This document describes a proposed method for detecting and classifying brain tumors in MR brain images using robust principal component analysis (RPCA) and quad tree (QT) decomposition for image fusion. The method involves fusing T1 and T2 MRI images using RPCA and QT decomposition. The fused image is then segmented using level set segmentation. Features are extracted from the segmented image using complete local binary pattern (CLBP) and pyramid histogram of oriented gradients (PHOG) approaches. The features are then classified using an adaptive resonance theory (ART) classifier to classify the brain tumor as malignant or benign. The proposed method aims to efficiently fuse multi-modal MRI images for improved brain tumor detection and classification.