This document describes a comparative analysis of GUI-based machine learning approaches for predicting Parkinson's disease. It analyzes various machine learning algorithms including logistic regression, decision trees, support vector machines, random forests, k-nearest neighbors, and naive Bayes. The document discusses data preprocessing techniques like variable identification, data validation, cleaning and preparing. It also covers data visualization and evaluating model performance using accuracy calculations. The goal is to compare the performance of these machine learning algorithms and identify the approach that predicts Parkinson's disease with the highest accuracy based on a given hospital dataset.