This document presents a novel method for classifying brain MRI images as normal or abnormal using tumor detection. The method first uses wavelet transforms to extract features from images. It then applies principal component analysis to reduce the feature dimensions. The reduced features are input to a kernel support vector machine for classification. A k-fold cross validation strategy is used to enhance the generalization of the support vector machine model. The proposed system takes MRI brain images as input, detects any tumors by highlighting the affected area, and specifies tumor characteristics like dimensions and type (benign or malignant).