This document presents a proposed methodology for microarray image segmentation using clustering techniques. The methodology involves three main steps: preprocessing, gridding, and segmentation. Segmentation is performed using an enhanced fuzzy c-means clustering algorithm (EFCMC) that uses neighborhood pixel information and gray levels. EFCMC can accurately detect absent spots and is tolerant to noise. The methodology is tested on real microarray images and its segmentation quality is assessed using a quality index. Results show EFCMC improves the quality index compared to k-means clustering and fuzzy c-means clustering.