks chosen for both UMTS
and cdma2000 were based on existing 2G networks: in the case of UMTS,
an evolved GSM core, and for cdma2000, an evolved ANSI-41 core (another
time division circuit switching technology standard). The major reason for
this was the desire by the existing 2G operators and manufacturers to reuse
as much existing equipment, development effort, and services as possible.
Another reason was the requirement for GSM to UMTS handover, recognis-
ing that UMTS coverage will be limited in the early years of roll-out.
The radio access network for UMTS was also new, supporting certain
technical requirements of the new CDMA technology and also the resource
management for multimedia sessions. The choice of evolved core network
for UMTS is probably the key non-IP friendly decision that was taken at this
time, meaning that that UMTS now supports both IPand X25 packets using a
common way of wrapping them up and transporting them over an under-
lying IP network. (X25 is an archaic and heavyweight packet switching
technology that pre-dates IP and ATM). In the meantime, X25 has become
HISTORY OF 3G 29
Table 2.1 IMT 2000 family of 3G standards
IMT2000 designation Common term Duplex type
IMT-DS Direct Sequence CDMA Wideband CDMA FDD
IMT-MC Multi Carrier CDMA Cdma2000 FDD
IMT-TD Time Division CDMA TD/CDMA TDD
IMT-SC Single Carrier UMC-136 (EDGE) FDD
IMT-FT Frequency Time DECT TDD
totally defunct as a packet switching technology, and IP has become ubiqui-
tous, meaning that IP packets are wrapped up and carried within outer IP
packets because of a no-longer useful legacy requirement to support X25.
2.3.3 1998 Onwards – The Standardisation Trimester
After 1998, the function of developing and finalising the standards for UMTS
and cdma2000 passed to two new standards bodies: 3GPP and 3GPP2,
respectively. These bodies have now completed the first version (or release)
of the respective standards (e.g. R3 – formally known as Release 99 for
UMTS), and these are the standards that equipment is currently being
procured against for the systems currently on order around the world.
Current order numbers are UMTS 34, cdma2000 9, and EDGE 1 (number
of systems [9]).
2G systems have not stood still and are introducing higher-speed packet
data services (so-called 2.5G systems: the GSM 2.5G evolution is GPRS –
GSM Packet Radio System). These will offer either subscription or per-packet
billing and allow users to be ‘always on’ without paying a per-second charge
as they currently do for circuit-based data transfer. The new network
elements needed to add packet data to GSM are also needed for UMTS,
and details of these are given later in the chapter (for a good description of
GPRS, see [10]).
In early 2000, 3G license auctions raised £50 billion in the UK and
Germany, and many expected that services would be universally available
by 2002. That now looks unlikely with the major downturn in the telecoms
industry, the failure of WAP to take off in Europe, and technical delays over
the new air interfaces and terminals. After WAP was widely rejected because
of long connection times and software errors, many operators are using 2.5G
systems – such as GPRS – as a proving ground for 3G. NTT launched a
limited 3G service in Tokyo, in late 2001, with a few hundred handsets.
Most commentators now see 3G deployment held back until 2004 and
much site and infrastructure sharing to produce cost savings.
Since the first UMTS Release, there has been work in groups like 3GIP to
be more revolutionary and include more IP (in its widest sense) in 3G. 3GIP
has produced a number of technical inputs to the second version of UMTS –
originally called Release 2000 but now broken into two releases, known as
R4 and R5 in the revised (so as to avoid the embarrassment of finishing
Release 2000 in 2002) numbering scheme. We shall look at what R4 and
R5 offer in Chapter 7.
Finally the operator harmonisation group and 3GPP/3GPP2 are working to
harmonise UMTS, cdma2000, and EDGE such that any of these air interfaces
and their associated access networks – or indeed a Wireless LAN network –
can be connected to either an IS-41 or evolved GSM core network. The final
goal is a single specification for a global 3G standard.
AN INTRODUCTION TO 3G NETWORKS
30
2.4 Spectrum – The ‘Fuel’ of Mobile Systems
Now is a good time to consider spectrum allocation decisions, as these have
a key impact on the 3G vision in terms of the services (e.g. bandwidth or
quality) that can be provided and the economics of providing them.
In any cellular system, a single transmitter can only cover a finite area
before the signal-to-noise ratio between the mobiles and base stations
becomes too poor for reliable transmission. Neighbouring base stations
must then be set up and the whole area divided into cells on the basis of
radio transmission characteristics and traffic density. The neighbouring cells
must operate on a different frequency (e.g. GSM /D-AMPS) or different
spreading code (e.g. W-CDMA or cdmaOne; see Figure 2.2). Calls are
handed over between cells by arranging for the mobile to use a new
frequency, code or time slot. It is a great, but profitable and very serious,
game of simulation and measurement to estimate and optimise the capacity
of different transmission technologies. For example, it was originally esti-
mated that W-CDMA would offer a 10-fold improvement in transmission
efficiency (in terms of bits transmitted per Hertz of spectrum) over TDMA
(Time Division Multiple Access – such as GSM and D-AMPS) – in practice,
this looks to be twofold at best.
In general terms, for voice traffic, the capacity of any cellular system is
given by:
Capacity ðusers=km2
Þ ¼
K Spectrum ðkHzÞ Efficiency ðbps=kHzÞ Density=ðcells=km2
Þ
call bandwidth ðbpsÞ
;
The constant (K) depends on the precise traffic characteristics – how often
users make calls and how long they last as well as how likely they are to
move to another base station and the quality desired – the chance of a user
SPECTRUM – THE ‘FUEL’ OF MOBILE SYSTEMS 31
Figure 2.2 Typical (TDMA) cellular system.
failing to make a call because the network is busy or the chance of a call
being dropped on handover.
Typically, figures for a 2G system are:
† Bandwidth of a call – 14 kbit/s (voice).
† Bandwidth available 30 MHz (Orange – UK).
† Efficiency 0.05 (or frequency reuse factor of 20 – meaning that one in 20
cells can use the same frequency with acceptable interference levels).
Now, there are several very clear conclusions that can be drawn from this
simple equation. First, any capacity can be achieved by simply building a
higher base station density (although this increases the costs). Second, the
higher the bandwidth per call, the lower the capacity – so broadband
systems offering 2 Mbit/s to each user need about 150 times the spectrum
bandwidth of voice systems to support the same number of users (or will
support around 150 times less users), all other things being equal. Third, any
major increase in efficiency – for a given capacity – means that either a
smaller density of base stations or less spectrum is required, and, given
both are very expensive, this is an important research area. Unfortunately
for 3G systems, as mentioned above, this factor has improved by only 2 over
current GSM systems. Finally if the bandwidth of a voice call can be halved,
the capacity of the system can be doubled; this is the basis of introducing
half-rate (7 kbit/s) voice coding in GSM.
So, given this analysis, it is hard to escape the conclusion that 3G systems
need a lot of spectrum. However, radio spectrum is a scarce resource. To
operate a cellular mobile system only certain frequencies are feasible: at
higher frequencies, radio propagation characteristics mean that the cells
become smaller, and costs rise. For example, 900-MHz GSM operators
(e.g. Cellnet in the UK) require about half the density of stations – in rural
areas – compared with 1800-MHz GSM operators like Orange. Also, above
about 3 GHz, silicon technology can no longer be used for the transmitters
and receivers – necessitating a shift to gallium arsenide technology, which
would be considerably more expensive. The difficulties of finding new spec-
trum in the 500–3000-MHz range should not be under-emphasised – see
[11] for a lengthy account of the minutiae involved – but, in short, all sorts of
military, satellite, private radio and navigation systems, and so forth all
occupy different parts of the spectrum in different countries. Making progress
to reclaim – or ‘re-farm’ as it is known – the spectrum is painfully slow on a
global scale. The spectrum bands earmarked for FPLMTS at the World Radio
Conference in 1992 were 1885–2025 MHz and 2110–2200 MHz – a total of
230 MHz. However, a number of factors and spectrum management deci-
sions have since eroded this allocation in practice:
† Mobile satellite bands consume 2 £ 30 MHz.
† In the US, licences for much of the FPLMTS band have already been sold
off for 2G systems.
AN INTRODUCTION TO 3G NETWORKS
32
† Part of the bands (1885–1900 MHz) overlap with the European DECT
system.
† The FPLMTS bands are generally asymmetrical (preventing paired spec-
trum allocations – see below).
All of this means that only 2 £ 60 MHz and an odd 15 MHz of unpaired
spectrum are available for 3G in Europe and much less in the US. The paired
spectrum is important – this means equal chunks of spectrum separated by a
gap – one part being used for up link communications and the other for
down link transmission. Without the gap separating them up and down link
transmissions would interfere at the base station and mobile if they trans-
mitted and received simultaneously. By comparison, in the UK today, 2 £
100 MHz is available for GSM, shared by four operators. Figure 2.3 shows
the general world position on the 3G spectrum – explaining why many
commentators expect 3G to be much less influential in the US and rolled
out earlier in Europe and Japan.
In the UK auction/licensing process, there were a dozen or so bidders
chasing five licences, resulting in three getting 10 MHz and two buying
15 MHz of paired spectrum per operator –BT has acquired 2 £ 10 MHz of
paired spectrum and 5 MHz of unpaired spectrum. BT Cellnet will use the
paired spectrum with 5 MHz for macrocells and 5 MHz for microcells –
there being no need for frequency planning in a W-CDMA system.
2.5 UMTS Network Overview
In order to illustrate the operation of a UMTS network, this section describes
a day in the life of a typical UMTS user – this sort of illustration is often called
a usage case or a scenario. The major network elements – the base stations
UMTS NETWORK OVERVIEW 33
Figure 2.3 Global spectrum allocations for 3G (MSS bands are satellite spectrum).
and switches etc. – will be introduced, as well as the functionally that they
provide. This at least has the merit of avoiding a very sterile list of the network
elements and serves as a high-level guide to the detailed description of
UMTS functionality that follows.
Mary Jones is 19 years old and has just arrived at the technical Polytechnic
of Darmstadt. She is lucky that her doting father has decided to equip her
with a 3G terminal before allowing her to live away from home – but then
this is 2004, and such terminals are now common in Germany and much of
Europe.
Mary first turns her terminal on after breakfast and is asked to enter her
personal PIN code. This actually authenticates her to the USIM (UMTS
Subscriber Identity Module) – a smart card that is present within her terminal.
The terminal then searches for a network, obtains synchronisation with a
local base station, and, after listening to the information on the cell’s broad-
cast channel, attempts to attach to the network. Mary’s subscription to T-
Nova is based on a 15-digit number (which is not her telephone number)
identifying the USIM inside her terminal. This number is sent by the network
to a large database – called the home location register (HLR) located in the T-
Nova core network. Both the HLR and Mary’s USIM share a 128-bit secret
key – this is applied by the HLR to a random number using a one-way
mathematical function (one that is easy to compute but very hard to invert).
The result and the random number are sent to the network, which challenges
Mary’s USIM with the random number and accepts her only if it replies with
the same result as that sent from the HLR (Figure 2.4).
After attaching to the network, Mary decides to call her dad – perhaps,
although unlikely, to thank him for the 3G terminal. The UMTS core network
is divided into two halves – one half dealing with circuit-switched (constant
bit rate) calls – called the circuit-switched domain – and the other – the
packet-switched domain – routing packets sessions. At this time, Mary
attempts to make a voice call, and her terminal utilises the connection
management functions of UMTS. First, the terminal signals to the circuit
switch that it requires a circuit connection to a particular number – this
switch is an MSC (mobile switching centre). The MSC has previously down-
loaded data from the HLR when Mary signed on, into a local database called
the visitor location register (VLR) and so knows if she is permitted to call this
number, e.g. she may be barred from international calls. If the call is possi-
ble, the switch sets up the resources needed in both the core and radio
access networks. This involves checking whether circuits are available at
the MSC and also whether the radio access network has the resources to
support the call. Assuming that the call is allowed and resources are avail-
able, a constant bit rate connection is set up from the terminal, over the air
interface, and across the radio access network to the MSC – for mobile voice,
this will typically be 10 kbit/s or so. Assuming that Mary’s dad is located on
the public fixed network, the MSC transcodes the speech to a fill a 64 kbit/s
speech circuit (the normal connection for fixed network voice) and trans-
AN INTRODUCTION TO 3G NETWORKS
34
ports this to a gateway switch (the gateway MSC – GMSC) to be switched into
the public fixed telephone network.
When the call ends, both the MSC and GMSC are involved in producing
Call Detail Records (CDR), with such information as: called and calling party
identity, resources used, time stamps, and element identity. The CDRs are
forwarded to a billing server where the appropriate entry is made on Mary’s
billing record.
Mary leaves her terminal powered on – so that it moves from being Mobi-
lity Management (MM)-connected to being MM-idle (when it was turned off
completely, it was MM-detached). Mary then boards a bus for the Polytech-
nic and passes the radio coverage of a number of UMTS base stations. In
order to avoid excessive location update messages from the terminal, the
system groups large numbers of cells into a location area. The location area
identifier is broadcast by the cells in the information they broadcast to all
terminals. If Mary’s terminal crosses into a new location area, a location
update message is sent by the terminal to the MSC and also stored in the HLR.
When Tom tries to call Mary – he is ringing from another mobile network –
his connection control messages are received by the T-Nova GMSC. The
GMSC performs a look-up in the HLR, using the dialled number (i.e. Mary’s
telephone number) as a key – this gives her current serving MSC and location
area, and the call set-up request is forwarded to the serving MSC. Mary’s
terminal is then paged within the location area – in other words, all the cells
UMTS NETWORK OVERVIEW 35
Figure 2.4 UMTS Architecture.
Other documents randomly have
different content
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely
The Project Gutenberg eBook of Simson ja
Delila: Kolminäytöksinen näytelmä
This ebook is for the use of anyone anywhere in the United States
and most other parts of the world at no cost and with almost no
restrictions whatsoever. You may copy it, give it away or re-use it
under the terms of the Project Gutenberg License included with this
ebook or online at www.gutenberg.org. If you are not located in the
United States, you will have to check the laws of the country where
you are located before using this eBook.
Title: Simson ja Delila: Kolminäytöksinen näytelmä
Author: Johannes Linnankoski
Release date: July 1, 2013 [eBook #43072]
Language: Finnish
Credits: Produced by Tapio Riikonen
*** START OF THE PROJECT GUTENBERG EBOOK SIMSON JA
DELILA: KOLMINÄYTÖKSINEN NÄYTELMÄ ***
Produced by Tapio Riikonen
SIMSON JA DELILA
Kolminäytöksinen näytelmä
Kirj.
JOHANNES LINNANKOSKI
WSOY, Porvoo, 1911.
HENKILÖT:
SIMSON DELILA SIMSONIN ÄITI ASTARTEN YLIPAPPI DELILAN
ORJATAR ADULLA KOLME DANIN MIESTÄ JORDANIN MIES NAFTALIN
MIES SEITSEMÄN ISRAELIL. VANKIA ISRAELIL. POIKANEN FILISTEAL.
VANKI VANKIEN PÄÄMIES ASKALONIN RUHTINAS KAKSI EGYPTIN
LÄHETTILÄSTÄ BABYLONIAN LÄHETTILÄS ELAMIN LÄHETTILÄS
KOLMETOISTA FILISTEALAISTA
Sotilaita, hovilaisia, hovin palvelijoita, vanginvartijoita, pappeja,
soittajia, laulajia, temppelipoikia, temppelityttöjä, nuorukaisia, lapsia,
kansaa.
ENSIMÄINEN NÄYTÖS.
Askalonin hallitsevan ruhtinaan veljentyttären, nuoren
<b>Delila</b> ruhtinattaren suvimaja. Huonetta valaisee
himmeästipalava savilamppu. Vasemmalla kaksi ovea, perällä
oikeassa yläkulmassa makuuhuoneen ovi, jonka verhojen
aukeamasta kumottaa väkevä valaistus. Yö, syvä hiljaisuus.
DELILA (ilmestyy hennossa yöpuvussa oviverhojen aukeamaan,
levottomasti taakseen katsellen. Sulkee varovasti verhot ja hiipii
kiihtyneenä huoneeseen): Jo neljäs yö on kulumassa…
(Äänettömyys.)
Hän väistää! Jokaisen minun yritykseni hän väistää hymyillen!
(Kiihtyen.)
Kuin uteliaalle lapselle hymyilee hän minulle!
(Lähtee kiivaasti kävelemään.)
(Seisahtuu hetken päästä syviin mietteisiin vaipuneena.)
Mikä on se avain, joka hänen salaisuutensa portit minulle
vihdoinkin aukaisee? (Äänettömyys.) Tahdon! Tänä yönä sen
avaimen tahdon!
(Lähtee haltioituneena kävelemään.)
(Mutta hänen askeleensa hidastuvat vähitellen ja hän seisahtuu
taka-alalle, nojautuen erästä pylvästä vasten)
Niinkuin tahtoisin, enkä tahtoisi… Niinkuin vihaisin, enkä vihaisi…
(Äänettömyys.)
Niinkuin pelkäisin, niinkuin aavistaisin tästä jotakin …
tuntematonta … selittämätöntä … irtipäästämätöntä…
(Äänettömyys.)
(Orjatar kurkistaa huoneensa ovelta. Delila ei huomaa häntä.)
ORJATAR (kuiskaa). Minun ruhtinattareni!
DELILA: Mitä?!
ORJATAR. Astarten ylipappi rukoilee minun ruhtinattareni puheille.
DELILA (kiivaasti). Onko tämä aika!
ORJATAR. Astarten ylipappi rukoilee minun ruhtinattareltani kahta
sanaa.
DELILA. Huomenna!
ORJATAR (nöyrästi, mutta intohimoisesti). Älköön minun
ruhtinattareni suuttuko — Astarten ylipappi rukoilee koko Filistean
kansan nimessä juuri tänä hetkenä kahta sanaa.
(Kuohahtaa, mutta hillitsee itsensä. Katsahtaa levottomasti
makuuhuoneeseen päin. Päättävästi.)
DELILA. Hän tulkoon!
(Tempaa istuimelta päällysvaipan, jonka kietoo ympärilleen,
rientää ovelle vastaan.)
YLIPAPPI (jolle Delila tekee varottavan liikkeen, kuiskaten).
Anteeksi!
Enosi ruhtinas —
DELILA. Huomenna varhain olen ilmottava!
YLIPAPPI. Huomenna, ruhtinattareni? Enosi valvoo, Askalon
odottaa, koko
Filistea valvoo ja odottaa —
DELILA (tuskautuneena). Näette. minäkin valvon!
YLIPAPPI. Astarten nimessä, yksi ainoa sana! Onko hän jo —
DELILA. En mitään voi tänä hetkenä ilmottaa. — Jättäkää minut!
YLIPAPPI. Ymmärrän, sinä Astarten siunattu… (Kumartaa nöyrästi,
mutta pysähtyy oven luona, kiihkeä välke silmissään.) Oli minulla
vielä muutakin, ruhtinattareni!
DELILA. Muutakin…?
YLIPAPPI (nostaa salaperäisesti kätensä). Tänä yönä se on
tapahtuva, tyttäreni! Olen kysynyt jumalattarelta, jumalatar on
vastannut —
DELILA. Mitä?!
YLIPAPPI (yhä salaperäisemmin). Olen uhrannut ennus-uhrin
puolestasi. Uhri suitsi … papit rukoilivat… Sanoin. kansani tuskan ja
toivon nimessä, jos se on tänä yönä täyttyvä, nouskoon hymy
ihanille huulillesi. Vedin ennusvaatteen kasvoiltani, katso: jumalatar
hymyili —
DELILA. Onko se mahdollista?
YLIPAPPI. Jumalatar on hymyillyt! Tänä yönä Israel syöstään
takaisin korpiinsa! Tänä yönä Filistea kohoaa Kaanaan valtiaaksi!
Tänä yönä Astarte nousee Dagonin istuimelle! (Huomaa
levottomuutta Delilan kasvoilla.) Anteeksi, tyttäreni! Käy loppuun
saattamaan sankaritekosi, josta maine on vierivä vetten yli Egyptiin,
virtoja myöten Eufratin maille, josta —
DELILA. Kyllin! (Ankarasti.) Älköön kukaan häiritkö minua tämän
enempi.
YLIPAPPI. Suutelen vaippasi lievettä, sinä Filistean ylpeys!
(Menee.)
DELILA (käy mietteissään Astartea kuvailevan kannatinpylvään
eteen.) Oletko sinä todellakin hymyillyt…? (Ojentaa kätensä.)
Hymyile minullekin, jumalatar! Näytä minulle se merkki!
(Äänettömyys) Oh! (Kääntyy makuuhuoneeseen päin, kuuntelee. —
Kiihtyen.) Tänä yönä, tänä yönä, sanotte te! Mitä te tiedätte tästä
yöstä…? (Käy kuohuvana oikealle, jossa on kahdesta rinnakkain
lepäävästä pantterista muodostettu divaani. Heittää vaippansa
divaanille ja vaipuu vähitellen itsekin, tuijottaen pantterien päiden
ylitse pelottavin katsein.) Minä seison kuin arvotuksen edessä…
(Äänettömyys.) Vihaan! Sinun salaisuuttasi! Sinun askeltesi
väkevyyttä! Sinun hiustesi leikkiä! Sinun ylimielistä hymyäsi!
(Äänettömyys.) Tänä yönä minä otan minun sieluni minun käteeni ja
vaadin sinun sielusi minun oman sieluni hinnalla…
(Äänettömyys.)
ÄÄNI (makuuhuoneesta). Delila! — Delila!
DELILA (kavahtaa ylös ja rientää ääntä kohti, mutta kääntyy
takaisin heittäytyen syvässä mielenkuohussa divaanille)
SIMSON (ilmautuu makuuhuoneen ovelle). Minne karkasit sinä,
Delila?
DELILA (yhä entisellään.)
SIMSON. Vastaa minulle! Missä piilet sinä? (Huomaa Delilan) Ah!
(Rientää luo, vaan pysähtyy äkkiä.) Mitä?!
DELILA (vaikenee.)
SIMSON. Mitä tämä merkitsee? (Katselee häntä.) Mutta ihana sinä
olet! Huumaava yrtti, pyörryttävä hulluus olet sinä! (Koskettaa
hurmautuneena häntä olkapäähän.) Miksi pakenit, Delila!
DELILA (vaikenee yhä).
SIMSON. Et vastaa…?
DELILA (värähtäen). Kysy Simsonilta — hän sen tietää!
SIMSON. Sinun äänesi vapisee?! (Istahtaa.) Mitä minä tiedän?
Hetken, jolloin käsivarrellani lepäsi ihanin ihmislapsista. Toisen
hetken, jolloin minun sydämeni heräsi, ja minun iloni oli paennut
minun luotani. Kolmannen hetken, jolloin minä löydän hänet kuin
vuorikauriin kallion rotkosta, enkä tiedä miksi hän lymyy. — Vastaa
minulle, Delila!
DELILA (kuin ennen). Kysy Danin jalopeuralta — hän sen tietää!
SIMSON. Niin, jalopeura minä tahdon olla! Nuori jalopeura, joka
tietää saaliinsa, ja saaliinsa tempaa! (Tarttuu häneen väkevästi ja
kohottaa istualle, mutta Delila painautuu itsepintaisesti takaisin.)
Mitä?! (Kohottaa hänen päätään.) Sinulla on kyyneleet ihanissa
silmissäsi! (Heltyen.) Miksi? Minä rukoilen sinua!
DELILA. Kysy Danin jalopeuralta, miksi hänen huulensa vuotavat
rakkautta, mutta hänen sydämensä on kaukana!
SIMSON. Sinä puhut syntiä, Delila!
DELILA (yhä intohimoisemmin). Kysy Danin jalopeuralta, miksi hän
rakastaa salaisuuttansa enempi kuin minua!
SIMSON (nousee). Taasko? Yhäkö sinä vaivaat sieluasi tuolla
päähänpistollasi? Ja minun sieluani sinun sielusi kanssa.
DELILA (yhä itsepintaisemmin). Kolme yötä olet sinä minua
pettänyt. Tämä on neljäs!
SIMSON. Pettänyt! Sinua? (Äkkiä synkistyen.) Minäkin voisin
sanoa: kolme yötä sinä olet minua pettänyt, Delila!
DELILA (ponnahtaa tyrmistyneenä istualleen). Minä?!
SIMSON (syytöstään lieventäen). Niin, sinä, Filistean
tuhatoikkuinen ihme! Kolme yötä sinä olet ollut minulle niinkuin
huumaava yrttitarha. Mutta kolme yötä sinä olet samalla ollut
niinkuin oikullinen lapsi, joka kaivaa ruusun ja liljan sormillansa
etsien kukoistuksen salaisuutta.
DELILA (nauraa rauhottuen). Kukkasistako sinä puhut, Danin
sankari? — Olkoon niin! Kolme yötä sinä olet levännyt minun
puutarhassani, jonka muurin ylitse ei yhdenkään miehen ajatus ole
tähän saakka uskaltanut. Kolme yötä sinä olet levännyt minun
puitteni varjossa, mutta et niinkuin sankari, vaan niinkuin vakooja,
sillä sen tietää Israel ja sen tietää Filistea: sinä kannat salaisuutta
sydämessäsi!
SIMSON (uudelleen synkistyen). Sinä et tiedä, Delila, mitä puhut!
Kolme yötä minä itse —
DELILA. Kolme yötä sinä olet levännyt minun käsivarrellani
niinkuin
Israelin vakooja! (Kohoaa ylemmäksi.) Minä halveksin sinua!
SIMSON. Delila!
DELILA (kohoaa yhä ylemmäksi). Älä lähene minua!
SIMSON (harmistuen). Totisesti! Minä joudun narriksi naisen
edessä. Kolme yötä minä olen hänen tähtensä unhottanut minun
tehtäväni salaisuuden, neljäntenä hän sanoo minua vakoojaksi.
DELILA (jännittyneenä). Sinun tehtäväsi — —? (Pidättyy äkkiä,
kääntyen ivallisena poispäin.) Sinun tehtäväsi salaisuuden!
SIMSON (tulistuen). Mitä?! Minä luulin sen naisen olevan ylpeän,
että minun rakkauteni häneen on ollut niinkuin hulluus — sen sijaan
hän pilkkaa minua!
DELILA. Ja minä luulin sen naisen, joka on unhottanut heimonsa
ja sukunsa ja syttynyt mieheen, joka on tehnyt hänen kansallensa
pahaa enempi kuin Israel kaikkena elinaikanansa — minä luulin sen
naisen olevan yhden pikku salaisuuden arvoisen!
SIMSON (yhä enemmän tulistuen). 'Pikku salaisuuden?'
DELILA. Ei ainakaan suuremman kuin että minun korvani sen
kestäisivät!
SIMSON (ylpeydenpuuskan tempaamana). Hyvä! Niinpä saakoot
sinun korvasi kuulla tämän minun pikku salaisuuteni —
ymmärtääksesi etten minä tullut Filisteaan istuakseni naisen jaloissa,
vaikka niin on käynyt.
DELILA (lauhtuneesta). Ah, Simson!
SIMSON. Kuule sitten! Kaksikymmentä ajastaikaa on sinun kansasi
vaivannut Israelia. Kaksikymmentä kertaa olen minä heidät lyönyt,
mutta en koskaan perinjuurin, vaikka minulla olisi siihen voimaa ollut
—
DELILA. Miksi olet vihamiestäsi säästänyt, Simson?
SIMSON. Älä kysy, kiitä Filistean jumalia että niin on ollut! — Tänä
vuonna kokoontuivat Danin vanhimmat ja sanoivat: katso,
nisuvainiot vaalenevat ja viinamäet ovat jo rypäleillänsä. Pitääkö
meidän yhä oleman Filistean tallattavana? Nouse Simson, sinä
sankariksi syntynyt —
DELILA (jännittyneenä). Sankariksi syntynyt…?
SIMSON (väistäen). Sankariksi syntynyt sanoo minun kansani
väkevistänsä. — Nouse Simson! sanoivat he. Dan on antava
viisituhatta miekanvetävätä, idänpuolelta Jordania tulevat
karjanpaimenet keihäinensä. Totisesti sanoin minä, minä nousen!
DELILA. Sitten…? — Istu, Simson, minun luokseni.
SIMSON. Sitten he laittoivat minulle pidot. Mutta kun juhla oli
ylimmillänsä, sanoin minä: kuulkaa minua, Danin miehet! Minä en
rakasta verenvuodatusta. Sallikaa minä ensin käyn Askalonin
ruhtinaan tykö —
DELILA. Niinkö…?
SIMSON. — Ja sanon hänelle: näin on asia, tehkäämme luja liitto
asuaksemme kukin rajaimme piirissä. Ellei se teille kelpaa, kolmen
päivän päästä minä teidät lyön niinkuin akanat tuuleen!
DELILA. Ah! — Mitä sanoivat he?
SIMSON. Toiset sanoivat: ei kelpaa; toiset: Mene! Minä sanoin:
minä menen, ja neljän päivän päästä minä palaan teidän tykönne, ja
joko minulla on liiton taulu mukanani, taikka on minun miekkani
vedetty.
DELILA. Sitten? — Sinun salaisuutesi, Simson?
SIMSON. Minun salaisuuteni?! Sen sinä juuri kuulit. Minun
tehtäväni salaisuuden ja minun rakkauteni hulluuden.
DELILA. Eikö ole sinulla mitään tähän lisättävää, Simson?
SIMSON. Ei!
DELILA. Kolme yötä sinä olet minun edessäni teeskennellyt, tämä
oli neljäs! Käy kansasi ja tehtäväsi tykö; en tahdo sinua kauemmin
pidättää.
SIMSON. Mitä?!
DELILA. Sinulle, Danin sankarille, minä uhrasin ylpeyteni ja
rakkauteni; sinun sankarinsalaisuuttasi minä olen kysynyt, ja sinä
kerrot minulle Danin taruja!
SIMSON (kiivaasti). Taruja?!
DELILA. Tuhannen miestä löi Simson Lehissä, Gazan portin hän
kantoi vuoren kukkulalle, haarniskoitut sotamiehet pakenevat hänen
edessänsä, köydet katkeavat hänen käsissänsä; tyttäret, joiden isän
hän on surmannut, syttyvät rakkauteen hänet nähdessään — minä
kysyn sankarin salaisuutta!
SIMSON. Ja vaikka minä sanoisin sen kymmenesti, sinä et
kuitenkaan sitä ymmärtäisi.
DELILA. Tuhannen miestä löi Simson Lehissä, Askalonissa hän
kiemurtelee — naisen edessä!
SIMSON. Kiemurtelee?!
DELILA. Kiemurtelee — teeskentelee — viisastelee!
SIMSON (ryntää ylös). Kautta Ekronin pyhän tammen, minä olen
antanut Filistean hiirten hyppiä liian kauan Danin varpaille! Jehova
tehköön minulle sen ja sen, ellen minä ennen aamua anna heille
uutta nimeä Lehin sijaan ja tuhannen miehen sijaan kahta tuhatta.
— Sinä olet kuuleva minusta ennenkuin vuoteeltasi nouset!
DELILA (hätääntyen). Mitä?! Eikö Danin jalopeura leikkiä
ymmärräkään?
SIMSON (ottaa vaippansa ja alkaa pukeutua). Ei! Sillä minun
sydämeni kuohuu Danin tähden ja minun pitkän toimettomuuteni
tähden, joka on saattanut minut hempeäksi kuin naisen.
DELILA (hymyillen). Etkä kuitenkaan ymmärrä naista… Simson!
Etkö ymmärrä, että minun rakkauteni sinuun on niinkuin erämaan
polttava aurinko, kunnes minä saan sinut kokonansa.
SIMSON (sitoo miekan vyölleen). Kolme päivää minä olen ollut
sinun.
Huomisesta olen Danin ja Israelin!
DELILA. Ei, Simson. — Älä mene. — Ei vielä. — Huomisesta sinä
olet minun. — Vihaan Dania, vihaan Israelia, vihaan Filisteaa! — Tule
minun luokseni, ja minä olen sanova sinulle minun sieluni
kaipauksen.
SIMSON. Minä kuulen.
DELILA (ojentaa kätensä). Tule minun luokseni! — Tule! — Minä
olen sanova sen kuin huokauksen sinun korvaasi… (Simson lähenee
epäröiden.) Niin, Simson… Ah niin… (Tarttuu hymyillen hänen
miekkaansa.) Mitä? Miekka kupeella? Naisen edessä! (Riisuu miekan
ja laskee sen pöydälle divaanin viereen.) Istu minun luokseni!
(Tarttuu hänen käsivarteensa.) Etkö ymmärrä: tämä käsivarsi on
minun, nämä ihanat hiukset ovat minun — — Miksi väistät, Simson?
Ne ovat minun, nämä ihanat hiukset, joiden vertaa ei ole Israelissa
eikä Filisteassa! Mutta, kuule, sinun sydämesi ei ole minun. Ja mitä
välitän minä muusta!
SIMSON (ravistaa päänsä vapaaksi). Ei! Tämä käsivarsi on Danin!
— Nämä hiukset ovat minun! — Mutta sydämeni olet sinä vienyt.
DELILA. Niin sanot sinä, Simson, vaan et ole sinä tähän hetkeen
saakka antanut minulle todistusta siitä.
SIMSON. Enkö minä itse ole todistuksena tässä? — Kautta
Gideonin miekan: sano ja minä olen antava uuden!
DELILA (hiljaa). Sinun salaisuutesi, Simson…? Tänä yönä minä sen
tahdon!
SIMSON (tuskitellen). Sinä vaivaat minun sieluani kuolemaan
saakka! En taida minä sitä sanoa.
DELILA. Kautta Gideonin miekan!
SIMSON. Kautta Gideonin miekan: vaikka minä voisin sen nostaa
tuohon kämmenelleni, sinä et kuitenkaan ymmärtäisi sankarin
salaisuutta, sillä hän ei taida sitä itsekään selittää.
(Pitkä äänettömyys, jonka aikana Delila katselee häntä tutkien.)
DELILA (osanottavaksi heltyen). Eikö itsekään…? Miksi et sitä
ennen sanonut, Simson?… Väärin kiusasin minä sinua… Kuinka
voisikaan … semmoista … jota ei itsekään… (Painautuu värähtäen
hänen rintaansa vasten.) Katso, minä väärin epäilin … ettei sinun
sielusi olisi minun sieluni kanssa…
SIMSON. Ihmeellinen olet sinä, Delila! Niinkuin yrttitarha auringon
noustessa olet sinä: kylmä ja lämmin samalla hetkellä!
(Äänettömyys. Äkkiä heltyneenä.) Samoin on sankarin salaisuus.
Niinkuin kaksiteräinen miekka on se!
DELILA. Niinkuin kaksiteräinen miekka! (Varovasti.) Hänen
voimansa,
Simson…?
SIMSON (hymyillen). Sitäkö sinäkin kyselet, Filistean tytär?
DELILA (lapsellisesti). Sitä, Simson…
SIMSON (väkevästi). Ei, Delila, ei ole sankarilla muuta voiman
salaisuutta kuin hänen uskonsa. Hän lyö tuhannen miestä, sillä hän
uskoo sen tekevänsä. Hän menestyy kaikessa, sillä hän tekee kaikki
sydämestänsä. Hän syöksyy taisteluun ruumiinensa sieluinensa. Hän
jättää pidot sitoaksensa kerjäläisen jalan. Varas ei häneltä varasta.
Valehtelija puhuu totta hänen edessänsä. Nainen, joka hänet ensi
kerran näkee, ojentaa kätensä sanoen: veljeni, minä olen kauan
sinua odottanut.
DELILA. Totta, Simson! — Mutta hänen uskonsa salaisuus…?
SIMSON (ylpeästi). Se että hän tietää syntyneensä suuriin
tehtäviin, ja ettei kukaan taida sitä uskoa häneltä riistää!
DELILA. Eikö kukaan? (Miettii silmänräpäyksen.) Jos joku
haavoittaisi hänet?
SIMSON. Ei ole sitä syntynyt!
DELILA (hiljaa). Jos joku — pettäisi hänet, Simson?
SIMSON. Pettäisi! (Ylimielisesti nauraen.) Ah, Delila! Ei ole sitäkään
syntynyt. Sillä hänen sielunsa on puhdas ja vilpitön, ei ole
kenelläkään sydäntä häntä kavaltaa.
DELILA (Simsonin naurun kiihottamana). Mutta jos olisi…?
SIMSON. Kuin koiralle kääntäisin minä hänelle selkäni ja minun
ylenkatseeni polttaisi hänen sieluansa hamaan kuolemaan saakka,
että hän petti sankarin!
DELILA. Niinkö…? —
(Äänettömyys.)
SIMSON (taas hymyillen). Ei, Delila, ei ole sitä ihmistä syntynyt,
joka voisi riistää sankarilta hänen uskoansa! Sillä hän on yksin
maailmassa — ei pääse kukaan hänen sieluansa lähelle.
DELILA (värähtäen). Eikö sekään, joka oman sielunsa uhalla häntä
rakastaa?
SIMSON. Ei kukaan! Ei ole sankarilla isää, ei äitiä, ei veljiä, ei
sisaria — ei muuta paitsi oma itsensä.
DELILA (kiinteästi). Eikö ketään…?
SIMSON. Ei! Niinkuin taivaan tuuli on hän, tänään täällä,
huomenna tuolla. (Synkistyen.) Ei kukaan häntä ymmärrä … ei
kenkään tiedä hänen sielunsa polttoa…
DELILA (yhä kiihkeämmin). Mutta jos tahtoo ymmärtää? Jos joku
tahtoo?
SIMSON (torjuen). Ei ei, Delila! En saata minä sanoa sen
enempää. (Äänettömyys.) Anna hetken kulua, niinkuin minä annan.
En kysy minä sinulta kuka olet, mistä tulet ja kuhunka menet. En
kysy minä mitä huomenna, mitä seuraavana huomenna. (Äkkiä
rajusti.) Sillä sankari syöksyy niinkuin Jordan jyrkänteiltänsä,
kysymättä mihinkä hän joutuu!
DELILA. Mikä sinun tuli, Simson…? En ymmärrä minä —
SIMSON (häntä kuulematta, synkän ahdistuksen valtaamana).
Vasta tänä yönä minä teidät ymmärrän! Totta olette te isät laulaneet.
Elämä on lähde ja nainen on käärme, joka sitä vartioi. Manalan
syvyyksiin sen lähteen suonet ulottuvat, ja vaikka sankari sen tietää,
niin kuitenkin hän tempaa käärmeeltä kultaisen pikarin ja siitä
lähteestä juopi!
DELILA (kavahtaen). Mitä sinä tarkotat, Simson…?
SIMSON (kuin havahtuen). Oletko levoton, armaani? — Ah Delila!
Raskas on sankarin sielu ja hänen rakkautensa on niinkuin kuluttava
tuli. (Ottaa häntä kädestä.) Katso, tämä on se sankarin salaisuus,
jota ei hän taida itsekään selittää. Näin sanoo joku minulle tänä
hetkenä: nouse Simson, mene kauas ja vahvista itsesi
yksinäisyydessäsi! Ja taas sanoo minulle toinen: olisiko sankari lapsi!
DELILA (jännityksestä vavisten). Vain puolittain ymmärrän minä
sinua…
(Hellästi.) Miksi et mene? Sano se minulle, Simson!
SIMSON. Siksi että sinä ilmestyit minun tielleni niinkuin
tähdenlento pimeässä yössä ja sait minun pysähtymään kulussani. —
Mutta huomenna minä nousen ja sammutan minun sieluni polton!
DELILA. Huomenna?!
SIMSON. Huomenna.
DELILA. Sinä siis menet, Simson…?
SIMSON. Niin totta kuin Jehova on Irsaelin jumala, huomenna
minä nousen ja sammutan minun sieluni polton!
(Syvä äänettömyys.)
DELILA (kuin itsekseen). Niinkö olin minä Danin sankarille kuin
tähdenlento, joka kestää ainoastaan silmänräpäyksen tai kaksi?
SIMSON. Ei, Delila, minä palaan. Päivän tai kahden kuluttua minä
palaan ja sammutan minun sieluni toisen polton.
DELILA (kuin edellä). Niinkuin tähdenlento olin minä Danin
sankarille…
SIMSON. Miksi etsit syytä minua vastaan, sinä Filistean ihme! Eikö
minun sydämeni värise sinun edessäsi niinkuin tuntemattoman
edessä? Etkö sinä ole minulle niinkuin erämaan etäisyys, jossa sielu
etsii näkymättömiä iltaruskon salaperäisessä palossa?
DELILA (kuin edellä). Enkä kuitenkaan voi sinua pidättää päivää
taikka kahta…
SIMSON. Minä palaan, sinä ihmeellisin kaikista ihmeistä! — Ah,
Delila! Satoja olen minä nähnyt naisia, mutta en ketään niinkuin
sinä. Sillä sinä olet niinkuin puutarha muurin takana, joka saa sielun
himoitsemaan luvattomia. Ja taas olet sinä niinkuin rautapaita, kylmä
ja kirkas niinkuin päämiehen rautapaita, johon ainoastaan sankarit
uskaltavat miekkansa iskeä. — Delila! Mikä sinun on, Delila?
DELILA (on vaipunut suulleen ja itkee).
SIMSON. Mitä…? Sinun olkapääsi värisevät — sinun olkapääsi,
jotka ovat niinkuin granaattiomenat iltatuulen värinässä. Delila?
DELILA (ei vastaa).
SIMSON. Sinä itket?! Kautta Jehovan: en ymmärrä minä sinua!
DELILA (nyyhkyttää yhä rajummin).
SIMSON. Sinä kyselet salaisuutta, ja itse sinä olet ihmeellisin
salaisuus. — Puhu minulle, Delila!
DELILA (kuin edellä). Sanoja, sanoja on sankarin rakkaus…
SIMSON (torjuen). Sanoja!!
DELILA. Hän visusti salaa sen, jota paitsi minun sieluni nääntyy…
SIMSON. Sinä saatat minut epätoivoon! Enkö minä juuri —
DELILA. Minun sieluni nääntyy … minun sieluni nääntyy.
(Vaipuu taas itkuun, Simsonin katsellessa neuvottomana.)
SIMSON (lähenee). Delila! En voi minä nähdä sinun itkevän…
DELILA (väistää). Älä koske minuun! — Minun sieluni nääntyy.
(Nyyhkyttää yhä rajummin.)
SIMSON (avuttomasti). Kuule minua, Delila! — Totisesti — olisinko
minä jotakin unhottanut? — Kohota kasvosi, ja minä koetan
muistella…
DELILA (yhä itsepintaisemmin). En usko minä sankarin sanoja…
SIMSON. Delila! Et ymmärrä sinä minua, Delila. Katso — totisesti
— varmaan minä olen jotakin salannut. Mutta — katso — se ei ole
minun salaisuuteni…
DELILA (tuskin voiden itseään hillitä). Sinun?! Kenenkä se olisi…?
SIMSON (pienen äänettömyyden jälkeen). Se on minun äitini
salaisuus.
DELILA (kohoutuen). Sinun äitisi?!
SIMSON. Minun äitini, joka on minun sydämelleni rakas. Siksi minä
rukoilen: älä vaadi minua tekemään syntiä.
DELILA (hilliytyen). Minä ymmärrän, Danin sankari…
(Äkkiä hellästi.)
Sinun äitisi, Simson! — Miksi et koskaan ole kertonut minulle
äidistäsi? — Oletko sinä hänelle rakas?
SIMSON. Olenko minä äidilleni rakas?! Ah Delila — minä olen äitini
ainoa lapsi!
DELILA. Ja senkin sinä olet minulta salannut! (Yhä hellemmin.)
Kerro,
Simson, kerro minulle enemmän äidistäsi!
SIMSON (epäröiden). En ole minä tähän päivään saakka kertonut
kenellekään minun äitini tarinaa…
DELILA. Onko sinun äidistäsi tarina?!
SIMSON. On, Delila!
DELILA. Ah! (Laskeutuu hyväillen lattialle hänen polveansa
vasten). Kuin lapsi istun minä sinun jalkaisi juuressa ja kuuntelen
sinun äitisi tarinaa.
(Äänettömyys.)
SIMSON. Totisesti … en voi minä olla sitä sinulle kertomatta … sillä
ihmeellinen on minun äitini tarina…
DELILA. Kerro, kerro, Simson!
SIMSON. Katso: hedelmätön oli minun äitini ja koko minun isäni
huone katsoi häntä ylön. Ja kun oli kulunut kymmenen vuotta,
sanoivat he isälleni: Hylkää hänet, ei voi hän antaa sinulle perillistä.
Mutta minun äitini rukoili: odota vielä vuosi taikka kaksi. Minun isäni
sanoi: Minä odotan —
DELILA (jännittyen). Mitä tapahtui sitten äidillesi?
SIMSON. Sitten minun äitini nousi ja sanoi minun isälleni:
Satuloitse minulle aasi, mutta älä kysy sen enempää. Ja hän otti
ainoastaan vähän paahdettuja tähkiä ja pienen leilin vettä mukaansa
sanoen: ennenkuin minä olen nämä loppuun kuluttanut, minä palaan
sinun tykösi, taikka en minä palaa ensinkään!
DELILA (hurmautuneena). Minä rakastan sinun äitiäsi niiden
sanojen tähden! — Minne läksi hän?
SIMSON. Ekronin pyhään ennuspaikkaan kulki minun äitini tie. Ja
kun hän neljäntenä päivänä näki jumalan tammen edessänsä, niin
hän lankesi maahan ja sytytti polttouhrin. Ja kun hän nosti silmänsä:
katso polttouhrin liekissä näkyi enkeli —
DELILA. Näkikö sinun äitisi enkelin?!
SIMSON. Jehovan enkelin, joka sanoi: sinun toivomuksesi on
täyttyvä,
Manoan emäntä, ja Danin toivomukset sinun omien toivomustesi
kanssa.
Silloin minun äitini valtasi vavistus —
DELILA (kiirehtien). Sitten? Mitä vielä sanoi enkeli?
SIMSON. Ei sanonut hän sen enempää, sillä minun äitini ymmärsi
siitä kaikki. Ja kun hän taas uskalsi nostaa silmänsä, oli enkeli
kadonnut, mutta minun äitini teki — —
(Vaikenee äkkiä.)
DELILA (jännityksestä väristen). Mitä teki sinun äitisi, Simson…?
SIMSON (lyhyesti). Minun äitini teki sydämessänsä lupauksen,
mutta sen lupauksen ei pidä tuleman minun huulteni yli! Minun äitini
tarina on päättynyt.
(Äänettömyys.)
DELILA (kuin itsekseen haaveillen). Ihmeellinen oli sinun äitisi
tarina… Ja mitä enemmän sinä kerrot, sitä ihmeellisemmäksi sinun
oma tarinasi muuttuu minun silmissäni… Minkä ihanan lupauksen
mahtoikaan sinun äitisi tehdä…?
SIMSON. Ei ei, Delila! En voi minä sitä kertoa, sillä se on minun
äitini perintö ja minulle pyhä.
DELILA (närkästyneesti). Minä ymmärrän: sinä rakastat äitiäsi
enemmän kuin ketään muuta. Ja siinä sinä teet oikein.
SIMSON. Sinä puhut syntiä, Delila, ja sen sinä itse tiedät! Jos sinä
sanoisit, että minä rakastan äitiäni enemmän kuin yksikään poika
Israelissa, niin sinä puhuisit totta. Ja jos sinä sanoisit, että minä
rakastan Delilaa enemmän kuin yksikään mies Filisteassa tai
Israelissa rakastaa naista, niin sinä puhuisit totta. Mutta minun äitini
lupauksen pyhyyttä et sinä ymmärrä.
DELILA (yhä närkästyneenä). En! Totisesti! Minä en ymmärrä!
SIMSON. Sinun täytyy, Delila! (Avomielisesti.) Katso. synkkä on
sankarin polku; tänäpänä hänen askeleensa vievät korkeuksiin,
huomenna syvyyksiin. Mutta kun minä muistan minun äitini
perinnön, taas olen minä Danin sankari nuori ja puhdas, ja minun
käsivarteni vahvistuu.
DELILA (äärimmilleen jännittyneenä). Minä ymmärrän, minä
ymmärrän… (Äänettömyys). Minä ymmärrän, enkä tahdo sen
enempää kuulla… (Alkaa hellästi hyväillä). Vain yksi on minun haluni:
rakastaa sinua niinkuin sinun äitisi!
SIMSON. Ah, Delila! Se sana oli minulle suloisempi kuin kaikki,
mitä sinä olet tähän asti sanonut.
DELILA (yhä hellemmin). Vielä enemmän tahdon minä sinua
rakastaa, sillä minä olen Filistean tytär! Minä rakastan sinua niinkuin
se, joka ensin on vihannut ja nyt rakastaa — niinkuin … niinkuin
elämänveden käärme, jonka kultaista pikaria tuhannet tavottivat,
mutta yksi ainoa sai! (Hyväilee häntä hulluuttavan intohimoisesti).
Kuulitko, Simson?
SIMSON. Delila, Delila! Ei ole sinun vertaistasi auringon alla.
(Vaipuu
hänen syliinsä). Kuin huumaavaa myrhaa hengitän minä sinua, sinä
Filistean tuhattuoksuinen yrtti, niin että minun ohimoitani pakottaa.
Mitä olisi minun elämäni ilman sinun rakkauttasi? Mitä on Dan, ja
mitä
Israel! — Anna minun levätä ja unhottaa kuka minä olen.
DELILA. Lepää, Danin jalopeura!
(Hyväilee hiljaa, katsellen häntä tutkivasti. Hetkisen päästä.)
Oletko sinä nyt onnellinen, Danin sankari…?
SIMSON. Jos minun onneeni jotakin lisättäisiin, totisesti: minä
kuolisin.
DELILA (kuin uneen uinutellen). Lepää Danin jalopeura, lepää!
(Katselee häntä säihkyvin silmin, ankarasti ajatellen.
Hänen katseessaan välähtää päätös ja hän painautuu
lepäämään.)
SIMSON (hetkisen kuluttua). Miksi et puhu minulle, Delila?
DELILA (ei vastaa, mutta hänen huulillaan värehtii salattu hymy).
SIMSON. Delila! Miksi et vastaa, Delila?
DELILA (kuin havahtuen). Sanoitko jotakin, Simson…?
SIMSON. Sanoin. Minun korvani ovat tottuneet sinun ääneesi
niinkuin harpun ääneen. — Mitä ajattelit sinä niin ankarasti, Delila?
DELILA. Minä? Ah, en mitään…
SIMSON. Sinä ajattelit. Sano se minulle!
DELILA (kainostellen). Kuinka kehtaisin minä kertoa sankarille
lapsen haaveita…
SIMSON (yhä uteliaammin). Sinun täytyy, Delila!
DELILA. Täytyykö minun?… Katso, Simson. — Ah, kuinka minua
kainostuttaa! — Katso, kun minä kuulin sinun äitisi tarinan, teki se
minuun niin ihmeellisen — — Ei, en saata minä jatkaa!
SIMSON (lapsellisen riemuisesti). Minun äitini tarinastako sinä
haaveilit? Ja minun äitini poika ei saisi sitä kuulla! Jatka, Delila!
DELILA (salaperäisesti). Katso — minä olin olevinani niinkuin sinun
äitisi — nuori ja väkevä — mutta minä olin, niinkuin sinun äitisikin —
hedelmätön…
SIMSON. Ah, Delila! Kerro, kerro!
DELILA. Ja minä läksin niinkuin sinun äitisi toivioretkelle, ja
minäkin näin enkelin… Mutta kun minä onneni huumauksessa
tahdoin tehdä lupauksen, niin minä jouduin hämilleni enkä tietänyt
mitä lupaisin. — Juuri silloin sinä herätit minut…
SIMSON. Jospa minä olisin aavistanut — — Jatka, Delila, unelmasi
loppuun, ja kerro sitten minulle lupauksesi!
DELILA (kuin ankarasti miettien). En saa minä unelmastani enää
kiinni!… Mitä minä lupaisinkaan?… Suurta ja korkeata…?
SIMSON (kuin leikiten). Jospa minä voisin sinua auttaa?
DELILA. Simson!! (Hyväillen). Kuinka sinä olet hyvä, Simson! —
Sano, mitä minä lupaisin!
SIMSON. Mitä toivot sinä pojasta? — Sen mukaan on lupaus.
DELILA. Ah! (Hilliytyen) Tietysti, tietysti. Mitäkö minä hänestä
toivon?
Suurta, väkevää sankaria, sellaista kuin — etkö arvaa, Simson…?
SIMSON (Hymyillen). Kuinka minä voisin sinun sydämesi arvata!
DELILA. Sellaista kuin (kietoo käsivartensa hänen kaulaansa) —
ah, sinä Danin sankari! — Mutta mitä minä lupaisin, että hänestä
tulisi sellainen?
SIMSON (lloaan hilliten). Jospa — jospa lupaisit syntymästä
saakka pestä hänet väkevien yrttien mehuissa, voidella hänen
jäsenensä parhaimmilla Filistean voiteilla?
DELILA (epätietoisena). Niinkö…? — (Katsahtaa Simsonin silmiin).
Ei,
Simson, ei riitä! Jotain ihmeellistä, suurta ja vaikeata… Neuvo minua,
Danin sankari, suuri ja ihmeellinen!
SIMSON (jonka on vaikea hillitä itseään, kuin leikiten). Ihmeellistä
… suurta … ja vaikeata…? Anna, kun minä ajattelen… (Miettii
ristiriitaisena. Kohoutuu äkkiä.) Mitä! Kuulitko?
DELILA (joka on myöskin kuullut, kiihtyneenä). En, en mitään
kuullut. —
Simson! Minä näen sinun silmistäsi, sinä olet sen löytänyt!
SIMSON. Jospa … minä ajattelen että jospa… (Kohoaa taas) Aivan
varmasti!
DELILA (yhä kiihkeämmin). Ei, ei ole ketään. Se on jo sinun
huulillasi … minä jo aavistan…
SIMSON (levottomana). Jos tekisit pyhän lupauksen, että viiniä ja
väkevätä juomaa… (Huomaa orjattaren ovessa). Orjatar!
ORJATAR. Minun ruhtinattareni!
DELILA (kiivaasti). Mene! (Kiihkeästi Simsonia hyväillen). Viiniä ja
väkevätä juomaa… Mitä? Pesenkö minä? Voitelenko? Simson,
Simson!
SIMSON (kohoten). Ei pidä tuleman hänen huultensa yli.
(Orjattareen kääntyen). Mitä?
DELILA (hämmentyneenä). Hänen huultensa yli … hänen
huultensa yli..?
(Ymmärtää. Riemullisesti.) Ikuisesti olen minä sinulle kiitollinen,
Simson! (Orjattarelle). En ole sinua kutsunut!
(Viittaa menemään.)
ORJATAR. Joukko Danin miehiä, minun ruhtinattareni!
SIMSON (hämmentyneenä). Danin miehiä!?
DELILA (hämmästyneenä). Danin miehiä!!
ORJATAR. Olen koettanut estää —
SIMSON. Mitä tahtovat he täältä?
ORJATAR. Danin sankaria kysyvät he.
DELILA (kiivaasti). Ei, ei! Tulkoot huomenna!
ORJATAR. Eivät tottele. Tänä yönä, tällä hetkellä sanovat he.
SIMSON (kiihtyen). He uskaltavat!
DELILA. Heidän täytyy mennä, Simson! Minä olen puhutteleva
heitä.
SIMSON (raivostuen). Ei! He tulkoot! Minä itse olen heille sanova,
niin että heidän pitää tietämän ja ymmärtämän!
DELILA. Mahdotonta! (Orjattarelle). Sano: Danin sankari ei ole
täällä.
SIMSON (yhä enemmän raivostuen). Minä olen täällä! He tulkoot!
DELILA. Kuule minua, Simson! Tämä ainoa kerta! Katso minua…
Welcome to our website – the perfect destination for book lovers and
knowledge seekers. We believe that every book holds a new world,
offering opportunities for learning, discovery, and personal growth.
That’s why we are dedicated to bringing you a diverse collection of
books, ranging from classic literature and specialized publications to
self-development guides and children's books.
More than just a book-buying platform, we strive to be a bridge
connecting you with timeless cultural and intellectual values. With an
elegant, user-friendly interface and a smart search system, you can
quickly find the books that best suit your interests. Additionally,
our special promotions and home delivery services help you save time
and fully enjoy the joy of reading.
Join us on a journey of knowledge exploration, passion nurturing, and
personal growth every day!
ebookbell.com

More Related Content

PDF
Ip Telephony Interconnection Reference Challenges Models And Engineering Moha...
PDF
IoT Technical Challenges and Solutions 1st Edition Arpan Pal
PDF
Gsm Edge Evolution And Performance Mikko Saily Guillaume Sebire
PDF
IoT Technical Challenges and Solutions 1st Edition Arpan Pal
PDF
Building the Internet of Things with IPv6 and MIPv6 The Evolving World of M2M...
PDF
The IMS IP Multimedia Concepts and Services Second Edition Miikka Poikselka
PDF
Global Networks Engineering Operations and Design 1st Edition G. Keith Cambron
PDF
Compressed Video Communications 1st Abdul H Sadka
Ip Telephony Interconnection Reference Challenges Models And Engineering Moha...
IoT Technical Challenges and Solutions 1st Edition Arpan Pal
Gsm Edge Evolution And Performance Mikko Saily Guillaume Sebire
IoT Technical Challenges and Solutions 1st Edition Arpan Pal
Building the Internet of Things with IPv6 and MIPv6 The Evolving World of M2M...
The IMS IP Multimedia Concepts and Services Second Edition Miikka Poikselka
Global Networks Engineering Operations and Design 1st Edition G. Keith Cambron
Compressed Video Communications 1st Abdul H Sadka

Similar to Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely (20)

PDF
Programming Mobile Devices An Introduction for Practitioners 1st Edition Tomm...
PDF
Next Generation Wireless Applications 1st Edition Paul Golding
PDF
Delivering Voice over IP Networks 2nd Edition Daniel Minoli
PDF
The Ims Ip Multimedia Concepts And Services 2nd Edition Miikka Poikselka Aki ...
PDF
Umts Networks Architecture Mobility And Services Second Edition Heikki Kaaranen
PDF
The IMS IP Multimedia Concepts and Services Second Edition Miikka Poikselka
PDF
Creating Value Added Services and Applications for Converged Communications N...
PDF
Building the Internet of Things with IPv6 and MIPv6 The Evolving World of M2M...
PDF
Delivering Voice over IP Networks 2nd Edition Daniel Minoli
PDF
Convergence Technologies for 3G Networks IP UMTS EGPRS and ATM 1st Edition Je...
PDF
The IMS IP Multimedia Concepts and Services Second Edition Miikka Poikselka
PDF
From Gsm To Lteadvanced An Introduction To Mobile Networks And Mobile Broadba...
PDF
Cellular Internet of Things 2e : Technologies, Standards, and Performance. Be...
PDF
Deploying And Managing Ip Over Wdm Networks Joan Serrat Alex Galis
PDF
Ims A Development And Deployment Perspective 1st Edition Khalid Albegain
PDF
Forsberg.pdfForsberg.pdfForsberg.pdfForsberg.pdf
PDF
Routing And Switching Time Of Convergence Rita Puzmanova
PDF
Signaling And Switching For Packet Telephony Matthew Stafford
PDF
Mobile Computing 1st edition Edition Safari
PDF
Broadband Wireless Mobile 3G and Beyond 1st Edition Willie W. Lu
Programming Mobile Devices An Introduction for Practitioners 1st Edition Tomm...
Next Generation Wireless Applications 1st Edition Paul Golding
Delivering Voice over IP Networks 2nd Edition Daniel Minoli
The Ims Ip Multimedia Concepts And Services 2nd Edition Miikka Poikselka Aki ...
Umts Networks Architecture Mobility And Services Second Edition Heikki Kaaranen
The IMS IP Multimedia Concepts and Services Second Edition Miikka Poikselka
Creating Value Added Services and Applications for Converged Communications N...
Building the Internet of Things with IPv6 and MIPv6 The Evolving World of M2M...
Delivering Voice over IP Networks 2nd Edition Daniel Minoli
Convergence Technologies for 3G Networks IP UMTS EGPRS and ATM 1st Edition Je...
The IMS IP Multimedia Concepts and Services Second Edition Miikka Poikselka
From Gsm To Lteadvanced An Introduction To Mobile Networks And Mobile Broadba...
Cellular Internet of Things 2e : Technologies, Standards, and Performance. Be...
Deploying And Managing Ip Over Wdm Networks Joan Serrat Alex Galis
Ims A Development And Deployment Perspective 1st Edition Khalid Albegain
Forsberg.pdfForsberg.pdfForsberg.pdfForsberg.pdf
Routing And Switching Time Of Convergence Rita Puzmanova
Signaling And Switching For Packet Telephony Matthew Stafford
Mobile Computing 1st edition Edition Safari
Broadband Wireless Mobile 3G and Beyond 1st Edition Willie W. Lu
Ad

Recently uploaded (20)

PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Pre independence Education in Inndia.pdf
PDF
Sports Quiz easy sports quiz sports quiz
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Insiders guide to clinical Medicine.pdf
PDF
Basic Mud Logging Guide for educational purpose
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
master seminar digital applications in india
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Cell Structure & Organelles in detailed.
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Lesson notes of climatology university.
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Pre independence Education in Inndia.pdf
Sports Quiz easy sports quiz sports quiz
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Insiders guide to clinical Medicine.pdf
Basic Mud Logging Guide for educational purpose
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Anesthesia in Laparoscopic Surgery in India
master seminar digital applications in india
Final Presentation General Medicine 03-08-2024.pptx
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
human mycosis Human fungal infections are called human mycosis..pptx
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Cell Structure & Organelles in detailed.
Supply Chain Operations Speaking Notes -ICLT Program
Lesson notes of climatology university.
Ad

Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely

  • 1. Ip For 3g Networking Technologies For Mobile Communications 1st Edition Dave Wisely download https://ebookbell.com/product/ip-for-3g-networking-technologies- for-mobile-communications-1st-edition-dave-wisely-2536338 Explore and download more ebooks at ebookbell.com
  • 2. Here are some recommended products that we believe you will be interested in. You can click the link to download. Convergence Technologies For 3g Networks Ip Umts Egprs And Atm 1st Edition Jeffrey Bannister https://ebookbell.com/product/convergence-technologies- for-3g-networks-ip-umts-egprs-and-atm-1st-edition-jeffrey- bannister-4642936 Ip For 4g David Wisely https://ebookbell.com/product/ip-for-4g-david-wisely-1266602 Tcp Ip For Dummies Candace Leiden Marshall Wilensky https://ebookbell.com/product/tcp-ip-for-dummies-candace-leiden- marshall-wilensky-47608262 Guide To Voice And Video Over Ip For Fixed And Mobile Networks 1st Edition Lingfen Sun https://ebookbell.com/product/guide-to-voice-and-video-over-ip-for- fixed-and-mobile-networks-1st-edition-lingfen-sun-4241412
  • 3. Ip Design For Mobile Networks 1st Edition Mark Grayson Kevin Shatzkamer https://ebookbell.com/product/ip-design-for-mobile-networks-1st- edition-mark-grayson-kevin-shatzkamer-2021280 Qos For Ipmpls Networks Gallo Mark Zhang Raymond Alvarez Santiago https://ebookbell.com/product/qos-for-ipmpls-networks-gallo-mark- zhang-raymond-alvarez-santiago-22009004 Network Design For Ip Convergence 1st Edition Yezid Donoso https://ebookbell.com/product/network-design-for-ip-convergence-1st- edition-yezid-donoso-2445376 Intrusion Detection For Ipbased Multimedia Communications Over Wireless Networks 1st Edition Jin Tang https://ebookbell.com/product/intrusion-detection-for-ipbased- multimedia-communications-over-wireless-networks-1st-edition-jin- tang-4345370 Speech Processing For Ip Networks Media Resource Control Protocol Mrcp David Burke https://ebookbell.com/product/speech-processing-for-ip-networks-media- resource-control-protocol-mrcp-david-burke-973902
  • 6. IP for 3G Networking Technologies for Mobile Communications Dave Wisely, Philip Eardley and Louise Burness BTexact Technologies JOHN WILEY & SONS, LTD
  • 10. IP for 3G Networking Technologies for Mobile Communications Dave Wisely, Philip Eardley and Louise Burness BTexact Technologies JOHN WILEY & SONS, LTD
  • 11. Copyright q 2002 by John Wiley & Sons, Ltd Baffins Lane, Chichester, West Sussex, PO 19 1UD, England National 01243 779777 International (+44) 1243 779777 e-mail (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on http://www.wileyeurope.com or http://www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London, W1P 0LP, UK, without the permission in writing of the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the publication. Neither the authors nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or damage occasioned to any person or property through using the material, instructions, methods or ideas contained herein, or acting or refraining from acting as a result of such use. The authors and Publisher expressly disclaim all implied warranties, including merchantability of fitness for any particular purpose. There will be no duty on the authors of Publisher to correct any errors or defects in the software. Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where John Wiley & Sons, Ltd is aware of a claim, the product names appear in initial capital or capital letters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration. Other Wiley Editorial Offices Hoboken, San Francisco, Weinheim Wisley, Dave. IP for 3G : networking technologies for mobile communications / Dave Wisely, Philip Eardley & Louise Burness. p. cm. Includes bibliographical references and index. ISBN 0-471-48697-3 1. Wireless Internet. 2. Global system for mobile communications. 3. TCP/IP (Computer network protocol) I. Eardley, Philip. II. Burness, Louise. III. Title. TK5103.4885 .W573 2002 621.382’12–dc21 2002071377 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0-471-48697-3 Typeset in 10.5 pt Optima by Deerpark Publishing Services Ltd, Shannon, Ireland. Printed and bound in Great Britain by Biddles Limited, Guildford and King’s Lynn. This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two trees are planted for each one used for paper production.
  • 12. Contents Acknowledgements xi 1 Introduction 1 1.1 Scope of the Book 1 1.2 IP for 3G 2 1.2.1 IP 2 1.2.2 3G 3 1.2.3 IP for 3G 4 1.3 Engineering Reasons for ‘IP for 3G’ 5 1.3.1 IP Design Principles 5 1.3.2 Benefits of the IP approach 7 1.3.3 Weaknesses of the IP approach 7 1.4 Economic Reasons for ‘IP for 3G’ 9 1.4.1 3G Business Case 9 1.4.2 Impact of ‘IP for 3G’ on Business Case 15 1.5 Conclusion 17 1.6 References 19 2 An Introduction to 3G Networks 21 2.1 Introduction 21 2.2 Mobile Standards 22 2.2.1 Who’s who in 3G Standards 23 2.3 History of 3G 25 2.3.1 Pre-1996 The Research Trimester 26 2.3.2 1996-1998 The IMT 2000 Trimester 28 2.3.3 1998 Onwards The Standardisation Trimester 30 2.4 Spectrum The ‘Fuel’ of Mobile Systems 31 2.5 UMTS Network Overview 33 2.6 UMTS Network Details 37 2.6.1 UMTS Architecture - Introducing the Major Network Elements and their Relationships 38 2.6.2 UMTS Security 40
  • 13. 2.6.3 UMTS Communication Management 43 2.6.4 UMTS QoS 46 2.6.5 UMTS Mobility Management 47 2.6.6 UMTS Core Network Transport 49 2.6.7 Signalling in the UMTS Core Network 52 2.7 UMTS Radio Access Network (UTRAN) 53 2.7.1 The W-CDMA Air Interface and Uu Interface 54 2.7.2 UTRAN Mobility Management 56 2.7.3 UTRAN Transport 59 2.7.4 UTRAN QoS 61 2.7.5 UTRAN Signalling 63 2.8 cdma2000 Packet Core Network 63 2.9 Conclusion 66 2.10 References 67 2.11 Further reading 68 3 An Introduction to IP Networks 71 3.1 Introduction 71 3.2 A Brief History of IP 72 3.3 IP Standardisation Process 74 3.4 IP Design Principles 77 3.4.1 Connectivity 77 3.4.2 The End-to-end Principle 81 3.4.3 Layering and Modularity 83 3.4.4 Discussion 87 3.5 Making the Internet Work 91 3.5.1 Link Layer 92 3.5.2 Inter-networking Layer 95 3.5.3 Transport Layer 105 3.5.4 Application Layer 105 3.6 Security 107 3.6.1 Basic Security Techniques 108 3.6.2 Security for e-commerce 112 3.6.3 Network Protection 113 3.6.4 Discussion 116 3.7 The Future 117 3.8 Further reading 117 4 Multimedia Service Support and Session Management 121 4.1 Introduction 121 4.2 Session Management 122 4.2.1 What is a Session? 122 4.2.2 Functions of Session Management Protocols 122 4.2.3 Summary 123 CONTENTS vi
  • 14. 4.3 Current Status 124 4.3.1 Session Management 124 4.3.2 VHE Concept 126 4.4 Session Initiation Protocols 128 4.4.1 H.323 128 4.4.2 SIP 129 4.4.3 Session Initiation for 3G 129 4.5 SIP in Detail 129 4.5.1 Basic Operation of SIP 129 4.5.2 SIP and User Location 131 4.5.3 Characteristics of SIP 133 4.6 SIP in Use 134 4.6.1 Connectivity IP and Telephony 134 4.6.2 SIP Supported Services 135 4.7 Conclusions 137 4.7.1 SIP 137 4.7.2 VHE 139 4.8 Further reading 140 5 IP Mobility 143 5.1 Scope 143 5.2 Introduction - What is IP Mobility? 144 5.2.1 Personal and Terminal Mobility 144 5.2.2 The Problem of IP Mobility 145 5.2.3 Locators vs. Identifiers 147 5.3 SIP - A Protocol for Personal Mobility 149 5.4 Introduction to Terminal Mobility 150 5.4.1 Macromobility vs. Micromobility 150 5.5 Mobile IP - A Solution for Terminal Macromobility 152 5.5.1 Outline of Mobile IP 152 5.5.2 Mobile IPv4 153 5.5.3 Mobile IPv6 155 5.5.4 Relationship of SIP and Mobile IP 157 5.6 Terminal Micromobility 158 5.6.1 Introduction 158 5.6.2 Mobile IP-based Protocols 160 5.6.3 Per-host Forwarding Protocols 168 5.7 Comparison of Micromobility Protocols 176 5.7.1 Operation 176 5.7.2 Architecture 178 5.7.3 Scalability 181 5.7.4 Reliability 184 5.7.5 Philosophy 186 5.8 Other Aspects of Terminal Mobility 188 5.8.1 Context (or State) Transfer 189 CONTENTS vii
  • 15. 5.8.2 Paging and Dormant Mode Management 191 5.8.3 A Brief Word on Security for Mobility Management 193 5.9 Conclusions 194 5.10 Further reading 196 6 Quality of Service 201 6.1 Introduction 201 6.1.1 What is QoS? 201 6.1.2 Why is QoS hard? 203 6.1.3 Contents of this Chapter 203 6.2 Current IP QoS Mechanisms 204 6.2.1 TCP 204 6.2.2 Random Early Detect and Explicit Congestion Notification 209 6.2.3 RTP 209 6.2.4 Conclusions 212 6.3 Key Elements of a QoS Mechanism 213 6.3.1 Functionality Required of the Network to Support QoS 213 6.3.2 Interaction with the Wireless Link Layer 214 6.3.3 Mechanisms to Provide Network QoS 217 6.3.4 Signalling Techniques 219 6.3.5 Admission Control 221 6.4 Proposed Internet QoS Mechanisms 228 6.4.1 IntServ 228 6.4.2 Multi-Protocol Label Switching (MPLS) 229 6.4.3 DiffServ 230 6.4.4 ISSLL 231 6.4.5 RSVP 232 6.4.6 Summary 236 6.5 IP QoS for 3G - A Possible Solution 236 6.5.1 Overall Architecture 237 6.5.2 Bounded Delay Differentiated Service 239 6.5.3 Mobility Management 241 6.5.4 Signalling 242 6.5.5 Discussion 243 6.6 Conclusions 245 6.7 Further reading 246 7 IP for 3G 249 7.1 Introduction 249 7.2 Designing an All-IP Network 250 7.2.1 Principles 250 7.2.2 Overall Architecture 251 7.2.3 Routing and Mobility 252 CONTENTS viii
  • 16. 7.2.4 Quality of Service 254 7.2.5 Security 255 7.2.6 Interfaces 255 7.2.7 An Answer 256 7.3 Advantages of an All-IP Network 257 7.4 3G Network Evolution 260 7.4.1 UMTS R4 All IP Transport 260 7.4.2 UMTS R5 IP Call Control and Signalling 262 7.4.3 Is R4/5 Worthy of the Term ‘all IP’? 267 7.4.4 CDMA2000 Evolution 268 7.5 UMTS Beyond R5 268 7.6 Wireless LANs 270 7.7 Fourth Generation Mobile 271 7.7.1 4G is a Continuation from 1G ! 2G ! 3G - The System View 272 7.7.2 4G is a Network of Networks (IP) - The Network View 273 7.7.3 4G is User-driven 274 7.8 Further reading 275 Abbreviations 279 Index 287 CONTENTS ix
  • 18. Acknowledgements Our ideas about IP for 3G have evolved over several years, helped by stimu- lating discussions with many colleagues and friends, including Fiona Mack- enzie, Guilhem Ensuque, George Tsirtsis and Alan O’Neill. We’d like to thank those who’ve helped review various sections of the book, suggesting many useful improvements, and those who educated us about various topics: Fernando Jover Aparicio, Steve Buttery, Rahul Chaud- huri, Jeff Farr, David Higgins, Nigel Lobley, Rob Mitchell, Peter Thorpe, the publishers and their anonymous reviewers. Particular thanks go to Mel Bale. We have also been active within the EU IST BRAIN project (http://www.ist- brain.org) and our ideas about mobility management and QoS have been particularly influenced by our BRAIN colleagues. We would like to acknowl- edge the contributions of the project partners in these areas: Siemens AG, British Telecommunications PLC, Agora Systems S.A., Erics- son Radio Systems AB, France Tlcom - CNET, INRIA, King’s College London, Nokia Corporation, NTT DoCoMo, Sony International (Europe) GmbH, and T-Nova Deutsche Telekom Innovationsgesellschaft mbH . We also thank our family and friends for their forbearance during times of stress and computer crashes. Finally, many thanks to our employers, BTexact Technologies http:// www.btexact.com, for allowing us to publish and for all the support that they’ve given to us during the project.
  • 20. 1 Introduction 1.1 Scope of the Book For some years, commentators have been predicting the ‘convergence’ of the Internet and mobile industries. But what does convergence mean? Is it just about mobile phones providing Internet access? Will the coming together of two huge industries actually be much more about collision than conver- gence? In truth, there are lots of possibilities about what convergence might mean, such as: † Internet providers also supply mobile phones – or vice versa, of course. † The user’s mobile phone is replaced with a palmtop computer. † The mobile Internet leads to a whole range of new applications. † The Internet and mobile systems run over the same network. This book is about the convergence of the Internet – the ‘IP’ of our title – with mobile – the ‘3G’, as in ‘third generation mobile phones’. The book largely focuses on technology – rather than commercial or user-oriented considerations, for example – and in particular on the network aspects. In other words, in terms of the list above, the book is about the final bullet: about bringing the networking protocols and principles of IP into 3G networks. To achieve this, we need to explain what ‘IP’ and ‘3G’ are sepa- rately – in fact, this forms the bulk of the book – before examining their ‘convergence’. The first chapter provides some initial ‘high level’ motivation for why ‘IP for 3G’ is considered a good thing. The reasons fall into two main areas – engineering and economic. The final chapter covers the technical detail about how IP could play a role in (evolving) 3G networks. Where is it likely to appear first? In what ways can IP technologies contribute further? What developments are needed for this to happen? What might the final ‘converged’ network look like? In between the two outer chapters come five inner chapters. These provide a comprehensive introduction to the technical aspects of IP and 3G. IP and
  • 21. 3G are treated separately; this will make them useful as stand-alone refer- ence material. The aims of these inner chapters are: † To explain what 3G is – Particularly to explore its architecture and the critical networking aspects (such as security, quality of service and mobi- lity management) that characterise it (Chapter 2). † To introduce ‘all about IP’ – Particularly the Internet protocol stack, IP routing and addressing, and security in IP networks (Chapter 3). † To survey critically, and give some personal perspectives about, on-going developments in IP networks in areas that are likely to be most important: † Call/session control – Examining what a session is and why session management matters, and focusing on the SIP protocol (Session Initiation Protocol) (Chapter 4). † Mobility Management – Discussing what ‘IP mobility’ is, and summaris- ing, analysing and comparing some of the (many) protocols to solve it (Chapter 5). † QoS (Quality of Service) – Examining what QoS is, its key elements, the problems posed by mobility and wireless networks; analysing some of the current and proposed protocols for QoS; and proposing a solution for ‘IP for 3G’ (Chapter 6). † To provide a build-up to Chapter 7, which aims to bring many of the issues together and provide our perspective on how ‘IP for 3G’ could (or should) develop. The topics covered by this book are wide-ranging and are under active development by the world-wide research community – many details are changing rapidly – it is a very exciting area in which to work. Parts of the book give our perspective on areas of active debate and research. 1.2 IP for 3G This section concerns ‘IP for 3G’ and explains what is meant by the terms ‘IP’ and ‘3G’. It also hopefully positions it with regard to things that readers may already know about IP or 3G, i.e. previous knowledge is helpful but not a prerequisite. 1.2.1 IP What is meant by ‘IP’ in the context of this book? IP stands for the ‘Internet Protocol’, which specifies how to segment data into packets, with a header that (amongst other things) specifies the two end points between which the packet is to be transferred. ‘IP’ in the context of this book should not be interpreted in such a narrow sense, but rather more generally as a synonym for the ‘Internet’. Indeed, perhaps ‘Internet for 3G’ would be a more accurate title. INTRODUCTION 2
  • 22. The word ‘Internet’ has several connotations. First, and most obviously, ‘Internet’ refers to ‘surfing’ – the user’s activity of looking at web pages, ordering goods on-line, doing e-mail and so on, which can involve accessing public sites or private (internal company) sites. This whole field of applica- tions and the user experience are not the focus of this book. Instead, atten- tion is focused on the underlying network and protocols that enable this user experience and such a range of applications. Next, ‘Internet’ refers to the network, i.e. the routers and links over which the IP packets generated by the application (the ‘surfing’) are transferred from the source to the destination. Then, there are the ‘Internet’ protocols – the family of protocols that the Internet network and terminal run; things like TCP (Transmission Control Protocol, which regulates the source’s transmissions) and DHCP (Dynamic Host Configuration Protocol, which enables terminals to obtain an IPaddress dynamically). The term ‘Internet’ can also be used more loosely to refer to the IETF – the Internet Engineering Task Force – which is the body that standardises Internet protocols. It is noteworthy for its standardisation process being: (1) open – anyone can contribute (for free) and attend meetings; (2) pragmatic – deci- sions are based on rough consensus and running code. The Internet standardisation process appears to be faster and more dynamic than that of traditional mobile standardisation organisations – such as ETSI, for example. However, in reality, they are trying to do rather different jobs. In the IETF, the emphasis is on protocols – one protocol per function (thus, TCP for transport, HTTP for hypertext transport and so forth). The IETF has only a very loose architecture and general architectural prin- ciples. Many details of building IP systems are left to integrators and manu- facturers. In contrast, the standards for GSM, for example, are based around a fixed architecture and tightly defined interfaces (which include protocols). The advantage of defining interfaces, as opposed to just protocols, is that that much more of the design work has been done and equipment from different manufactures will always inter-operate. As will be seen later, there is a large amount of work to be done to turn the IETF protocols into something that resembles a mobile architecture, and Chapter 7 introduces some fixed elements and interfaces to accomplish this. Finally, ‘Internet’ can also imply the ‘design principles’ that are inherent in the Internet protocols. Chapters 3–6 cover various Internet protocols. Later in this chapter, the reasons for why IP’s design principles are a good thing and therefore should be worked into 3G are discussed. 1.2.2 3G What is meant by ‘3G’ in the context of this book? IP FOR 3G 3
  • 23. ‘3G’ is short for ‘third generation mobile systems’. 3G is the successor of 2G – the existing digital mobile systems: GSM in most of the world, D-AMPS in the US, and PHS and PDC in Japan. 2G in turn was the successor of 1G – the original analogue mobile systems. Just as for ‘IP’, the term ‘3G’ also has several connotations. First, ‘3G’ as in its spectrum: the particular radio frequencies in which a 3G system can be operated. 3G has entered the consciousness of the general public because of the recent selling off of 3G spectrum in many countries and, in particular, the breathtaking prices reached in the UK and Germany. From a user’s perspective, ‘3G’ is about the particular services it promises to deliver. 1G and 2G were primarily designed to carry voice calls; although 2G’s design also includes ‘short message services’, the success of text messa- ging has been quite unexpected. 3G should deliver higher data rates (up to 2 Mbit/s is often claimed, though it is likely to be much lower for many years and in many environments), with particular emphasis on multimedia (like video calls) and data delivery. The term ‘3G’ also covers two technical aspects. First is the air interface, i.e. the particular way in which the radio transmission is modulated in order to transfer information ‘over the air’ to the receiver. For most of the 3G systems being launched over the next few years, the air interface is a variant of W-CDMA (Wideband Code Division Multiple Access). The second tech- nical aspect of ‘3G’ is its network. The network includes all the base stations, switches, gateways, databases and the (wired) links between them, as well as the definition of the interfaces between these various components (i.e. the architecture). Included here is how the network performs functions such as security (e.g. authenticating the user), quality of service (e.g. prioritising a video call over a data transfer) and mobility management (e.g. delivering service when moving to the coverage of an adjacent base station). Several specific 3G systems have been developed, including UMTS in Europe and cdma2000 in the US. A reasonable summary is that the 3G network is based on an evolved 2G network. All these topics, especially the networking aspects, are covered in more detail in Chapter 2. 1.2.3 IP for 3G What is meant by IP for 3G? 3G systems will include IP multimedia allowing the user to browse the Internet, send e-mails, and so forth. There is also a second phase of UMTS being developed, as will be detailed in Chapter 7, that specifically includes something called the Internet Multimedia Subsystem. Why, then, is IP argued for in 3G? The issue of IP for 3G is really more about driving changes to Internet protocols to make them suitable to provide 3G functionality – supporting aspects like handover of real-time services and INTRODUCTION 4
  • 24. guaranteed QoS. If a 3G network could be built using (enhanced) IP routers and servers and common IP protocols, then: † It might be cheaper to procure through economies of scale due to a greater commonality with fixed networks. † It could support new IP network layer functionality, such as multicast and anycast, natively, i.e. more cheaply without using bridges, etc. † It would offer operators greater commonality with fixed IP networks and thus savings from having fewer types of equipment to maintain and the ability to offer common fixed/mobile services. † It would be easier for operators to integrate other access technologies (such as wireless LANs) with wide-area cellular technologies. So, IP for 3G is about costs and services – if IP mobility, QoS, security and session negotiation protocols can be enhanced/developed to support mobile users, including 3G functionality such as real-time handover, and a suitable IParchitecture developed, then we believe there will be real benefits to users and operators. This book, then, is largely about IP protocols and how current research is moving in these areas. The final chapter attempts to build an architecture that uses native IP routing and looks at how some of this func- tionality is already being included in 3G standards. 1.3 Engineering Reasons for ‘IP for 3G’ Here, only preliminary points are outlined (see [1] for further discussion), basically providing some hints as to why the book covers the topics it does (Chapters 2–6) and where it is going (Chapter 7). One way into this is to examine the strengths and weaknesses of IP and 3G. The belief, therefore, is that ‘IP for 3G’ would combine their strengths and alleviate their weak- nesses. At least it indicates the areas that research and development need to concentrate on in order for ‘IP for 3G’ to happen. 1.3.1 IP Design Principles Perhaps the most important distinction between the Internet and 3G (or more generally the traditional approach to telecomms) is to do with how they go about designing a system. There are clearly many aspects involved – security, QoS, mobility management, the service itself, the link layer technology (e.g. the air interface), the terminals, and so on. The traditional telecomms approach is to design everything as part of a single process, leading to what is conceptually a single standard (in reality, a tightly coupled set of standards). Building a new system will thus involve the design of everything from top to bottom from scratch (and thus it is often called the ‘Stovepipe Approach’). By contrast, the IP approach is to design a ‘small’ protocol that does one particular task, and to combine it with other protocols (which may ENGINEERING REASONS FOR ‘IP FOR 3G’ 5
  • 25. already exist) in order to build a system. IP therefore federates together protocols selected from a loose collection. To put it another way, the IP approach is that a particular layer of the protocol stack does a particular task. This is captured by the IP design principle, always keep layer transpar- ency, or by the phrase, IP over everything and everything over IP. This means that IP can run on top of any link layer (i.e. bit transport) technology and that any service can run on top of IP. Most importantly, the service is not concerned with, and has no knowledge of, the link layer. The analogy is often drawn with the hourglass, e.g. [2], with its narrow waist representing the simple, single IP layer (Figure 1.1). The key requirement is to have a well- defined interface between the layers, so that the layer above knows what behaviour to expect from the layer below, and what functionality it can use. By contrast, the Stovepipe Approach builds a vertically integrated solution, i.e. the whole system, from services through network to the air interface, is designed as a single entity. So, for example in 3G, the voice application is specially designed to fit with the W-CDMA air interface. Another distinction between the Internet and 3G is where the function- ality is placed. 3G (and traditional telcomms networks) places a large amount of functionality within the network, for example at the Mobile Switching Centre. The Internet tries to avoid this, and to confine function- ality as far as possible to the edge of the network, thus keeping the network as simple as possible. This is captured by the IP design principle: always think end to end. INTRODUCTION 6 Figure 1.1 IP over everything and everything over IP. The Internet’s ‘hourglass’ protocol stack.
  • 26. It is an assertion that the end systems (terminals) are best placed to under- stand what the applications or user wants. The principle justifies why IP is connectionless (whereas the fixed and mobile telephony networks are connection-oriented). So, every IP packet includes its destination in its header, whereas a connection-oriented network must establish a connection in advance, i.e. before any data can be transferred. One implication is that, in a connection-oriented network, the switches en route must remember details of the connection (it goes between this input and that output port, with so much bandwidth, and a particular service type, etc.). 1.3.2 Benefits of the IP approach IP is basically a connectionless packet delivery service that can run over just about any Layer 2 technology. In itself, it is not the World Wide Web or e- mail or Internet banking or any other application. IP has been successful because it has shown that for non-real-time applications, a connectionless packet service is the right network technology. It has been helped by the introduction of optical fibre networks, with their very low error rates, making much of the heavyweight error correction abilities of older packet protocols like X25 unnecessary. IP also decouples the network layer very clearly from the service and application. Operating systems like Windows have IP sockets that can be used by applications written by anyone; a lone programmer can devise a new astrology calculator and set up a server in his garage to launch the service. Because IP networks provide so little functionality (IP packet deliv- ery), the interfaces to them are simple and can be opened without fear of new services bringing the network down, the point being that IP connectivity has become a commodity and it has been decoupled (by the nature of IP) from the content/applications. IP applications also tend to make use of end-to-end functionality: when a user is online to their bank, they require that their financial details be heavily encrypted. This functionality could have been provided by the network, but instead, it is done on a secure sockets layer above the IP layer in the browser and the bank’s server. Clearly, this is a more flexible approach – the user can download a certificate and upgrade to 128-bit security instantly – if the network were providing the service, there would be a requirement for signal- ling, and new features would have to be integrated and tested with the rest of the features of the network. 1.3.3 Weaknesses of the IP approach IP is not a complete architecture or a network design – it is a set of protocols. If a number of routers were purchased and connected to customers, custo- mers could indeed be offered a connectionless packet delivery service. It ENGINEERING REASONS FOR ‘IP FOR 3G’ 7
  • 27. would quickly become apparent that the amount of user traffic entering your network would need to be limited (perhaps through charging). To make sure that everybody had a reasonable throughput, the network would have to be over-provisioned. A billing engine, network management platform (to iden- tify when the routers and connections break), and help desk would be needed also, in other words, quite a lot of the paraphernalia of a more ‘traditional’ fixed network. If customers then said that they wanted real-time service support (to run voice, say), something like an ATM network underneath the IP would need to be installed, to guarantee that packets arrive within a certain maximum delay. In fact, IP is fundamentally unsuited to delivering packets within a time limit and, as will be seen in Chapter 6, adding this functionality, espe- cially for mobile users, is a very hot IP research topic. In the end, adding real- time QoS to IP will mean ‘fattening’ the hourglass and losing some of the simplicity of IP networks. IP networks also rely on the principle of global addressing, and this IP address is attached to every packet. Unfortunately, there are not enough IP addresses to go round – since the address field is limited to 32 bits. Conse- quently, a new version of the IP protocol – IPv6 – is being introduced to extend the address space to 128 bits. The two versions of IPalso have to sit in the hourglass – fattening it still further. Chapter 3 looks at the operation of IP in general and also discusses the issue of IPv6. Another issue is that the Internet assumes that the end points are fixed. If a terminal moves to a new point of attachment, it is basically treated in the same as a new terminal. Clearly, a mobile voice user, for example, will expect continuous service even if they happen to have handed over, i.e. moved on to a new base station. Adding such mobility management functionality is another key area under very active investigation (Chapter 5). Because IP connectivity is just a socket on a computer, it is quite often the case that applications on different terminals are incompatible in some way – there is no standard browser, as some people use Netscape, some use Inter- net Explorer, some have version 6, and so forth. When browsing, this is not too much trouble, and the user can often download new plugins to enhance functionality. When trying to set up something like a real-time voice call, however, this means quite a lot of negotiation on coding rates and formats, etc. In addition, the user’s IP address will change at each log in (or periodi- cally on DSL supported sessions also) – meaning that individuals (as opposed to servers using DNS) are nearly impossible to locate instantly for setting up a voice session. What is needed in IP is a way of identifying users that is fixed (e.g. comparable with an e-mail address), binding it more rapidly to one (or more) changing IP addresses, and then being able to negotiate sessions (agreeing such things as coding rates and formats). Chapter 4 provides details on how the Session Initiation Protocol (SIP) is able to fulfil this role. It is interesting that some of the approaches to solving these downsides INTRODUCTION 8
  • 28. involve ‘weakening’ our two IP design principles – for example by adding quality-of-service state to some routers (i.e. weakening the end-to-end prin- ciple) or adding inter-layer hints between the link and IP layers (e.g. radio power measurements are used to inform the IP layer that a handover is imminent, i.e. weakening the layer transparency principle). So, a key unan- swered question is: to what extent should the IP design principles – which have served the Internet so well – be adapted to cope with the special problems of wireless-ness and mobility? Part of Chapter 7 debates this. 1.4 Economic Reasons for ‘IP for 3G’ As already indicated, IP for 3G is about reducing costs. There is nothing that IP for 3G will enable that cannot already be done in 3G – at a price. IP is just a connectionless packet delivery service, and a 3G network could be thought of as a Layer 2 network. The Layer 2 (3G) might not support multicast, but that can still be emulated with a series of point-to-point connections. What adop- tion of IP protocols and design principles might do for 3G is reduce costs; this section delves deeper into exactly where 3G costs arise and explains in detail how an IP-based evolution could, potentially, reduce them. 1.4.1 3G Business Case 3G Costs First, there is the cost of the spectrum. This varies wildly from country to country (see Table 1.1) from zero cost in Finland and Japan, up to $594 per capita in Britain. ECONOMIC REASONS FOR ‘IP FOR 3G’ 9 Table 1.1 Licence cost ($) per capita in selected countries Country Cost per capita (US$) UK 594.20 Germany 566.90 Italy 174.20 Taiwan 108.20 US 80.90 South Korea 60.80 Singapore 42.60 Australia 30.30 Norway 20.50 Switzerland 16.50 Spain 11.20 Sweden 5.70 Japan 0.00 Finland 0.00 Note: US auction was for PCS Licences that can be upgraded later to 3G. Source: 3G Newsroom [3].
  • 29. Second, there is the cost of the 3G network itself – the base stations, switches, links, and so on. It is higher than for a 2G network, because the base station sites need to be situated more densely, owing to the frequency of operation and the limited spectrum being used to support broadband services. For example, the consultancy Ovum estimates the cost as more than $100 billion over the next five years in Europe alone [4], whereas for the UK, Crown Castle estimate that a 3G operator will spend about £2850 million on infrastructure (i.e. capital expenditure) with an annual operating cost of £450 million [5] (including: £840 million on sites; £1130 million on Node Bs, £360 million on RNCs; £420 million on backhaul and £100 million on the Core Network). These large amounts are a strong incentive for 3G operators to try to find ways of sharing infrastructure and so share costs. For example, Mobilcom (a German operator) estimates that 20–40% can be saved, mainly through colocating base stations (‘site sharing’) [6], and in our UK example, Crown Castle argues that the capital spend can be cut by almost one- third to £2 billion [5]. However, sharing may not be in the interests of all operators – Ovum outlines some of the pros and cons depending on the operator’s market position [7] – but the burst of the dot.com bubble and the global economic downturn have certainly increased interest in the idea. Infrastructure sharing may not be permitted in all countries – for example, the conditions attached to a licence may not allow it – but regulators are being increasingly flexible (e.g. UK, France). Some governments (e.g. the French and Spanish) are also reducing the licence cost from the agreed amount [8]. 3G Services and Income A large number of services have been suggested for 3G. Here, we look at a few of them. Lessons from 2G – Voice 2G systems like GSM and D-AMPS have shown that voice communication is a very desirable service and that customers will pay a considerable premium for the advantage of mobility – a combination of being reachable anywhere anytime and having one’s own personal, and personalised, terminal. For any 3G operator who does not have a 2G licence, voice will of course be a very important service. But for all operators, it is likely to be the main initial revenue stream. For 2G systems, the Average Revenue Per User (ARPU) has dropped (and is dropping) rapidly as the market saturates and competition bites. For exam- ple, Analysys [9] predict that the European ARPU will continue to decline, halving over the next 10 years from about 30 Euros per month in 2001. They INTRODUCTION 10
  • 30. also suggest that a 3G operator cannot make a satisfactory return on voice alone, because their cumulative cash flow only becomes positive in 2010. If an operator cannot be profitable from voice alone, it clearly must increase the revenue considerably with additional services. Since these are likely to be data services of one form or another, the extra revenue required is often called the ‘data gap’. Many services have been suggested to bridge this ‘data gap’, which will be discussed shortly. Lessons from 2.5G – i-mode, WAP and GPRS The data capability enhancements that have been added on to 2G systems can be viewed as a stepping stone to 3G – and hence they are collectively called ‘2.5G’: an intermediate point in terms of technology (bit rates, etc.) and commerce (the chance to try out new services, etc.). Undoubtedly, the most successful so far has been i-mode in Japan. i-mode allows users to do their e-mail and text messaging. Other popular activities include viewing news and horoscopes, and downloading ring tones, cartoon characters and train times. Users can connect to any site written in cHTML (compact HTML – a subset of HTML (HyperText Markup Language) designed so that pages can display quickly on the small screens of the i-mode term- inals), but some sites are approved by NTTDoCoMo (the operator); these have to go through a rigorous approval process, e.g. content must be chan- ged very regularly. The belief is that if users can be confident that sites are ‘good’, that will encourage extra traffic and new subscribers in a virtuous circle for the operators, content providers and customers. Current download speeds are limited to 9.6 kbit/s with an upgrade to 28.8 kbit/s planned for Spring 2002. i-mode has grown very rapidly from its launch in February 1999 to over 28 million users in October 2001 [10]. The basic charge for i-mode is about 300 Yen ($2.50) per month, plus 2.4 Yen (2 cents) per kbyte downloaded. The DoCoMo-approved ‘partner sites’ have a further subscription charge of up to about 300 Yen ($2.50) per month, which is collected via the phone bill, with DoCoMo retaining 9% as commission [11]. For other sites, DoCoMo just receives the transport revenues. GSM’s WAP (Wireless Application Protocol) is roughly equivalent to i- mode, but has been far less successful, with fewer than 10% of subscribers. The Economist [11] suggests various reasons for i-mode’s relative (and abso- lute) success, for example: † Low PC penetration in Japan (for cultural reasons). † High charges for PSTN dial-up access in Japan. † The Japanese enthusiasm for gadgets. † Non-standardisation of i-mode – Meaning that an operator can launch a new service more easily, including specifying to manufacturers what handsets they want built (e.g. with larger LCD screens). ECONOMIC REASONS FOR ‘IP FOR 3G’ 11
  • 31. † Expectation management – This was sold to users as a special service (with applications and content useful for people ‘on the move’), whereas WAP was (over) hyped as being ‘just like the Internet’. † Its business model – This provides a way for content producers to charge consumers. GPRS, which is a packet data service being added on to GSM networks, has started rolling out during 2001. It will eventually offer connections at up to 144 kbit/s, but 14–56 kbit/s to start with. Like i-mode, GPRS is an ‘always on’service. Again, this is likely to provide important lessons as to what sort of services are popular with consumers and businesses, and how to make money out of them. 3G Services Many services have been suggested for 3G in order to bridge the ‘data gap’ discussed earlier, and so provide sufficient revenue to more than cover the costs outlined above. Typical services proposed are m-commerce, location- based services and multimedia (the integration of music, video, and voice – such as video-phones, video-on-demand and multimedia messaging). Refer- ence [12] discusses various possibilities. It is generally accepted that a wide range of services is required – there is no single winner– but there are different views as to which will prove more important than others. For example: † Multimedia Messaging – Text messaging (e.g. SMS) has been very successful, and on the Internet we are seeing a rapid growth in ‘instant messaging’ (IM) – for example, AOL’s Instant Messenger and ICQ services each have over 100 million registered users [13]. In particular, it is predicted that the multimedia messaging service (MMS) will become very popular in 3G. For example, Alatto believe that the primary data revenue source will be MMS [14]. Typical MMS applications might be the sharing of video clips and music – similar ideas have proved very already popular on the Internet, e.g. Napster. 3G terminals are likely to include a camera and appropriate display exactly to enable services like these. In a similar vein, but using wireless LAN technology instead of 3G, Cybiko includes MMS to nearby friends. (Cybiko is a wireless hand-held computer for teens.) † Location-based services – An operator knows the location of a mobile user, and thus services can be tailored to them. For example, ‘where is the nearest Thai restaurant?’; the reply can include a map to guide you there and an assurance that a table is free. Early examples are available today, for instance J-phone’s J-Navi service. Analysys expects that 50% of all subscribers will use such services, with a global revenue of $18.5 billion by the end of 2006 [15]. INTRODUCTION 12
  • 32. † m-commerce – This is e-commerce to mobile terminals, for example, ordering goods or checking your bank account. Durlacher predicted the European m-commerce market to grow from Euro 323 million in 1998 to Euro 23 billion by 2003 [16]. Sonera have trialled a service where drinks can be bought from a vending machine via a premium-rate GSM phone number or SMS message [15]. m-commerce will grow as techniques for collecting micropayments are developed and refined. One possible option is to have these collected by your service provider and added and billed using either pre- or post-pay. Smart cards, including SIM cards, could be used to authenticate these transactions. Another m- commerce application is personalised advertising, i.e. tailored to the user. † Business-to-business m-commerce – This will allow staff working at a customer’s site to obtain information from their company’s central data- base, to provide quotes and confirm orders on the spot. This could help to cut their costs (less infrastructure and fewer staff whom it is easier to manage) as well as provide a better service to the customer [17]. As well as the extra revenue from these new services, operators hope that they will encourage customers to make more voice calls and also that by offering different, innovative services, they will reduce customer ‘churn’ – i.e. customers will be more likely to stick with them. Such an impact does seem to have happened with i-mode. Overall Business Case for 3G The reason that there is so much interest in 3G and the mobile Internet is summarised very well by Standage [19]:The biggest gamble in business history; control of a vast new medium; the opportunity at last to monetise the Internet: clearly, a great deal is at stake. Some say it is all just wishful thinking. But in many parts of the world – not only Japan – millions of people are even now using phones and other handheld devices to communicate on the move. All over the globe, the foundations for this shift to more advanced services are already in place. Here, we are not interested in developing the business case per se – only to show that any technology that improves the business case must be a good thing and to point out the areas where we believe IP technologies can make a difference. 3G Value Chain A value chain is a map of the companies involved in delivering services to the end consumer and is drawn up to identify who makes the profits (in business-speak, making a profit is called ‘value generation’). ECONOMIC REASONS FOR ‘IP FOR 3G’ 13
  • 33. Lessons from 2G The 2G value chain is pretty simple – basically, users buy handsets and billing packages from operators through retail outlets. The importance of terminal manufacturers has been strengthened by operators subsidising handsets, ‘‘effectively supporting terminal manufacturers’ brands (e.g. Nokia) to the extent that these now outweigh the brands of the operator in customers’ minds’’ [9]. The content – voice and SMS – is generated by the users themselves. Recently, a slight addition to the chain has been ‘virtual operators’; this is basically about branding, and means that (taking a UK example) a user buys a Virgin phone that is actually run by One 2 One (the real operator). In 2G, the operators control the value chain and the services offered via the SIM card. This is sometimes called the ‘walled garden’ approach – the operator decides what flowers (services) are planted in the garden (network) and stops users seeing flowers in other gardens the other side of the wall. Possible 3G Value Chain For 3G networks, it is often suggested that the value chain will become more complicated. Many possibilities have been suggested, and Figure 1.2 shows one possibility by Harmer and Friel [18]. They suggest that the roles of the players are as follows: † Network operator – Owns the radio spectrum and runs the network. † Service provider – Buys wholesale airtime from the network operator and issues SIM cards and bills. † Mobile Virtual Network Operator (MVNO) – MVNOs own more infra- structure than service providers – perhaps some switching or routing capacity. † Mobile Internet Service Provider (M-ISP) – Provide users with IP addresses and access to wider IP networks. † Portal Provider – Provide a ‘homepage’ and hence access to a range of services that are in association with the portal provider. † Application Provider – Supplies products (e.g. software) that are down- loaded or used on line. † Content provider – Owners of music or web pages and so forth. Of course, there are many other possible models (see [19], for example), and it must also be pointed out that some of these ‘logically’ different roles INTRODUCTION 14 Figure 1.2 Possible 3G value chain. Source: Harmer & Friel [18].
  • 34. might actually be played by the same operator. Indeed, it is not unrealistic to think that many 3G operators – those owning licences – could play all the roles (except, of course, that of MVNO). Some people believe that the value will shift, compared with 2G, from network operators to content providers, especially following the success of i- mode. For example, KPMG estimate that ‘‘only 25% of the total revenue will be in the transmission of traffic and the remaining 75% will be divided up among content creation, aggregation, service provision, and advertising’’ [19]. However, there is disagreement about who in the value chain will benefit: † See [20] for an argument on the importance of portals: ‘‘A compelling, strongly branded portal via which to provide a combination of own-brand applications and market-leading independent applications …’’. † See [21] for a discussion about interactive entertainment. On-line gambling is predicted to be especially important, with multimedia and ‘adult’ services also strong drivers. ‘‘In most cases, it will be the content provider that will be in the strongest position …’’ [22]. † See [23] for a reminder of the operator’s assets: ‘‘the micropayment billing infrastructure, a large end user base, an established mobile brand, the users’ location information, established dealer channels and, naturally, the mobile network infrastructure itself’’. 1.4.2 Impact of ‘IP for 3G’ on Business Case The key impact that ‘IP for 3G’ could have is to help the convergence of the Internet and communications. Cleevely [24] speculates that it could lead to a fall in the unit cost of communications by a factor of nearly 1000 by 2015, because convergence will cause a massive growth in demand and hence large economies of scale. The following gives some 3G perspective [1]. Costs IP is becoming the ubiquitous protocol for fixed networks, so economies of scale mean that it is very likely that IP-based equipment will be the cheapest to manufacture and buy for mobile networks. Further, an operator that runs both fixed and mobile network services should be able to roll out a single, unified network for both jobs, leading to savings on capital costs and main- tenance. It should also allow the reuse of standard Internet functionality for things like security. IP evolution in both fixed and mobile networks offers the possibility of having a single infrastructure for all multimedia delivery – to any terminal over any access technology. This will not necessarily drive down costs for any one particular service: after all, the PSTN is supremely optimised for voice delivery, but for future multimedia services where voice, ECONOMIC REASONS FOR ‘IP FOR 3G’ 15
  • 35. video, real-time, non-real-time and multicast all mix together, IP evolution of both the fixed and mobile networks to a common architecture holds out the prospect of lower costs. Services and Revenues From an end user’s perspective, applications are increasingly IP-based. In an all-IP network, the same applications will be available for mobile users as for fixed, and they will behave as intended. Existing applications will not need to be rewritten for the special features of the mobile system (as tends to happen today). Another issue is security, which is critical for m-commerce applications. ‘Mobile specials’ may lead to new security holes that need plugging as they become apparent, and also users have to be reconvinced that their e-commerce transactions are secure. WAP provides an example of this problem. The Internet is adding call/session control, particularly via the Session Initiation Protocol (SIP). As well as enabling peer-to-peer calls, which are certainly needed in 3G, this elegant and powerful protocol will enable service control similar to that of the ‘intelligent network’: things like ‘ring back when free’ and other supplementary services, or more complex things like ‘divert calls from boss to answerphone whilst I am watching cricket on Internet-TV’. Again, an ‘IP for 3G’ approach should mean that the user experience is the same regardless of whether they are on a fixed or mobile network. More speculatively, ‘IP for 3G’ might enable the same location- based services to be offered more easily on the fixed network as well. Overall, ‘IP for 3G’ should mean that new applications can concentrate on the particular benefits of mobility, such as location-based services. This will give benefits for the user (obtaining the applications that the user desires and is familiar with) and for the application writer (lower develop- ment costs, wider market – and hence a wider choice of applications for the user). Hence, companies gain the extra traffic and extra revenues they want. Value Chain The impact of IP on the 3G value chain is unclear. There is some tension between the 2G walled garden approach and that of the Internet where anyone can set up a web server and deliver services to whoever discovers it. i-mode is an interesting half-way house, with its partner sites, but also allowing access to any site. Further, the Internet approach allows services to run over any link layer (bit transport mechanism), whereas 3G’s stove- pipe approach clearly locks the user into the 3G air interface. The impact of other high-speed wireless technologies (such as wireless LANs, Blue- tooth, and a future system using a re-farmed analogue TV spectrum) is very interesting and uncertain. It is not at all obvious whether they should INTRODUCTION 16
  • 36. be viewed as a threat to 3G (they take traffic away from the user), or as a complement (they enhance the capacity and coverage), or even as a benefit (they get people hooked on the 3G services, which is what they make money on). 1.5 Conclusion In this chapter, we started by outlining fairly broad definitions of ‘IP’ and by ‘3G’: † ‘IP’ is about the Internet, its design principles, protocols and standardisa- tion approach. † ‘3G’ is about the new mobile system, its architecture, network, and air interface. So, ‘IP for 3G’ is about the convergence of the Internet and mobile communications revolutions. This book concentrates on technological, and especially network, aspects of this convergence. The first chapter, has given some motivation for why we believe that IP for 3G is important. The reasons fall into two categories: † Engineering – Essentially about why IP’s design principles are a good thing, focusing on IP’s clear protocol layering and the end-to-end princi- ple. † Economic – About how IP can dramatically reduce the costs of building the mobile multimedia network – from the benefits of integration and economies of scale – and can increase the range of services it carries. The two sets of reasons are closely connected – it is IP’s good engineering design principles that enable the network to be much cheaper and the services offered on it far more numerous. We believe that the flexibility of an all-IP mobile network will liberate application developers from having to understand the details of the network, so that they can concentrate on what the end users want – indeed, there is the flexibility just to try ideas out until they haphazardly discover things that people like. This process will ignite a Cambrian explosion of applications and services. It will lead to a dramatic increase in users and traffic – which in turn will lead to further economies of scale and cost reductions. So, ‘IP for 3G’ is in effect our campaign slogan – we believe that there should be more IP in 3G. However, adding IP technologies and protocols into 3G is not trivial – there are many difficulties and unresolved issues. So, ‘IP for 3G’ is an inter- esting and important topic that requires further study and research. Each of Chapters 2–6 provides a summary and analysis of a topic that is particularly key to understanding what is needed for ‘IP for 3G’ to work. These stand CONCLUSION 17
  • 37. largely independently of each other and so can be dipped into according to the reader’s mood: † Chapter 2 concerns 3G, as it exists today (Release 99), particularly its architecture and the critical networking aspects (such as security, quality of service and mobility management) that characterise it. Essentially, this chapter provides an understanding of where ‘IP for 3G’ starts from. † Chapter 3 concerns IP, particularly the Internet protocol stack, and rout- ing, addressing and security in IP networks. So, this chapter presents another starting point for ‘IP for 3G’. The contrast between Chapters 2 and 3 allows some perspective as to what aspects are missing from current IP networks, compared with the function- ality present in 3G. In the following three chapters, three of these missing pieces are examined – call control, mobility management, and quality of service. There are other missing pieces; these three do not complete the jigsaw, but they are the most important. They are also the areas under the most active research at present. † Chapter 4 concerns call control for IP networks – allowing peer-to-peer sessions (like a voice call), rather than just the client-server sessions (such as web browsing) that dominate today. A particular focus is on the SIP protocol. † Chapter 5 concerns mobility management – enabling IP users and term- inals to move around on an IP network whilst their sessions continue to work. Various protocols to solve ‘IP mobility’ are summarised, analysed, and compared. † Chapter 6 concerns quality of service (QoS) – enabling IP networks to do more than merely the ‘best effort’delivery of packets. The problems that IP QoS presents – particularly those in a mobile and wireless environment – are examined, and some of the current and proposed protocols to solve these problems are examined. So, at the end of these chapters the reader will hopefully have a good understanding of both IP and 3G networks, and what is being done to add some critical ‘3G-like’ functionality to IP. The final chapter draws the threads together and provides our perspective on how ‘IP for 3G’ could – or should – develop. Overall, our end vision is for a network that obeys the IP design principles, uses IP protocols, and where the radio base stations are also IP routers. We call this an ‘all-IP’ or ‘4G’ network. However, ‘all-IP’ and ‘4G’ are both terms that have been consider- ably abused – almost any proposal is described as such. The chapter also discusses the next developments of UMTS (Release 4 and 5) and how they fall short of our all-IP vision. INTRODUCTION 18
  • 38. 1.6 References [1] Eardley P, Hancock R, Modular IP architectures for wireless mobile access, 1st International Workshop on Broadband radio access for IP based networks, November 2000. http://wwwA049.infonegocio.com/ 732/programm.htm [2] Deering S, Watching the waist of the protocol hourglass, August 2001, IETF-51 plenary. http://www.ietf.org/proceedings/01aug/slides/plen- ary-1/index.html [3] Licence costs from 3G Newsroom. http://www.3gnewsroom.com/ country/index.shtml [4] Nichols E, Pawsey C, Respin I, Koshi V, Gambhir A, Garner M, Ovum, 3G survival strategies: build, buy or share, An Ovum Report, August 2001. Abstract from http://www.ovum.com/cgi-bin/showPage.asp?- Doc¼3GS [5] Allsopp J, Crown Castle, Demystifying the Cost of 3G Networks. From http://www.3gnewsroom.com/html/whitepapers [6] McClure E, Mobilcom, Europe: Bending the rules, 1 June 200, ci- online. http://www.totaltele.com/view.asp?ArticleID¼40579&PubCI& CategoryID¼734 [7] Ovum, featured article from, 3G: Strategies for operators and vendors, published 1 October 2001. From http://www.ovum.com/cgi-bin/show- Page.asp?doc¼/research/3gs/Findings/default.htm [8] Taaffe J, Communications Week International, France and Spain push for a 3G rethink, 22 October 2001. http://www.totaltele.com/view.- asp?Target¼top&Article ID¼44957&Pub¼cwi [9] Kacker A, Analysys, Changing dynamics in the mobile landscape, October 2001. http://www.analysys.com/Articles/StandardArticle.as- p?iLeftArticle¼880 [10] The latest figure for the number of i-mode subscribers is available from http://www.nttdocomo.com/i/i_m_scr.html [11] Standage T, The Economist, Peering around the corner, 13 October 2001. Part of A Survey of the mobile Internet in The Economist. [12] Standage T, The Economist, Looking for the pot of gold, 13 October 2001. Part of A Survey of the mobile Internet in The Economist. [13] Birch D, Instant gratification, The Guardian, 25 October 2001. [14] Lehrer D and Whelan J, Alatto, 3G revenue generating applicatons, Alatto technologies, 2001. From http://www.3gnewsroom.com/html/ whitepapers/3G_Revenue_Generating_Applications.zip [15] Robson J, Knott P and Morgan D, Analysys, Mobile Location Services and Technologies, February 2001. Abstract at http://www.analysys.- com/Articles/StandardArticle.a sp?iLeftArticle¼656 [16] Müller-Veerse F, Durlacher, Mobile Commerce Report. http:// www.durlacher.com/fr-research-reps.htm REFERENCES 19
  • 39. [17] KPMG, Mobile Internet: The future, 2001. http://www.kpmg.com/ industries/content.asp?l1id¼90&l2id¼0&cid¼509 [18] Harmer & Friel, 3G products – what will the technology enable?, January 2001, BT Technology Journal. http://www.bt.com/bttj/ vol19no1/harmer/harmer.pdf [19] Bond K, Knott P, Adebiyi A, Analysys, Controlling the 3G Value Chain, 2001. http://www.analysys.com/Articles/StandardArticle.asp?iLeftArti- cle¼805 [20] Logica, Making 3G Make Money, June 2001. http://www.3gnews- room.com/html/whitepapers/making_3g_make_money.zip [21] Schema, Interactive entertainment: Delivering revenues in the broad- band era, 2001. http://www.schema.co.uk/IEFindings.pdf [22] Naujeer H, Schema quote from: Mobile operators shut out from content revenues, Total Telecom, 31 August 2001. http://www.totaltele.com/ view.asp?articleID¼ 43362&Pub¼TT&categoryid¼625&kw¼schema [23] Nokia, Make money with 3G services, March 2001. http://www. nokia.com/3g/pdf/3g.pdf [24] Cleevely D, Scenarios for 2015: Convergence and the Internet, June 2000. http://www.analysys.com/articles/whitepaper.pdf INTRODUCTION 20
  • 40. 2 An Introduction to 3G Networks 2.1 Introduction What exactly are 3G networks? 3G is short for Third Generation (Mobile System). Here is a quick run-down: † 1G, or first generation systems, were analogue and offered only a voice service – each country used a different system, in the UK TACS (Total Access Communications System) was introduced in 1980. 1G systems were not spectrally efficient, were very insecure against eavesdroppers, and offered no roaming possibilities (no use on holidays abroad.). † 2G heralded a digital voice and messaging service, offered encrypted transmissions, and was more spectrally efficient that 1G. GSM (Global System for Mobile communication) has become the dominant 2G stan- dard and roaming is now possible between 1501 countries where GSM is deployed. † 3G – if the popular press is to be believed – will offer true broadband data: video on demand, videophones, and high bandwidth games will all be available soon. 3G systems differ from the second generation voice and text messaging services that everybody is familiar with in terms of both the bandwidth and data capabilities that they will offer. 3G systems are due to be rolled out across the globe between 2002 and 2006. 3G will use a new spectrum around 2 GHz, and the licences to operate 3G services in this spectrum have recently hit the headlines because of the huge amounts of money paid for licences by operators in the UK and Germany (£50 billion or so). Other countries have raised less or given away licences in so-called ‘beauty contests’ of potential operators [1]. 3G systems might be defined by: the type of air interface, the spectrum used, the bandwidths that the user sees, or the services offered. All have been used as 3G definitions at some point in time. In the first wave of deployment, there will be only two flavours of 3G – known as UMTS (developed and promoted by Europe and Japan) and cdma2000 (developed and promoted
  • 41. by North America). Both are tightly integrated systems that specify the entire system – from the air interface to the services offered. Although each has a different air interface and network design, they will offer users broadly the same services of voice, video, and fast Internet access. 3G (and indeed existing second generation systems such as GSM) systems can be divided very crudely into three (network) parts: the air interface, the radio access network, and the core network. The air interface is the technol- ogy of the radio hop from the terminal to the base station. The core network links the switches/routers together and extends to a gateway linking to the wider Internet or public fixed telephone network. The Radio Access Network (RAN) is the ‘glue’ that links the core network to the base stations and deals with most of the consequences of the terminal’s mobility. This chapter concerns the core and access networks of 3G systems – because that is where IP (a network protocol) could make a difference to the performance and architecture of a 3G network. The chapter first reviews the history of 3G developments – from their ‘conception’ in the late 1980s, through their birth in the late 1990s, to the teething troubles that they are currently experiencing. The history of 3G development shows that the concepts of 3G evolved significantly as the responsibility for its development moved from research to standardisation – shedding light on why 3G systems are deigned the way they are. Included in this section is also a ‘who’s who’ of the standards world – a very large number of groups, agencies, and fora have been, and still are, involved in the mobile industry. In the second half of the chapter, we introduce the architecture of UMTS (the European/Japanese 3G system) and look at how the main functional components – QoS, mobility management, security, transport and network management – are provided. A short section on the US cdma2000 3G system is also included at the end of the chapter. The purpose of this chapter is to highlight the way UMTS (as an example 3G system) works at a network level – in terms of mobility management, call control, security, and so forth. This is intended as a contrast with the descrip- tions of how IP research is evolving to tackle these functions in the chapters that follow. The final chapter combines the two halves – IP and 3G – to pursue the main argument of the book – that 3G should adopt IP design principles, architectures and protocols – thereby allowing greater efficiency, fixed mobile convergence, and new IP services (e.g. multicast). 2.2 Mobile Standards Mobile system development, particularly that of 3G systems, is inextricably bound up with the process of standardisation. Why? Why is standardisation so important? The best answer to that question is probably to look at GSM – whose success could reasonably be described as the reason for the vast interest and sums of money related to 3G. GSM was conceived in the AN INTRODUCTION TO 3G NETWORKS 22
  • 42. mid-1980s – just as the first analogue cellular mobile systems were being marketed. These analogue systems were expensive and insecure (easy to tap), and there was no interworking between the great variety of different systems (referred to as ‘first generation systems’) deployed around the world. GSM introduced digital transmission that was secure and made more effi- cient use of the available spectrum. What GSM offered was a tight standard that allowed great economies of scale and competitive procurement. Opera- tors were able to source base stations, handsets, and network equipment from a variety of suppliers, and handsets could be used anywhere the GSM standard was adopted. The price of handsets and transmission equipment fell much faster than general tends in the electronics industry. GSM also offered a roaming capability – since the handsets could be used on any GSM system; made possible by a remote authentication facility to the home network. There were other advantages of moving to a digital service, such as a greater spectral efficiency and security, but in the end, it was the mass-market low cost (pre-pay packages have sold for as little as £20) that was the great triumph of GSM standardisation. In terms of world markets, GSM now accounts for over 60% of all second generation systems and has 600 million users in 150 countries; no other system has more than 12% [2]. However, the standardisation process has taken a very long time – 18 years from conception (1980) to significant penetration (say 1998). It has resulted in a system that is highly optimised and integrated for delivering mobile voice services and is somewhat difficult to upgrade. As an example, consider e-mail: e-mail has been in popular use since, maybe, 1992 but 10 years on, how many people can receive e-mail on their mobile? This facility is beginning to appear – along with very limited web-style browsing on mobiles [e.g. using WAP (Wireless Application Protocol) and i-mode in Japan]. Standards can also be a victim of their own success – 2G (and GSM in particular) has been so successful that operators and manufacturers have been keen to capitalise on past investments and adopt an evolutionary approach to the 3G core network. 2.2.1 Who’s who in 3G Standards At this point, it is perhaps a good idea to provide a brief ‘who’s who’ to explain recent developments in the standards arena. † 3GPP – In December 1998, a group of five standards development orga- nisations agreed to create the Third Generation Partnership Project (3GPP – www.3gpp.org). These partners were: ETSI (EU), ANSI-TI (US), ARIB and TTC (Japan), TTA (Korea), and CWTS (China). Basically, this was the group of organisations backing UMTS and, since August 2000, when ETSI SMG was dissolved, has been responsible for all standards work on UMTS. 3GPP have now completed the standardisation of the first release of the UMTS standards – Release 99 or R3. GSM upgrades have always been MOBILE STANDARDS 23
  • 43. known by the year of standardisation, and UMTS began to follow that trend, until the Release 2000 got so behind schedule that it was broken into two parts and renamed R4 and R5. In this chapter, only the completed R3 (formally known as Release 99) will be described. Chapter 7 looks at developments that R4 and R5 will bring. 3GPP standards can be found on the 3GPP website – www.3GPP.org – and now completely specify the components and the interfaces between them that constitute a UMTS system. † 3GPP2 – 3GPP2 (www.3gpp2.org) is the cdma2000 equivalent of 3GPP – with ARIB and TTC (Japan), TR.45 (US), and TTA (Korea). It is currently standardising cdma2000 based on evolution from the cdmaOne system and using an evolved US D-AMPS network core. (The latter part of this chapter gives an account of packet transfer in cdma2000.) † ITU – The International Telecommunications Union (ITU – www.itu.int) was the originating force behind 3G with the FLMTS concept (pronounced Flumps and short for Future Land Mobile Telecommunica- tion System) and work towards spectrum allocations for 3G at the World Radio Conferences. The ITU also attempted to harmonise the 3GPP and 3GPP2 concepts, and this work has resulted in these being much more closely aligned at the air interface level. Currently, the ITU is just begin- ning to develop the concepts and spectrum requirements of 4G, a subject that is discussed at length in Chapter 7. † IETF – The Internet Engineering Task Force (www.ietf.org) is a rather differ- ent type of standards organisation. The IETF does not specify whole archi- tectural systems, rather individual protocols to be used as part of communications systems. IETF protocols such as SIP (Session Initiation Protocol) and header compression protocols have been incorporated in to the 3GPP standards. IETF meetings take place three times a year and are completely open, very large (20001 delegates), and very argumentative (compared with the ITU meeting, say). Anyone can submit an Internet draft to one of the working groups, and this is then open to comments. If it is adopted, it becomes a Request For Comments (RFC); if not, it is not considered any further. † OHG – The Operator Harmonization Group [3] proposed, in June 1999, a harmonised Global Third Generation concept [4] that has been accepted by both 3GPP and 3GPP2. The OHG has attempted to align the air inter- face parameters of the two standards, as far as possible, and to define a generic protocol stack for interworking between the evolved core networks of GSM and ANSI-41 (used in US 2G networks). † MWIF – The industry pressure group Mobile Wireless Internet Forum (www.mwif.org) comprises operators, manufacturers, ISPs (Internet Service Providers) and Internet equipment suppliers. MWIF, since early 2000, has been producing a functional architecture that separates the various components of a 3G systems – for example, the access technology AN INTRODUCTION TO 3G NETWORKS 24
  • 44. – to provide opportunities for IP technologies such as Wireless LANs to be used. † 3GIP – 3GIP (www.3gip.org) was formed in May 1999 as a private pres- sure group of operators and manufacturers – BT and AT&T were leading members – with the aim of developing the core network of UMTS to incorporate the ideas and technologies of IP multimedia. 3GIP was born out of a desire to rapidly bring UMTS into the Internet era and was initially successful in raising awareness of the issues. However, for 3GIP contributions to have significant influence within 3GPP, it was necessary for the organisation to offer open membership in 2000. 3GIP has been very influential on 3GPP, whilst specifications for the second release of UMTS are still being developed. † ETSI – ETSI (the European Telecommunications Standards Institute) is a non-profit-making organisation for telecommunications standards devel- opment. Membership is open and currently stands at 789 members from 52 countries inside and outside Europe. ETSI is responsible for DECT and HIPERLAN/2 standards developments as well as GSM developments. 2.3 History of 3G It is not widely known that 3G was conceived in 1986 by the ITU (Interna- tional Telephony Union). It is quite illuminating to trace the development of the ideas and concepts relating to 3G from conception to birth. What is particularly interesting, perhaps, is how the ideas have changed as they have passed through different industry and standardisation bodies. 3G was originally conceived as being a single world-wide standard and was origin- ally called FLMTS (pronounced Flumps and short for Future Land Mobile Telecommunication System) by the ITU. By the time it was born, it was quins – five standards – and the whole project was termed the IMT-2000 family of standards. After the ITU phase ended in about 1998, two bodies – 3GPP and 3GPP2 – completed the standardisation of the two flavours of 3G that are actually being deployed today and over the next few years (UMTS and cdma2000, respectively). Meanwhile, these bodies, along with the Operator Harmonisation Group (OHG), are looking at unifying these into a single 3G standard that allows different air interfaces and networks to be ‘mixed and matched’. It is convenient to divide up the 3G gestation into three stages (trimesters): † Pre-1996 – The Research Trimester. † 1996–1998 – The IMT-2000 Trimester. † Post-1998 – The Standardisation Trimester. Readers interested in more details about the gestation of 3G should refer to [5]. HISTORY OF 3G 25
  • 45. 2.3.1 Pre-1996 – The Research Trimester Probably the best description of original concept of 3G can be found in Alan Clapton’s quote – head of BT’s 3G development at the time ‘‘3G …The evolution of mobile communications towards the goal of universal personal communications, a range of services that can be anticipated being intro- duced early in the next century to provide customers with wireless access to the information super highway and meeting the ‘Martini’ vision of communications with anyone, anywhere and in any medium.’’ [6] Here are the major elements that were required to enable that vision: † A world-wide standard – At that time, the European initiative was intended to be merged with US and Japanese contributions to produce a single world-wide system – known by the ITU as FLMTS. The vision was a single hand-set capable of roaming from Europe to America to Japan. † A complete replacement for all existing mobile systems – UMTS was intended to replace all second generation standards, integrate cordless technologies as well as satellite (see below) and also to provide conver- gence with fixed networks. † Personal mobility – Not only was 3G to replace existing mobile systems, but its ambition stretched to incorporating fixed networks as well. Back in 1996, of course, fixed networks meant voice, and it was predicted in a European Green Paper on Mobile Communications [7] that mobile would quickly eclipse fixed lines for voice communication. People talked of Fixed Mobile Convergence (FMC) with 3G providing a single bill, a single number, common operating, and call control procedures. Closely related to this was the concept of the Virtual Home Environment (VHE). † Virtual Home Environment – The virtual home environment was where users of 3G would store their preferences and data. When a user connected, be it by mobile or fixed or satellite terminal, they were connected to their VHE, which then was able to tailor the service to the connection and terminal being used. Before a user was contacted, the VHE was interrogated, so that the most appropriate terminal could be used, and the communication tailored to the terminals and connections of the parties. † Broadband service (2 Mbit/s) with on-demand bandwidth – Back in the early 1990s, it was envisaged that 3G would also need to offer broadband services – typically meaning video and video telephony. This broadband requirement meant that 3G would require a new air interface, and this was always described as broadband and typically thought to be 2 Mbit/s. Associated with this air interface was the concept of bandwidth on demand – meaning that it could be changed during a call. Bandwidth on demand could be used, say, to download a file during a voice conver- sation or upgrade to a higher-quality speech channel mid-way through a call. AN INTRODUCTION TO 3G NETWORKS 26
  • 46. † A network based on B-ISDN – Back in the early 1990s, another concept – certainly at BT – was that every home and business would be connected directly to a fibre optic network. ATM transport and B-ISDN control would then be used to deliver broadcast and video services, an example being video on demand whereby customers would select a movie, and it would be transmitted directly to their home. B-ISDN [Broadband ISDN was supposed to be the signalling for a new broadband ISDN service based on ATM transport – it was never actually developed, and ATM signalling is still not yet sufficiently advanced to switch circuits in real time. ATM (asynchronous transfer mode) is explained in the latter part of this chapter: it is used in the UMTS radio access and core networks.] Not surprisingly, given the last point, it was assumed that the 3G network would be based on ATM/B-ISDN. † A satellite component – 3G was always intended to have an integrated satellite component, to provide true world-wide coverage and fill in gaps in the cellular networks. A single satellite/3G handset was sometimes envisaged. (Surprisingly, since satellite handsets tend to be large). The classicpicture – seeminglycompulsory in any description of 3G – is of a layered architecture of radio cells (Figure 2.1). There are megacells for satel- lites, macrocells for wide-area coverage (rural areas), microcells for urban coverage, and picocells for indoor use. There is a mixture of public and private use and always a satellite hovering somewhere in the background. In terms of forming this vision of 3G, much of the early work was done in the research programmes of the European Community, such as the RACE (Research and development in Advanced Communications technologies in Europe) programme with projects such as MONET (looking at the transport and signalling technologies for 3G) and FRAMES (evaluating the candidate air interface technologies). In terms of standards, ETSI (European Telecom- munications Standards Institute) completed development of GSM phase 2, and at the time, this was intended to be the final version of GSM and for 3G HISTORY OF 3G 27 Figure 2.1 Classic 3G layer diagram.
  • 47. to totally supersede it and all other 2G systems. As a result, European stan- dardisation work on 3G, prior to 1996, was carried out within an ETSI GSM group called, interestingly, SMG5 (Special Mobile Group). 2.3.2 1996–1998 – The IMT 2000 Trimester It is now appropriate to talk of UMTS (Universal Mobile Telecommunications System) – as the developing European concept was being called. In the case of UMTS, the Global Multimedia Mobility report [8] was endorsed by ETSI and set out the framework for UMTS standardisation. The UMTS Forum – a pressure group of manufacturers and operators – produced the influential UMTS forum report (www.umts-forum.org) covering all non-standardisation aspects in UMTS such as regulation, market needs and spectrum require- ments. As far as UMTS standardisation was concerned, ETSI transferred the standardisation work from SMG5 to the various GSM groups working on the air interface, access radio network, and core network. In Europe, there were five different proposals for the air interface – most easily classified by their Medium Access Control (MAC) schemes – in other words, how they allowed a number of users to share the same spectrum. Basically, there were time division (TDMA – Time Division Multiple Access), frequency division (OFDM – Orthogonal Frequency Division Multiple Access), and code division proposals (CDMA). In January 1998, ETSI chose two variants of CDMA – Wideband CDMA (W-CDMA) and time division (TD-CDMA) – the latter basically a hybrid with both time and code being used to separate users. W-CDMA was designated to operate in paired spectrum [a band of spectrum for up link and another (separated) band for down link] and is referred to as the FDD (Frequency Division Duplex) mode, since frequency is used to differentiate between the up and down traffic. In the unpaired spectrum, a single monolithic block of spec- trum, the TD-CDMA scheme was designated, and this has to use time slots to differentiate between up and down traffic (FDD will not work for unpaired spectrum – see Section 2.4 for more details), and so is called the TDD (Time Division Duplex) mode of UMTS. In comparison, GSM is a FDD/TDMA system – frequency is used to sepa- rate up and down link traffic, and time division is used to separate the different mobiles using the same up (or down) frequency. Part of the reason behind the decision to go with W-CDMA for UMTS was to allow harmonisation with Japanese standardisation. Unfortunately, in North America, the situation was more complicated; firstly, parts of the 3G designated spectrum had been licensed to 2G opera- tors and other parts used by satellites; secondly, the US already has an existing CDMA system called cdmaOne that is used for voice. It was felt that a CDMA system for North America needed to be developed from cdmaOne – with a bit rate that was a multiple of the cdmaOne rate. Conse- quently, the ITU recognised a third CDMA system – in addition to the two AN INTRODUCTION TO 3G NETWORKS 28
  • 48. European systems – called cdma2000. It was also felt that the lack of 3G spectrum necessitated an upgrade route for 2G TDMA systems – resulting in a new TDMA standard – called UMC-136, which is effectively identical to a proposed enhancement to GSM called EDGE (Enhanced Data rates for Global Evolution). This takes advantage of the fact that the signal-to-noise ratio (and hence potential data capacity) of a TDMA link falls as the mobile moves away from the base station. Users close to base stations essentially have such a good link that they can increase their bit rate without incurring errors. By using smaller cells or adapting the rate to the signal-to-noise ratio, on average, the bit rate can be increased. In CDMA systems, the signal-to- noise ratio is similar throughout the cell. Finally the DECT (Digital European Cordless Telecommunications) – developed by ETSI for digital cordless applications and used in household cordless phones, for example – inhabits the 3G spectrum and has been included as the fifth member of the IMT-2000 family of 3G standards (Table 2.1) as the ITU now called the FPLMTS vision. During this period, 3G progressed from its ‘Martini’ vision – ‘anytime, anyplace, anywhere’, to a system much closer, in many respects, to the existing 2G networks. It is true that the air interface was a radical change from TDMA – it promised a better spectral efficiency, bandwidth on demand, and broadband connections – but the core networks chosen for both UMTS and cdma2000 were based on existing 2G networks: in the case of UMTS, an evolved GSM core, and for cdma2000, an evolved ANSI-41 core (another time division circuit switching technology standard). The major reason for this was the desire by the existing 2G operators and manufacturers to reuse as much existing equipment, development effort, and services as possible. Another reason was the requirement for GSM to UMTS handover, recognis- ing that UMTS coverage will be limited in the early years of roll-out. The radio access network for UMTS was also new, supporting certain technical requirements of the new CDMA technology and also the resource management for multimedia sessions. The choice of evolved core network for UMTS is probably the key non-IP friendly decision that was taken at this time, meaning that that UMTS now supports both IPand X25 packets using a common way of wrapping them up and transporting them over an under- lying IP network. (X25 is an archaic and heavyweight packet switching technology that pre-dates IP and ATM). In the meantime, X25 has become HISTORY OF 3G 29 Table 2.1 IMT 2000 family of 3G standards IMT2000 designation Common term Duplex type IMT-DS Direct Sequence CDMA Wideband CDMA FDD IMT-MC Multi Carrier CDMA Cdma2000 FDD IMT-TD Time Division CDMA TD/CDMA TDD IMT-SC Single Carrier UMC-136 (EDGE) FDD IMT-FT Frequency Time DECT TDD
  • 49. totally defunct as a packet switching technology, and IP has become ubiqui- tous, meaning that IP packets are wrapped up and carried within outer IP packets because of a no-longer useful legacy requirement to support X25. 2.3.3 1998 Onwards – The Standardisation Trimester After 1998, the function of developing and finalising the standards for UMTS and cdma2000 passed to two new standards bodies: 3GPP and 3GPP2, respectively. These bodies have now completed the first version (or release) of the respective standards (e.g. R3 – formally known as Release 99 for UMTS), and these are the standards that equipment is currently being procured against for the systems currently on order around the world. Current order numbers are UMTS 34, cdma2000 9, and EDGE 1 (number of systems [9]). 2G systems have not stood still and are introducing higher-speed packet data services (so-called 2.5G systems: the GSM 2.5G evolution is GPRS – GSM Packet Radio System). These will offer either subscription or per-packet billing and allow users to be ‘always on’ without paying a per-second charge as they currently do for circuit-based data transfer. The new network elements needed to add packet data to GSM are also needed for UMTS, and details of these are given later in the chapter (for a good description of GPRS, see [10]). In early 2000, 3G license auctions raised £50 billion in the UK and Germany, and many expected that services would be universally available by 2002. That now looks unlikely with the major downturn in the telecoms industry, the failure of WAP to take off in Europe, and technical delays over the new air interfaces and terminals. After WAP was widely rejected because of long connection times and software errors, many operators are using 2.5G systems – such as GPRS – as a proving ground for 3G. NTT launched a limited 3G service in Tokyo, in late 2001, with a few hundred handsets. Most commentators now see 3G deployment held back until 2004 and much site and infrastructure sharing to produce cost savings. Since the first UMTS Release, there has been work in groups like 3GIP to be more revolutionary and include more IP (in its widest sense) in 3G. 3GIP has produced a number of technical inputs to the second version of UMTS – originally called Release 2000 but now broken into two releases, known as R4 and R5 in the revised (so as to avoid the embarrassment of finishing Release 2000 in 2002) numbering scheme. We shall look at what R4 and R5 offer in Chapter 7. Finally the operator harmonisation group and 3GPP/3GPP2 are working to harmonise UMTS, cdma2000, and EDGE such that any of these air interfaces and their associated access networks – or indeed a Wireless LAN network – can be connected to either an IS-41 or evolved GSM core network. The final goal is a single specification for a global 3G standard. AN INTRODUCTION TO 3G NETWORKS 30
  • 50. 2.4 Spectrum – The ‘Fuel’ of Mobile Systems Now is a good time to consider spectrum allocation decisions, as these have a key impact on the 3G vision in terms of the services (e.g. bandwidth or quality) that can be provided and the economics of providing them. In any cellular system, a single transmitter can only cover a finite area before the signal-to-noise ratio between the mobiles and base stations becomes too poor for reliable transmission. Neighbouring base stations must then be set up and the whole area divided into cells on the basis of radio transmission characteristics and traffic density. The neighbouring cells must operate on a different frequency (e.g. GSM /D-AMPS) or different spreading code (e.g. W-CDMA or cdmaOne; see Figure 2.2). Calls are handed over between cells by arranging for the mobile to use a new frequency, code or time slot. It is a great, but profitable and very serious, game of simulation and measurement to estimate and optimise the capacity of different transmission technologies. For example, it was originally esti- mated that W-CDMA would offer a 10-fold improvement in transmission efficiency (in terms of bits transmitted per Hertz of spectrum) over TDMA (Time Division Multiple Access – such as GSM and D-AMPS) – in practice, this looks to be twofold at best. In general terms, for voice traffic, the capacity of any cellular system is given by: Capacity ðusers=km2 Þ ¼ K Spectrum ðkHzÞ Efficiency ðbps=kHzÞ Density=ðcells=km2 Þ call bandwidth ðbpsÞ ; The constant (K) depends on the precise traffic characteristics – how often users make calls and how long they last as well as how likely they are to move to another base station and the quality desired – the chance of a user SPECTRUM – THE ‘FUEL’ OF MOBILE SYSTEMS 31 Figure 2.2 Typical (TDMA) cellular system.
  • 51. failing to make a call because the network is busy or the chance of a call being dropped on handover. Typically, figures for a 2G system are: † Bandwidth of a call – 14 kbit/s (voice). † Bandwidth available 30 MHz (Orange – UK). † Efficiency 0.05 (or frequency reuse factor of 20 – meaning that one in 20 cells can use the same frequency with acceptable interference levels). Now, there are several very clear conclusions that can be drawn from this simple equation. First, any capacity can be achieved by simply building a higher base station density (although this increases the costs). Second, the higher the bandwidth per call, the lower the capacity – so broadband systems offering 2 Mbit/s to each user need about 150 times the spectrum bandwidth of voice systems to support the same number of users (or will support around 150 times less users), all other things being equal. Third, any major increase in efficiency – for a given capacity – means that either a smaller density of base stations or less spectrum is required, and, given both are very expensive, this is an important research area. Unfortunately for 3G systems, as mentioned above, this factor has improved by only 2 over current GSM systems. Finally if the bandwidth of a voice call can be halved, the capacity of the system can be doubled; this is the basis of introducing half-rate (7 kbit/s) voice coding in GSM. So, given this analysis, it is hard to escape the conclusion that 3G systems need a lot of spectrum. However, radio spectrum is a scarce resource. To operate a cellular mobile system only certain frequencies are feasible: at higher frequencies, radio propagation characteristics mean that the cells become smaller, and costs rise. For example, 900-MHz GSM operators (e.g. Cellnet in the UK) require about half the density of stations – in rural areas – compared with 1800-MHz GSM operators like Orange. Also, above about 3 GHz, silicon technology can no longer be used for the transmitters and receivers – necessitating a shift to gallium arsenide technology, which would be considerably more expensive. The difficulties of finding new spec- trum in the 500–3000-MHz range should not be under-emphasised – see [11] for a lengthy account of the minutiae involved – but, in short, all sorts of military, satellite, private radio and navigation systems, and so forth all occupy different parts of the spectrum in different countries. Making progress to reclaim – or ‘re-farm’ as it is known – the spectrum is painfully slow on a global scale. The spectrum bands earmarked for FPLMTS at the World Radio Conference in 1992 were 1885–2025 MHz and 2110–2200 MHz – a total of 230 MHz. However, a number of factors and spectrum management deci- sions have since eroded this allocation in practice: † Mobile satellite bands consume 2 £ 30 MHz. † In the US, licences for much of the FPLMTS band have already been sold off for 2G systems. AN INTRODUCTION TO 3G NETWORKS 32
  • 52. † Part of the bands (1885–1900 MHz) overlap with the European DECT system. † The FPLMTS bands are generally asymmetrical (preventing paired spec- trum allocations – see below). All of this means that only 2 £ 60 MHz and an odd 15 MHz of unpaired spectrum are available for 3G in Europe and much less in the US. The paired spectrum is important – this means equal chunks of spectrum separated by a gap – one part being used for up link communications and the other for down link transmission. Without the gap separating them up and down link transmissions would interfere at the base station and mobile if they trans- mitted and received simultaneously. By comparison, in the UK today, 2 £ 100 MHz is available for GSM, shared by four operators. Figure 2.3 shows the general world position on the 3G spectrum – explaining why many commentators expect 3G to be much less influential in the US and rolled out earlier in Europe and Japan. In the UK auction/licensing process, there were a dozen or so bidders chasing five licences, resulting in three getting 10 MHz and two buying 15 MHz of paired spectrum per operator –BT has acquired 2 £ 10 MHz of paired spectrum and 5 MHz of unpaired spectrum. BT Cellnet will use the paired spectrum with 5 MHz for macrocells and 5 MHz for microcells – there being no need for frequency planning in a W-CDMA system. 2.5 UMTS Network Overview In order to illustrate the operation of a UMTS network, this section describes a day in the life of a typical UMTS user – this sort of illustration is often called a usage case or a scenario. The major network elements – the base stations UMTS NETWORK OVERVIEW 33 Figure 2.3 Global spectrum allocations for 3G (MSS bands are satellite spectrum).
  • 53. and switches etc. – will be introduced, as well as the functionally that they provide. This at least has the merit of avoiding a very sterile list of the network elements and serves as a high-level guide to the detailed description of UMTS functionality that follows. Mary Jones is 19 years old and has just arrived at the technical Polytechnic of Darmstadt. She is lucky that her doting father has decided to equip her with a 3G terminal before allowing her to live away from home – but then this is 2004, and such terminals are now common in Germany and much of Europe. Mary first turns her terminal on after breakfast and is asked to enter her personal PIN code. This actually authenticates her to the USIM (UMTS Subscriber Identity Module) – a smart card that is present within her terminal. The terminal then searches for a network, obtains synchronisation with a local base station, and, after listening to the information on the cell’s broad- cast channel, attempts to attach to the network. Mary’s subscription to T- Nova is based on a 15-digit number (which is not her telephone number) identifying the USIM inside her terminal. This number is sent by the network to a large database – called the home location register (HLR) located in the T- Nova core network. Both the HLR and Mary’s USIM share a 128-bit secret key – this is applied by the HLR to a random number using a one-way mathematical function (one that is easy to compute but very hard to invert). The result and the random number are sent to the network, which challenges Mary’s USIM with the random number and accepts her only if it replies with the same result as that sent from the HLR (Figure 2.4). After attaching to the network, Mary decides to call her dad – perhaps, although unlikely, to thank him for the 3G terminal. The UMTS core network is divided into two halves – one half dealing with circuit-switched (constant bit rate) calls – called the circuit-switched domain – and the other – the packet-switched domain – routing packets sessions. At this time, Mary attempts to make a voice call, and her terminal utilises the connection management functions of UMTS. First, the terminal signals to the circuit switch that it requires a circuit connection to a particular number – this switch is an MSC (mobile switching centre). The MSC has previously down- loaded data from the HLR when Mary signed on, into a local database called the visitor location register (VLR) and so knows if she is permitted to call this number, e.g. she may be barred from international calls. If the call is possi- ble, the switch sets up the resources needed in both the core and radio access networks. This involves checking whether circuits are available at the MSC and also whether the radio access network has the resources to support the call. Assuming that the call is allowed and resources are avail- able, a constant bit rate connection is set up from the terminal, over the air interface, and across the radio access network to the MSC – for mobile voice, this will typically be 10 kbit/s or so. Assuming that Mary’s dad is located on the public fixed network, the MSC transcodes the speech to a fill a 64 kbit/s speech circuit (the normal connection for fixed network voice) and trans- AN INTRODUCTION TO 3G NETWORKS 34
  • 54. ports this to a gateway switch (the gateway MSC – GMSC) to be switched into the public fixed telephone network. When the call ends, both the MSC and GMSC are involved in producing Call Detail Records (CDR), with such information as: called and calling party identity, resources used, time stamps, and element identity. The CDRs are forwarded to a billing server where the appropriate entry is made on Mary’s billing record. Mary leaves her terminal powered on – so that it moves from being Mobi- lity Management (MM)-connected to being MM-idle (when it was turned off completely, it was MM-detached). Mary then boards a bus for the Polytech- nic and passes the radio coverage of a number of UMTS base stations. In order to avoid excessive location update messages from the terminal, the system groups large numbers of cells into a location area. The location area identifier is broadcast by the cells in the information they broadcast to all terminals. If Mary’s terminal crosses into a new location area, a location update message is sent by the terminal to the MSC and also stored in the HLR. When Tom tries to call Mary – he is ringing from another mobile network – his connection control messages are received by the T-Nova GMSC. The GMSC performs a look-up in the HLR, using the dialled number (i.e. Mary’s telephone number) as a key – this gives her current serving MSC and location area, and the call set-up request is forwarded to the serving MSC. Mary’s terminal is then paged within the location area – in other words, all the cells UMTS NETWORK OVERVIEW 35 Figure 2.4 UMTS Architecture.
  • 55. Other documents randomly have different content
  • 59. The Project Gutenberg eBook of Simson ja Delila: Kolminäytöksinen näytelmä
  • 60. This ebook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this ebook or online at www.gutenberg.org. If you are not located in the United States, you will have to check the laws of the country where you are located before using this eBook. Title: Simson ja Delila: Kolminäytöksinen näytelmä Author: Johannes Linnankoski Release date: July 1, 2013 [eBook #43072] Language: Finnish Credits: Produced by Tapio Riikonen *** START OF THE PROJECT GUTENBERG EBOOK SIMSON JA DELILA: KOLMINÄYTÖKSINEN NÄYTELMÄ ***
  • 61. Produced by Tapio Riikonen SIMSON JA DELILA Kolminäytöksinen näytelmä Kirj. JOHANNES LINNANKOSKI WSOY, Porvoo, 1911. HENKILÖT:
  • 62. SIMSON DELILA SIMSONIN ÄITI ASTARTEN YLIPAPPI DELILAN ORJATAR ADULLA KOLME DANIN MIESTÄ JORDANIN MIES NAFTALIN MIES SEITSEMÄN ISRAELIL. VANKIA ISRAELIL. POIKANEN FILISTEAL. VANKI VANKIEN PÄÄMIES ASKALONIN RUHTINAS KAKSI EGYPTIN LÄHETTILÄSTÄ BABYLONIAN LÄHETTILÄS ELAMIN LÄHETTILÄS KOLMETOISTA FILISTEALAISTA Sotilaita, hovilaisia, hovin palvelijoita, vanginvartijoita, pappeja, soittajia, laulajia, temppelipoikia, temppelityttöjä, nuorukaisia, lapsia, kansaa.
  • 63. ENSIMÄINEN NÄYTÖS. Askalonin hallitsevan ruhtinaan veljentyttären, nuoren <b>Delila</b> ruhtinattaren suvimaja. Huonetta valaisee himmeästipalava savilamppu. Vasemmalla kaksi ovea, perällä oikeassa yläkulmassa makuuhuoneen ovi, jonka verhojen aukeamasta kumottaa väkevä valaistus. Yö, syvä hiljaisuus. DELILA (ilmestyy hennossa yöpuvussa oviverhojen aukeamaan, levottomasti taakseen katsellen. Sulkee varovasti verhot ja hiipii kiihtyneenä huoneeseen): Jo neljäs yö on kulumassa… (Äänettömyys.) Hän väistää! Jokaisen minun yritykseni hän väistää hymyillen! (Kiihtyen.) Kuin uteliaalle lapselle hymyilee hän minulle! (Lähtee kiivaasti kävelemään.) (Seisahtuu hetken päästä syviin mietteisiin vaipuneena.) Mikä on se avain, joka hänen salaisuutensa portit minulle vihdoinkin aukaisee? (Äänettömyys.) Tahdon! Tänä yönä sen
  • 64. avaimen tahdon! (Lähtee haltioituneena kävelemään.) (Mutta hänen askeleensa hidastuvat vähitellen ja hän seisahtuu taka-alalle, nojautuen erästä pylvästä vasten) Niinkuin tahtoisin, enkä tahtoisi… Niinkuin vihaisin, enkä vihaisi… (Äänettömyys.) Niinkuin pelkäisin, niinkuin aavistaisin tästä jotakin … tuntematonta … selittämätöntä … irtipäästämätöntä… (Äänettömyys.) (Orjatar kurkistaa huoneensa ovelta. Delila ei huomaa häntä.) ORJATAR (kuiskaa). Minun ruhtinattareni! DELILA: Mitä?! ORJATAR. Astarten ylipappi rukoilee minun ruhtinattareni puheille. DELILA (kiivaasti). Onko tämä aika! ORJATAR. Astarten ylipappi rukoilee minun ruhtinattareltani kahta sanaa. DELILA. Huomenna! ORJATAR (nöyrästi, mutta intohimoisesti). Älköön minun ruhtinattareni suuttuko — Astarten ylipappi rukoilee koko Filistean kansan nimessä juuri tänä hetkenä kahta sanaa.
  • 65. (Kuohahtaa, mutta hillitsee itsensä. Katsahtaa levottomasti makuuhuoneeseen päin. Päättävästi.) DELILA. Hän tulkoon! (Tempaa istuimelta päällysvaipan, jonka kietoo ympärilleen, rientää ovelle vastaan.) YLIPAPPI (jolle Delila tekee varottavan liikkeen, kuiskaten). Anteeksi! Enosi ruhtinas — DELILA. Huomenna varhain olen ilmottava! YLIPAPPI. Huomenna, ruhtinattareni? Enosi valvoo, Askalon odottaa, koko Filistea valvoo ja odottaa — DELILA (tuskautuneena). Näette. minäkin valvon! YLIPAPPI. Astarten nimessä, yksi ainoa sana! Onko hän jo — DELILA. En mitään voi tänä hetkenä ilmottaa. — Jättäkää minut! YLIPAPPI. Ymmärrän, sinä Astarten siunattu… (Kumartaa nöyrästi, mutta pysähtyy oven luona, kiihkeä välke silmissään.) Oli minulla vielä muutakin, ruhtinattareni! DELILA. Muutakin…? YLIPAPPI (nostaa salaperäisesti kätensä). Tänä yönä se on tapahtuva, tyttäreni! Olen kysynyt jumalattarelta, jumalatar on vastannut —
  • 66. DELILA. Mitä?! YLIPAPPI (yhä salaperäisemmin). Olen uhrannut ennus-uhrin puolestasi. Uhri suitsi … papit rukoilivat… Sanoin. kansani tuskan ja toivon nimessä, jos se on tänä yönä täyttyvä, nouskoon hymy ihanille huulillesi. Vedin ennusvaatteen kasvoiltani, katso: jumalatar hymyili — DELILA. Onko se mahdollista? YLIPAPPI. Jumalatar on hymyillyt! Tänä yönä Israel syöstään takaisin korpiinsa! Tänä yönä Filistea kohoaa Kaanaan valtiaaksi! Tänä yönä Astarte nousee Dagonin istuimelle! (Huomaa levottomuutta Delilan kasvoilla.) Anteeksi, tyttäreni! Käy loppuun saattamaan sankaritekosi, josta maine on vierivä vetten yli Egyptiin, virtoja myöten Eufratin maille, josta — DELILA. Kyllin! (Ankarasti.) Älköön kukaan häiritkö minua tämän enempi. YLIPAPPI. Suutelen vaippasi lievettä, sinä Filistean ylpeys! (Menee.) DELILA (käy mietteissään Astartea kuvailevan kannatinpylvään eteen.) Oletko sinä todellakin hymyillyt…? (Ojentaa kätensä.) Hymyile minullekin, jumalatar! Näytä minulle se merkki! (Äänettömyys) Oh! (Kääntyy makuuhuoneeseen päin, kuuntelee. — Kiihtyen.) Tänä yönä, tänä yönä, sanotte te! Mitä te tiedätte tästä yöstä…? (Käy kuohuvana oikealle, jossa on kahdesta rinnakkain lepäävästä pantterista muodostettu divaani. Heittää vaippansa divaanille ja vaipuu vähitellen itsekin, tuijottaen pantterien päiden
  • 67. ylitse pelottavin katsein.) Minä seison kuin arvotuksen edessä… (Äänettömyys.) Vihaan! Sinun salaisuuttasi! Sinun askeltesi väkevyyttä! Sinun hiustesi leikkiä! Sinun ylimielistä hymyäsi! (Äänettömyys.) Tänä yönä minä otan minun sieluni minun käteeni ja vaadin sinun sielusi minun oman sieluni hinnalla… (Äänettömyys.) ÄÄNI (makuuhuoneesta). Delila! — Delila! DELILA (kavahtaa ylös ja rientää ääntä kohti, mutta kääntyy takaisin heittäytyen syvässä mielenkuohussa divaanille) SIMSON (ilmautuu makuuhuoneen ovelle). Minne karkasit sinä, Delila? DELILA (yhä entisellään.) SIMSON. Vastaa minulle! Missä piilet sinä? (Huomaa Delilan) Ah! (Rientää luo, vaan pysähtyy äkkiä.) Mitä?! DELILA (vaikenee.) SIMSON. Mitä tämä merkitsee? (Katselee häntä.) Mutta ihana sinä olet! Huumaava yrtti, pyörryttävä hulluus olet sinä! (Koskettaa hurmautuneena häntä olkapäähän.) Miksi pakenit, Delila! DELILA (vaikenee yhä). SIMSON. Et vastaa…? DELILA (värähtäen). Kysy Simsonilta — hän sen tietää!
  • 68. SIMSON. Sinun äänesi vapisee?! (Istahtaa.) Mitä minä tiedän? Hetken, jolloin käsivarrellani lepäsi ihanin ihmislapsista. Toisen hetken, jolloin minun sydämeni heräsi, ja minun iloni oli paennut minun luotani. Kolmannen hetken, jolloin minä löydän hänet kuin vuorikauriin kallion rotkosta, enkä tiedä miksi hän lymyy. — Vastaa minulle, Delila! DELILA (kuin ennen). Kysy Danin jalopeuralta — hän sen tietää! SIMSON. Niin, jalopeura minä tahdon olla! Nuori jalopeura, joka tietää saaliinsa, ja saaliinsa tempaa! (Tarttuu häneen väkevästi ja kohottaa istualle, mutta Delila painautuu itsepintaisesti takaisin.) Mitä?! (Kohottaa hänen päätään.) Sinulla on kyyneleet ihanissa silmissäsi! (Heltyen.) Miksi? Minä rukoilen sinua! DELILA. Kysy Danin jalopeuralta, miksi hänen huulensa vuotavat rakkautta, mutta hänen sydämensä on kaukana! SIMSON. Sinä puhut syntiä, Delila! DELILA (yhä intohimoisemmin). Kysy Danin jalopeuralta, miksi hän rakastaa salaisuuttansa enempi kuin minua! SIMSON (nousee). Taasko? Yhäkö sinä vaivaat sieluasi tuolla päähänpistollasi? Ja minun sieluani sinun sielusi kanssa. DELILA (yhä itsepintaisemmin). Kolme yötä olet sinä minua pettänyt. Tämä on neljäs! SIMSON. Pettänyt! Sinua? (Äkkiä synkistyen.) Minäkin voisin sanoa: kolme yötä sinä olet minua pettänyt, Delila! DELILA (ponnahtaa tyrmistyneenä istualleen). Minä?!
  • 69. SIMSON (syytöstään lieventäen). Niin, sinä, Filistean tuhatoikkuinen ihme! Kolme yötä sinä olet ollut minulle niinkuin huumaava yrttitarha. Mutta kolme yötä sinä olet samalla ollut niinkuin oikullinen lapsi, joka kaivaa ruusun ja liljan sormillansa etsien kukoistuksen salaisuutta. DELILA (nauraa rauhottuen). Kukkasistako sinä puhut, Danin sankari? — Olkoon niin! Kolme yötä sinä olet levännyt minun puutarhassani, jonka muurin ylitse ei yhdenkään miehen ajatus ole tähän saakka uskaltanut. Kolme yötä sinä olet levännyt minun puitteni varjossa, mutta et niinkuin sankari, vaan niinkuin vakooja, sillä sen tietää Israel ja sen tietää Filistea: sinä kannat salaisuutta sydämessäsi! SIMSON (uudelleen synkistyen). Sinä et tiedä, Delila, mitä puhut! Kolme yötä minä itse — DELILA. Kolme yötä sinä olet levännyt minun käsivarrellani niinkuin Israelin vakooja! (Kohoaa ylemmäksi.) Minä halveksin sinua! SIMSON. Delila! DELILA (kohoaa yhä ylemmäksi). Älä lähene minua! SIMSON (harmistuen). Totisesti! Minä joudun narriksi naisen edessä. Kolme yötä minä olen hänen tähtensä unhottanut minun tehtäväni salaisuuden, neljäntenä hän sanoo minua vakoojaksi. DELILA (jännittyneenä). Sinun tehtäväsi — —? (Pidättyy äkkiä, kääntyen ivallisena poispäin.) Sinun tehtäväsi salaisuuden!
  • 70. SIMSON (tulistuen). Mitä?! Minä luulin sen naisen olevan ylpeän, että minun rakkauteni häneen on ollut niinkuin hulluus — sen sijaan hän pilkkaa minua! DELILA. Ja minä luulin sen naisen, joka on unhottanut heimonsa ja sukunsa ja syttynyt mieheen, joka on tehnyt hänen kansallensa pahaa enempi kuin Israel kaikkena elinaikanansa — minä luulin sen naisen olevan yhden pikku salaisuuden arvoisen! SIMSON (yhä enemmän tulistuen). 'Pikku salaisuuden?' DELILA. Ei ainakaan suuremman kuin että minun korvani sen kestäisivät! SIMSON (ylpeydenpuuskan tempaamana). Hyvä! Niinpä saakoot sinun korvasi kuulla tämän minun pikku salaisuuteni — ymmärtääksesi etten minä tullut Filisteaan istuakseni naisen jaloissa, vaikka niin on käynyt. DELILA (lauhtuneesta). Ah, Simson! SIMSON. Kuule sitten! Kaksikymmentä ajastaikaa on sinun kansasi vaivannut Israelia. Kaksikymmentä kertaa olen minä heidät lyönyt, mutta en koskaan perinjuurin, vaikka minulla olisi siihen voimaa ollut — DELILA. Miksi olet vihamiestäsi säästänyt, Simson? SIMSON. Älä kysy, kiitä Filistean jumalia että niin on ollut! — Tänä vuonna kokoontuivat Danin vanhimmat ja sanoivat: katso, nisuvainiot vaalenevat ja viinamäet ovat jo rypäleillänsä. Pitääkö meidän yhä oleman Filistean tallattavana? Nouse Simson, sinä sankariksi syntynyt —
  • 71. DELILA (jännittyneenä). Sankariksi syntynyt…? SIMSON (väistäen). Sankariksi syntynyt sanoo minun kansani väkevistänsä. — Nouse Simson! sanoivat he. Dan on antava viisituhatta miekanvetävätä, idänpuolelta Jordania tulevat karjanpaimenet keihäinensä. Totisesti sanoin minä, minä nousen! DELILA. Sitten…? — Istu, Simson, minun luokseni. SIMSON. Sitten he laittoivat minulle pidot. Mutta kun juhla oli ylimmillänsä, sanoin minä: kuulkaa minua, Danin miehet! Minä en rakasta verenvuodatusta. Sallikaa minä ensin käyn Askalonin ruhtinaan tykö — DELILA. Niinkö…? SIMSON. — Ja sanon hänelle: näin on asia, tehkäämme luja liitto asuaksemme kukin rajaimme piirissä. Ellei se teille kelpaa, kolmen päivän päästä minä teidät lyön niinkuin akanat tuuleen! DELILA. Ah! — Mitä sanoivat he? SIMSON. Toiset sanoivat: ei kelpaa; toiset: Mene! Minä sanoin: minä menen, ja neljän päivän päästä minä palaan teidän tykönne, ja joko minulla on liiton taulu mukanani, taikka on minun miekkani vedetty. DELILA. Sitten? — Sinun salaisuutesi, Simson? SIMSON. Minun salaisuuteni?! Sen sinä juuri kuulit. Minun tehtäväni salaisuuden ja minun rakkauteni hulluuden. DELILA. Eikö ole sinulla mitään tähän lisättävää, Simson?
  • 72. SIMSON. Ei! DELILA. Kolme yötä sinä olet minun edessäni teeskennellyt, tämä oli neljäs! Käy kansasi ja tehtäväsi tykö; en tahdo sinua kauemmin pidättää. SIMSON. Mitä?! DELILA. Sinulle, Danin sankarille, minä uhrasin ylpeyteni ja rakkauteni; sinun sankarinsalaisuuttasi minä olen kysynyt, ja sinä kerrot minulle Danin taruja! SIMSON (kiivaasti). Taruja?! DELILA. Tuhannen miestä löi Simson Lehissä, Gazan portin hän kantoi vuoren kukkulalle, haarniskoitut sotamiehet pakenevat hänen edessänsä, köydet katkeavat hänen käsissänsä; tyttäret, joiden isän hän on surmannut, syttyvät rakkauteen hänet nähdessään — minä kysyn sankarin salaisuutta! SIMSON. Ja vaikka minä sanoisin sen kymmenesti, sinä et kuitenkaan sitä ymmärtäisi. DELILA. Tuhannen miestä löi Simson Lehissä, Askalonissa hän kiemurtelee — naisen edessä! SIMSON. Kiemurtelee?! DELILA. Kiemurtelee — teeskentelee — viisastelee! SIMSON (ryntää ylös). Kautta Ekronin pyhän tammen, minä olen antanut Filistean hiirten hyppiä liian kauan Danin varpaille! Jehova tehköön minulle sen ja sen, ellen minä ennen aamua anna heille
  • 73. uutta nimeä Lehin sijaan ja tuhannen miehen sijaan kahta tuhatta. — Sinä olet kuuleva minusta ennenkuin vuoteeltasi nouset! DELILA (hätääntyen). Mitä?! Eikö Danin jalopeura leikkiä ymmärräkään? SIMSON (ottaa vaippansa ja alkaa pukeutua). Ei! Sillä minun sydämeni kuohuu Danin tähden ja minun pitkän toimettomuuteni tähden, joka on saattanut minut hempeäksi kuin naisen. DELILA (hymyillen). Etkä kuitenkaan ymmärrä naista… Simson! Etkö ymmärrä, että minun rakkauteni sinuun on niinkuin erämaan polttava aurinko, kunnes minä saan sinut kokonansa. SIMSON (sitoo miekan vyölleen). Kolme päivää minä olen ollut sinun. Huomisesta olen Danin ja Israelin! DELILA. Ei, Simson. — Älä mene. — Ei vielä. — Huomisesta sinä olet minun. — Vihaan Dania, vihaan Israelia, vihaan Filisteaa! — Tule minun luokseni, ja minä olen sanova sinulle minun sieluni kaipauksen. SIMSON. Minä kuulen. DELILA (ojentaa kätensä). Tule minun luokseni! — Tule! — Minä olen sanova sen kuin huokauksen sinun korvaasi… (Simson lähenee epäröiden.) Niin, Simson… Ah niin… (Tarttuu hymyillen hänen miekkaansa.) Mitä? Miekka kupeella? Naisen edessä! (Riisuu miekan ja laskee sen pöydälle divaanin viereen.) Istu minun luokseni! (Tarttuu hänen käsivarteensa.) Etkö ymmärrä: tämä käsivarsi on minun, nämä ihanat hiukset ovat minun — — Miksi väistät, Simson?
  • 74. Ne ovat minun, nämä ihanat hiukset, joiden vertaa ei ole Israelissa eikä Filisteassa! Mutta, kuule, sinun sydämesi ei ole minun. Ja mitä välitän minä muusta! SIMSON (ravistaa päänsä vapaaksi). Ei! Tämä käsivarsi on Danin! — Nämä hiukset ovat minun! — Mutta sydämeni olet sinä vienyt. DELILA. Niin sanot sinä, Simson, vaan et ole sinä tähän hetkeen saakka antanut minulle todistusta siitä. SIMSON. Enkö minä itse ole todistuksena tässä? — Kautta Gideonin miekan: sano ja minä olen antava uuden! DELILA (hiljaa). Sinun salaisuutesi, Simson…? Tänä yönä minä sen tahdon! SIMSON (tuskitellen). Sinä vaivaat minun sieluani kuolemaan saakka! En taida minä sitä sanoa. DELILA. Kautta Gideonin miekan! SIMSON. Kautta Gideonin miekan: vaikka minä voisin sen nostaa tuohon kämmenelleni, sinä et kuitenkaan ymmärtäisi sankarin salaisuutta, sillä hän ei taida sitä itsekään selittää. (Pitkä äänettömyys, jonka aikana Delila katselee häntä tutkien.) DELILA (osanottavaksi heltyen). Eikö itsekään…? Miksi et sitä ennen sanonut, Simson?… Väärin kiusasin minä sinua… Kuinka voisikaan … semmoista … jota ei itsekään… (Painautuu värähtäen hänen rintaansa vasten.) Katso, minä väärin epäilin … ettei sinun sielusi olisi minun sieluni kanssa…
  • 75. SIMSON. Ihmeellinen olet sinä, Delila! Niinkuin yrttitarha auringon noustessa olet sinä: kylmä ja lämmin samalla hetkellä! (Äänettömyys. Äkkiä heltyneenä.) Samoin on sankarin salaisuus. Niinkuin kaksiteräinen miekka on se! DELILA. Niinkuin kaksiteräinen miekka! (Varovasti.) Hänen voimansa, Simson…? SIMSON (hymyillen). Sitäkö sinäkin kyselet, Filistean tytär? DELILA (lapsellisesti). Sitä, Simson… SIMSON (väkevästi). Ei, Delila, ei ole sankarilla muuta voiman salaisuutta kuin hänen uskonsa. Hän lyö tuhannen miestä, sillä hän uskoo sen tekevänsä. Hän menestyy kaikessa, sillä hän tekee kaikki sydämestänsä. Hän syöksyy taisteluun ruumiinensa sieluinensa. Hän jättää pidot sitoaksensa kerjäläisen jalan. Varas ei häneltä varasta. Valehtelija puhuu totta hänen edessänsä. Nainen, joka hänet ensi kerran näkee, ojentaa kätensä sanoen: veljeni, minä olen kauan sinua odottanut. DELILA. Totta, Simson! — Mutta hänen uskonsa salaisuus…? SIMSON (ylpeästi). Se että hän tietää syntyneensä suuriin tehtäviin, ja ettei kukaan taida sitä uskoa häneltä riistää! DELILA. Eikö kukaan? (Miettii silmänräpäyksen.) Jos joku haavoittaisi hänet? SIMSON. Ei ole sitä syntynyt! DELILA (hiljaa). Jos joku — pettäisi hänet, Simson?
  • 76. SIMSON. Pettäisi! (Ylimielisesti nauraen.) Ah, Delila! Ei ole sitäkään syntynyt. Sillä hänen sielunsa on puhdas ja vilpitön, ei ole kenelläkään sydäntä häntä kavaltaa. DELILA (Simsonin naurun kiihottamana). Mutta jos olisi…? SIMSON. Kuin koiralle kääntäisin minä hänelle selkäni ja minun ylenkatseeni polttaisi hänen sieluansa hamaan kuolemaan saakka, että hän petti sankarin! DELILA. Niinkö…? — (Äänettömyys.) SIMSON (taas hymyillen). Ei, Delila, ei ole sitä ihmistä syntynyt, joka voisi riistää sankarilta hänen uskoansa! Sillä hän on yksin maailmassa — ei pääse kukaan hänen sieluansa lähelle. DELILA (värähtäen). Eikö sekään, joka oman sielunsa uhalla häntä rakastaa? SIMSON. Ei kukaan! Ei ole sankarilla isää, ei äitiä, ei veljiä, ei sisaria — ei muuta paitsi oma itsensä. DELILA (kiinteästi). Eikö ketään…? SIMSON. Ei! Niinkuin taivaan tuuli on hän, tänään täällä, huomenna tuolla. (Synkistyen.) Ei kukaan häntä ymmärrä … ei kenkään tiedä hänen sielunsa polttoa… DELILA (yhä kiihkeämmin). Mutta jos tahtoo ymmärtää? Jos joku tahtoo?
  • 77. SIMSON (torjuen). Ei ei, Delila! En saata minä sanoa sen enempää. (Äänettömyys.) Anna hetken kulua, niinkuin minä annan. En kysy minä sinulta kuka olet, mistä tulet ja kuhunka menet. En kysy minä mitä huomenna, mitä seuraavana huomenna. (Äkkiä rajusti.) Sillä sankari syöksyy niinkuin Jordan jyrkänteiltänsä, kysymättä mihinkä hän joutuu! DELILA. Mikä sinun tuli, Simson…? En ymmärrä minä — SIMSON (häntä kuulematta, synkän ahdistuksen valtaamana). Vasta tänä yönä minä teidät ymmärrän! Totta olette te isät laulaneet. Elämä on lähde ja nainen on käärme, joka sitä vartioi. Manalan syvyyksiin sen lähteen suonet ulottuvat, ja vaikka sankari sen tietää, niin kuitenkin hän tempaa käärmeeltä kultaisen pikarin ja siitä lähteestä juopi! DELILA (kavahtaen). Mitä sinä tarkotat, Simson…? SIMSON (kuin havahtuen). Oletko levoton, armaani? — Ah Delila! Raskas on sankarin sielu ja hänen rakkautensa on niinkuin kuluttava tuli. (Ottaa häntä kädestä.) Katso, tämä on se sankarin salaisuus, jota ei hän taida itsekään selittää. Näin sanoo joku minulle tänä hetkenä: nouse Simson, mene kauas ja vahvista itsesi yksinäisyydessäsi! Ja taas sanoo minulle toinen: olisiko sankari lapsi! DELILA (jännityksestä vavisten). Vain puolittain ymmärrän minä sinua… (Hellästi.) Miksi et mene? Sano se minulle, Simson! SIMSON. Siksi että sinä ilmestyit minun tielleni niinkuin tähdenlento pimeässä yössä ja sait minun pysähtymään kulussani. — Mutta huomenna minä nousen ja sammutan minun sieluni polton!
  • 78. DELILA. Huomenna?! SIMSON. Huomenna. DELILA. Sinä siis menet, Simson…? SIMSON. Niin totta kuin Jehova on Irsaelin jumala, huomenna minä nousen ja sammutan minun sieluni polton! (Syvä äänettömyys.) DELILA (kuin itsekseen). Niinkö olin minä Danin sankarille kuin tähdenlento, joka kestää ainoastaan silmänräpäyksen tai kaksi? SIMSON. Ei, Delila, minä palaan. Päivän tai kahden kuluttua minä palaan ja sammutan minun sieluni toisen polton. DELILA (kuin edellä). Niinkuin tähdenlento olin minä Danin sankarille… SIMSON. Miksi etsit syytä minua vastaan, sinä Filistean ihme! Eikö minun sydämeni värise sinun edessäsi niinkuin tuntemattoman edessä? Etkö sinä ole minulle niinkuin erämaan etäisyys, jossa sielu etsii näkymättömiä iltaruskon salaperäisessä palossa? DELILA (kuin edellä). Enkä kuitenkaan voi sinua pidättää päivää taikka kahta… SIMSON. Minä palaan, sinä ihmeellisin kaikista ihmeistä! — Ah, Delila! Satoja olen minä nähnyt naisia, mutta en ketään niinkuin sinä. Sillä sinä olet niinkuin puutarha muurin takana, joka saa sielun himoitsemaan luvattomia. Ja taas olet sinä niinkuin rautapaita, kylmä
  • 79. ja kirkas niinkuin päämiehen rautapaita, johon ainoastaan sankarit uskaltavat miekkansa iskeä. — Delila! Mikä sinun on, Delila? DELILA (on vaipunut suulleen ja itkee). SIMSON. Mitä…? Sinun olkapääsi värisevät — sinun olkapääsi, jotka ovat niinkuin granaattiomenat iltatuulen värinässä. Delila? DELILA (ei vastaa). SIMSON. Sinä itket?! Kautta Jehovan: en ymmärrä minä sinua! DELILA (nyyhkyttää yhä rajummin). SIMSON. Sinä kyselet salaisuutta, ja itse sinä olet ihmeellisin salaisuus. — Puhu minulle, Delila! DELILA (kuin edellä). Sanoja, sanoja on sankarin rakkaus… SIMSON (torjuen). Sanoja!! DELILA. Hän visusti salaa sen, jota paitsi minun sieluni nääntyy… SIMSON. Sinä saatat minut epätoivoon! Enkö minä juuri — DELILA. Minun sieluni nääntyy … minun sieluni nääntyy. (Vaipuu taas itkuun, Simsonin katsellessa neuvottomana.) SIMSON (lähenee). Delila! En voi minä nähdä sinun itkevän… DELILA (väistää). Älä koske minuun! — Minun sieluni nääntyy. (Nyyhkyttää yhä rajummin.)
  • 80. SIMSON (avuttomasti). Kuule minua, Delila! — Totisesti — olisinko minä jotakin unhottanut? — Kohota kasvosi, ja minä koetan muistella… DELILA (yhä itsepintaisemmin). En usko minä sankarin sanoja… SIMSON. Delila! Et ymmärrä sinä minua, Delila. Katso — totisesti — varmaan minä olen jotakin salannut. Mutta — katso — se ei ole minun salaisuuteni… DELILA (tuskin voiden itseään hillitä). Sinun?! Kenenkä se olisi…? SIMSON (pienen äänettömyyden jälkeen). Se on minun äitini salaisuus. DELILA (kohoutuen). Sinun äitisi?! SIMSON. Minun äitini, joka on minun sydämelleni rakas. Siksi minä rukoilen: älä vaadi minua tekemään syntiä. DELILA (hilliytyen). Minä ymmärrän, Danin sankari… (Äkkiä hellästi.) Sinun äitisi, Simson! — Miksi et koskaan ole kertonut minulle äidistäsi? — Oletko sinä hänelle rakas? SIMSON. Olenko minä äidilleni rakas?! Ah Delila — minä olen äitini ainoa lapsi! DELILA. Ja senkin sinä olet minulta salannut! (Yhä hellemmin.) Kerro, Simson, kerro minulle enemmän äidistäsi!
  • 81. SIMSON (epäröiden). En ole minä tähän päivään saakka kertonut kenellekään minun äitini tarinaa… DELILA. Onko sinun äidistäsi tarina?! SIMSON. On, Delila! DELILA. Ah! (Laskeutuu hyväillen lattialle hänen polveansa vasten). Kuin lapsi istun minä sinun jalkaisi juuressa ja kuuntelen sinun äitisi tarinaa. (Äänettömyys.) SIMSON. Totisesti … en voi minä olla sitä sinulle kertomatta … sillä ihmeellinen on minun äitini tarina… DELILA. Kerro, kerro, Simson! SIMSON. Katso: hedelmätön oli minun äitini ja koko minun isäni huone katsoi häntä ylön. Ja kun oli kulunut kymmenen vuotta, sanoivat he isälleni: Hylkää hänet, ei voi hän antaa sinulle perillistä. Mutta minun äitini rukoili: odota vielä vuosi taikka kaksi. Minun isäni sanoi: Minä odotan — DELILA (jännittyen). Mitä tapahtui sitten äidillesi? SIMSON. Sitten minun äitini nousi ja sanoi minun isälleni: Satuloitse minulle aasi, mutta älä kysy sen enempää. Ja hän otti ainoastaan vähän paahdettuja tähkiä ja pienen leilin vettä mukaansa sanoen: ennenkuin minä olen nämä loppuun kuluttanut, minä palaan sinun tykösi, taikka en minä palaa ensinkään!
  • 82. DELILA (hurmautuneena). Minä rakastan sinun äitiäsi niiden sanojen tähden! — Minne läksi hän? SIMSON. Ekronin pyhään ennuspaikkaan kulki minun äitini tie. Ja kun hän neljäntenä päivänä näki jumalan tammen edessänsä, niin hän lankesi maahan ja sytytti polttouhrin. Ja kun hän nosti silmänsä: katso polttouhrin liekissä näkyi enkeli — DELILA. Näkikö sinun äitisi enkelin?! SIMSON. Jehovan enkelin, joka sanoi: sinun toivomuksesi on täyttyvä, Manoan emäntä, ja Danin toivomukset sinun omien toivomustesi kanssa. Silloin minun äitini valtasi vavistus — DELILA (kiirehtien). Sitten? Mitä vielä sanoi enkeli? SIMSON. Ei sanonut hän sen enempää, sillä minun äitini ymmärsi siitä kaikki. Ja kun hän taas uskalsi nostaa silmänsä, oli enkeli kadonnut, mutta minun äitini teki — — (Vaikenee äkkiä.) DELILA (jännityksestä väristen). Mitä teki sinun äitisi, Simson…? SIMSON (lyhyesti). Minun äitini teki sydämessänsä lupauksen, mutta sen lupauksen ei pidä tuleman minun huulteni yli! Minun äitini tarina on päättynyt. (Äänettömyys.)
  • 83. DELILA (kuin itsekseen haaveillen). Ihmeellinen oli sinun äitisi tarina… Ja mitä enemmän sinä kerrot, sitä ihmeellisemmäksi sinun oma tarinasi muuttuu minun silmissäni… Minkä ihanan lupauksen mahtoikaan sinun äitisi tehdä…? SIMSON. Ei ei, Delila! En voi minä sitä kertoa, sillä se on minun äitini perintö ja minulle pyhä. DELILA (närkästyneesti). Minä ymmärrän: sinä rakastat äitiäsi enemmän kuin ketään muuta. Ja siinä sinä teet oikein. SIMSON. Sinä puhut syntiä, Delila, ja sen sinä itse tiedät! Jos sinä sanoisit, että minä rakastan äitiäni enemmän kuin yksikään poika Israelissa, niin sinä puhuisit totta. Ja jos sinä sanoisit, että minä rakastan Delilaa enemmän kuin yksikään mies Filisteassa tai Israelissa rakastaa naista, niin sinä puhuisit totta. Mutta minun äitini lupauksen pyhyyttä et sinä ymmärrä. DELILA (yhä närkästyneenä). En! Totisesti! Minä en ymmärrä! SIMSON. Sinun täytyy, Delila! (Avomielisesti.) Katso. synkkä on sankarin polku; tänäpänä hänen askeleensa vievät korkeuksiin, huomenna syvyyksiin. Mutta kun minä muistan minun äitini perinnön, taas olen minä Danin sankari nuori ja puhdas, ja minun käsivarteni vahvistuu. DELILA (äärimmilleen jännittyneenä). Minä ymmärrän, minä ymmärrän… (Äänettömyys). Minä ymmärrän, enkä tahdo sen enempää kuulla… (Alkaa hellästi hyväillä). Vain yksi on minun haluni: rakastaa sinua niinkuin sinun äitisi!
  • 84. SIMSON. Ah, Delila! Se sana oli minulle suloisempi kuin kaikki, mitä sinä olet tähän asti sanonut. DELILA (yhä hellemmin). Vielä enemmän tahdon minä sinua rakastaa, sillä minä olen Filistean tytär! Minä rakastan sinua niinkuin se, joka ensin on vihannut ja nyt rakastaa — niinkuin … niinkuin elämänveden käärme, jonka kultaista pikaria tuhannet tavottivat, mutta yksi ainoa sai! (Hyväilee häntä hulluuttavan intohimoisesti). Kuulitko, Simson? SIMSON. Delila, Delila! Ei ole sinun vertaistasi auringon alla. (Vaipuu hänen syliinsä). Kuin huumaavaa myrhaa hengitän minä sinua, sinä Filistean tuhattuoksuinen yrtti, niin että minun ohimoitani pakottaa. Mitä olisi minun elämäni ilman sinun rakkauttasi? Mitä on Dan, ja mitä Israel! — Anna minun levätä ja unhottaa kuka minä olen. DELILA. Lepää, Danin jalopeura! (Hyväilee hiljaa, katsellen häntä tutkivasti. Hetkisen päästä.) Oletko sinä nyt onnellinen, Danin sankari…? SIMSON. Jos minun onneeni jotakin lisättäisiin, totisesti: minä kuolisin. DELILA (kuin uneen uinutellen). Lepää Danin jalopeura, lepää! (Katselee häntä säihkyvin silmin, ankarasti ajatellen. Hänen katseessaan välähtää päätös ja hän painautuu lepäämään.)
  • 85. SIMSON (hetkisen kuluttua). Miksi et puhu minulle, Delila? DELILA (ei vastaa, mutta hänen huulillaan värehtii salattu hymy). SIMSON. Delila! Miksi et vastaa, Delila? DELILA (kuin havahtuen). Sanoitko jotakin, Simson…? SIMSON. Sanoin. Minun korvani ovat tottuneet sinun ääneesi niinkuin harpun ääneen. — Mitä ajattelit sinä niin ankarasti, Delila? DELILA. Minä? Ah, en mitään… SIMSON. Sinä ajattelit. Sano se minulle! DELILA (kainostellen). Kuinka kehtaisin minä kertoa sankarille lapsen haaveita… SIMSON (yhä uteliaammin). Sinun täytyy, Delila! DELILA. Täytyykö minun?… Katso, Simson. — Ah, kuinka minua kainostuttaa! — Katso, kun minä kuulin sinun äitisi tarinan, teki se minuun niin ihmeellisen — — Ei, en saata minä jatkaa! SIMSON (lapsellisen riemuisesti). Minun äitini tarinastako sinä haaveilit? Ja minun äitini poika ei saisi sitä kuulla! Jatka, Delila! DELILA (salaperäisesti). Katso — minä olin olevinani niinkuin sinun äitisi — nuori ja väkevä — mutta minä olin, niinkuin sinun äitisikin — hedelmätön… SIMSON. Ah, Delila! Kerro, kerro!
  • 86. DELILA. Ja minä läksin niinkuin sinun äitisi toivioretkelle, ja minäkin näin enkelin… Mutta kun minä onneni huumauksessa tahdoin tehdä lupauksen, niin minä jouduin hämilleni enkä tietänyt mitä lupaisin. — Juuri silloin sinä herätit minut… SIMSON. Jospa minä olisin aavistanut — — Jatka, Delila, unelmasi loppuun, ja kerro sitten minulle lupauksesi! DELILA (kuin ankarasti miettien). En saa minä unelmastani enää kiinni!… Mitä minä lupaisinkaan?… Suurta ja korkeata…? SIMSON (kuin leikiten). Jospa minä voisin sinua auttaa? DELILA. Simson!! (Hyväillen). Kuinka sinä olet hyvä, Simson! — Sano, mitä minä lupaisin! SIMSON. Mitä toivot sinä pojasta? — Sen mukaan on lupaus. DELILA. Ah! (Hilliytyen) Tietysti, tietysti. Mitäkö minä hänestä toivon? Suurta, väkevää sankaria, sellaista kuin — etkö arvaa, Simson…? SIMSON (Hymyillen). Kuinka minä voisin sinun sydämesi arvata! DELILA. Sellaista kuin (kietoo käsivartensa hänen kaulaansa) — ah, sinä Danin sankari! — Mutta mitä minä lupaisin, että hänestä tulisi sellainen? SIMSON (lloaan hilliten). Jospa — jospa lupaisit syntymästä saakka pestä hänet väkevien yrttien mehuissa, voidella hänen jäsenensä parhaimmilla Filistean voiteilla?
  • 87. DELILA (epätietoisena). Niinkö…? — (Katsahtaa Simsonin silmiin). Ei, Simson, ei riitä! Jotain ihmeellistä, suurta ja vaikeata… Neuvo minua, Danin sankari, suuri ja ihmeellinen! SIMSON (jonka on vaikea hillitä itseään, kuin leikiten). Ihmeellistä … suurta … ja vaikeata…? Anna, kun minä ajattelen… (Miettii ristiriitaisena. Kohoutuu äkkiä.) Mitä! Kuulitko? DELILA (joka on myöskin kuullut, kiihtyneenä). En, en mitään kuullut. — Simson! Minä näen sinun silmistäsi, sinä olet sen löytänyt! SIMSON. Jospa … minä ajattelen että jospa… (Kohoaa taas) Aivan varmasti! DELILA (yhä kiihkeämmin). Ei, ei ole ketään. Se on jo sinun huulillasi … minä jo aavistan… SIMSON (levottomana). Jos tekisit pyhän lupauksen, että viiniä ja väkevätä juomaa… (Huomaa orjattaren ovessa). Orjatar! ORJATAR. Minun ruhtinattareni! DELILA (kiivaasti). Mene! (Kiihkeästi Simsonia hyväillen). Viiniä ja väkevätä juomaa… Mitä? Pesenkö minä? Voitelenko? Simson, Simson! SIMSON (kohoten). Ei pidä tuleman hänen huultensa yli. (Orjattareen kääntyen). Mitä? DELILA (hämmentyneenä). Hänen huultensa yli … hänen huultensa yli..?
  • 88. (Ymmärtää. Riemullisesti.) Ikuisesti olen minä sinulle kiitollinen, Simson! (Orjattarelle). En ole sinua kutsunut! (Viittaa menemään.) ORJATAR. Joukko Danin miehiä, minun ruhtinattareni! SIMSON (hämmentyneenä). Danin miehiä!? DELILA (hämmästyneenä). Danin miehiä!! ORJATAR. Olen koettanut estää — SIMSON. Mitä tahtovat he täältä? ORJATAR. Danin sankaria kysyvät he. DELILA (kiivaasti). Ei, ei! Tulkoot huomenna! ORJATAR. Eivät tottele. Tänä yönä, tällä hetkellä sanovat he. SIMSON (kiihtyen). He uskaltavat! DELILA. Heidän täytyy mennä, Simson! Minä olen puhutteleva heitä. SIMSON (raivostuen). Ei! He tulkoot! Minä itse olen heille sanova, niin että heidän pitää tietämän ja ymmärtämän! DELILA. Mahdotonta! (Orjattarelle). Sano: Danin sankari ei ole täällä. SIMSON (yhä enemmän raivostuen). Minä olen täällä! He tulkoot! DELILA. Kuule minua, Simson! Tämä ainoa kerta! Katso minua…
  • 89. Welcome to our website – the perfect destination for book lovers and knowledge seekers. We believe that every book holds a new world, offering opportunities for learning, discovery, and personal growth. That’s why we are dedicated to bringing you a diverse collection of books, ranging from classic literature and specialized publications to self-development guides and children's books. More than just a book-buying platform, we strive to be a bridge connecting you with timeless cultural and intellectual values. With an elegant, user-friendly interface and a smart search system, you can quickly find the books that best suit your interests. Additionally, our special promotions and home delivery services help you save time and fully enjoy the joy of reading. Join us on a journey of knowledge exploration, passion nurturing, and personal growth every day! ebookbell.com