This document presents a study that uses machine learning techniques to predict crime rates. Specifically, it aims to analyze crime data using supervised machine learning classification algorithms like decision trees, support vector machines, logistic regression, k-nearest neighbors, and random forests. The document outlines collecting and preprocessing crime data, selecting relevant features, training models on a portion of the data and testing them on the remaining data. It finds that random forest achieved the best prediction accuracy compared to other algorithms tested. The goal is to help law enforcement agencies better predict and reduce crime rates by analyzing historical crime data patterns.