SlideShare a Scribd company logo
1 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, 
Institute of Computer Science – FORTH , Greece 
Tzanina Saveta, 
Institute of Computer Science – FORTH , Greece 
Irini Fundulaki, 
Institute of Computer Science – FORTH , Greece 
Melanie Herschel, 
Inria 
ISWC 2014 , October 19th, Riva del Garda, Italy 
http://www.ics.forth.gr/isl/BenchmarksTutorial/
2 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Teaser Slide 
•We will talk about Benchmarks 
•Benchmarks are generally a set of tests to assess computer systems’ performances 
•Specifically we will talk about: Instance Matching (IM) Benchmark for Linked Data.
3 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview 
•Introduction into Linked Data 
•Instance Matching 
•Benchmarks for Linked Data 
–Why Benchmarks? 
–Benchmarks Characteristics 
–Benchmarks Dimensions 
•Benchmarks in the literature 
–Synthetic Benchmarks 
–Real Benchmarks 
–Isolated Benchmarks 
•Outcomes & Conclusions
4 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Linked Data - The LOD Cloud 
Media 
Government 
Geographic 
Publications 
User-generated 
Life sciences 
Cross-domain
5 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Linked Data – The LOD Cloud 
*Adapted from Suchanek & Weikum tutorial@SIGMOD 2013 
Same entity can be described in different sources
6 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Different Descriptions of Same Entity in Different Sources 
"Riva del Garda description in GeoNames" 
"Riva del Garda description in DBPedia"
7 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview 
•Introduction into Linked Data 
•Instance Matching 
•Benchmarks for linked Data 
–Why Benchmarks? 
–Benchmarks Characteristics 
–Benchmarks Dimensions 
•Benchmarks in the literature 
–Benchmarks with synthetic dataset 
–Benchmarks with real dataset 
–Individually created Benchmarks 
•Outcomes & Conclusions
8 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Instance Matching: the cornerstone for Linked Data 
data acquisition 
data evolution 
data integration 
open/social data 
How can we automatically recognize multiple mentions of the same entity across or within sources? = Instance Matching
9 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Instance Matching 
•Problem has been considered for more than half a decade in Computer Science [EIV07] 
•Traditional instance matching over relational data (known as record linkage) 
Title 
Genre 
Year 
Director 
Troy 
Action 
2004 
Petersen 
Troj 
History 
Petersen 
contradiction 
missing value 
Nicely and homogeneously structured data. 
 Value variations 
Dense data. 
Typically few sources compared
10 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Web Data Instance Matching « The Early Days » 
•IM algorithms for semi-structured XML model used to represent and exchange data. 
m1,movie 
t1,title 
s1,set 
a11, actor 
a12, 
actor 
Troy 
Brad 
Pitt 
Eric Bana 
m2,movie 
t2,title 
s2,set 
a21, actor 
a22, 
actor 
Troja 
Brad 
Pit 
Erik Bana 
a23, actor 
Brian Cox 
y1,year 
2004 
y2,year 
04 
Solutions assume one common schema 
Structural variation 
Dense data
11 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Instance Matching Today 
RDF triples  graph 
*Adapted from Suchanek & Weikum tutorial@SIGMOD 2013 
Sparse data 
Many sources to match 
Rich semantics 
Value 
Structure 
Logical variations
12 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Need for IM techniques 
•Continuously increasing number of datasets published in the LOD Cloud 
•People interconnect their dataset with existing ones. 
–These links are often manually curated (or semi-automatically generated). 
•Size and number of data sets is huge, so it is vital to automatically detect additional links : making the graph more dense.
13 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Benchmarking 
Instance matching research has led to the development of various systems. 
–How to compare these? 
–How can we assess their performance? 
–How can we push the systems to get better? 
 These systems need to be benchmarked!
14 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview 
•Introduction into Linked Data 
•Instance Matching 
•Benchmarks for linked Data 
–Why Benchmarks? 
–Benchmarks Characteristics 
–Benchmarks Dimensions 
•Benchmarks in the literature 
–Benchmarks with synthetic dataset 
–Benchmarks with real dataset 
–Individually created Benchmarks 
•Outcomes & Conclusions
15 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Benchmarking 
•Benchmarking from a philosophical point of view is: 
“the practice of being humble enough to admit that someone else is better at something, and wise enough to try to learn how to match and even surpass them at it.” [American Productivity & Quality Centre, 1993] 
•A domain specific Benchmark is: 
“A Benchmark specifies a workload characterizing typical applications in the specific domain. The performance of this workload of various computer systems gives a rough estimate of their relative performance on that problem domain”[G92]
16 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Instance Matching Benchmark Ingredients [FLM08] 
•Datasets 
The raw material of the benchmarks. These are the source and the target dataset that will be matched together to find the links 
•Ground Truth / Gold Standard / Reference Alignment 
The “correct answer sheet” used to judge the completeness and soundness of the instance matching algorithms. 
•Metrics 
The performance metric(s) that determine the systems behavior and performance 
•Organized into test cases each addressing different kind of requirements: 
•Source dataset 
•Target dataset 
•Ground Truth
17 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Datasets 
Real vs. Synthetic dataset 
Same vs. Different schemas 
Domain dependent / independent 
Multiple Languages
18 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Real vs. Synthetic Benchmarks 
Real datasets (in whole or part of it): 
–Real Realistic conditions for heterogeneity problems 
–Realistic distributions 
–Error prone Ground Truth 
Synthetic (variations added into the datasets): 
–Fully controlled test conditions 
–Accurate Gold Standards 
–Unrealistic distributions 
–Systematic heterogeneity problems
19 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Ground Truth 
Gold Standard vs. Reference Alignment 
Pairs of matched instances vs. Clusters of matching instances 
Represenation (owl:sameAs / skos:exactMatch)
20 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Metrics: Recall / Precision / F-measure 
Gold Standard 
Result set 
Recall r = TP / (TP + FN) 
Precision p = TP / (TP + FP) 
F-measure f = 2 * p * r / (p + r) 
True Positive (TP) 
False Positive (FP) 
False Negative (FN)
21 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Data Variations 
Value Variations 
Structural Variations 
Logical Variations 
Combination of the variations 
Multilingual variations
22 
Variations 
Value 
- Random Character addition/ deletion 
- Token addition/deletion/shuffle 
- Change date/gender/number format 
- Name style abbreviation 
- Synonym Change 
- Multilingualism 
Structural 
-Change property depth 
-Delete/Add property 
-Split property values 
-Transformation of object to data type property 
-Transformation of data to object type property 
Logical 
-Delete/Modify Class Assertions -Invert property assertions -Change property hierarchy -Assert disjoint classes 
[FMN+11] 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta
23 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Benchmark Characteristics 
Systematic Procedure 
matching tasks are reproducible and the execution has to be comparable 
Availability 
related to the availability of the benchmark in time. 
Quality 
Precise evaluation rules and high quality ontologies 
Equity 
no system privileged during the evaluation process 
Dissemination 
How many systems have used this benchmark to be evaluated with 
Volume 
How many instances did the datasets contain 
Ground Truth 
existence of ground truth (Gold Standard/Reference Alignment) and it’s accuracy.
24 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Benchmarks Systems 
•Instance matching techniques have, until recently, been benchmarked in an ad-hoc way. 
•There does not exist a standard way of benchmarking the performance of the systems, when it comes to Linked Data. 
•On the other hand, IM benchmarks have been mainly driven forward by the Ontology Alignment Evaluation Initiative (OAEI)
25 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Ontology Alignment Evaluation Initiative 
•OAEI provides a family of data integration benchmarks 
•Since 2005, OAEI organizes an annual campaign aiming at evaluating ontology matching solutions 
•In 2009, OAEI introduced the Instance Matching (IM) Track 
–focuses on the evaluation of different instance matching techniques and tools for Linked Data
26 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview 
•Introduction into Linked Data 
•Instance Matching 
•Benchmarks for linked Data 
–Why Benchmarks? 
–Benchmarks Characteristics 
–Benchmarks Dimensions 
•Benchmarks in the literature 
–Synthetic Benchmarks 
–Real Benchmarks 
–Isolated Benchmarks 
•Outcomes & Conclusions
27 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Synthetic Benchmarks 
OAEI IIMB 2009 
OAEI IIMB 2010 
OAEI Persons- Restaurants 2010 
OAEI IIMB 2011 
Sandbox 2012 
OAEI IIMB 2012 
OAEI RDFT 
2013 
SWING
28 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
OAEI IIMB (2009) [EFH+09] 
First attempt to create IM benchmark a with synthetic dataset 
•Datasets 
–OKKAM project containing actors, sport persons, and business firms 
–Domain independent 
–Number of instances up to ~200 
–Shallow ontology max depth=2 
–Small RDF /OWL ontology comprised of 6 classes, 47 data type properties 
•TestCases (Divided into 37 test cases) 
–Test case 2-10 including value variations (Typographical errors, Use of different formats) 
–Test case 11-19 including structural variations (Property deletion, Change property types) 
–Test case 20-29 including logical variations (subClass of assertions, Modify class assertions) 
–Test case 30-37 including Combination of the above 
•Ground Truth 
–Automatically created gold standard
29 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Value Variations IIMB 2009 
Property 
Original Instance 
Transformed Instance 
type 
“Actor” 
“Actor” 
Wikipedia- name 
“James Anthony Church” 
“qJaes Anthnodziurcdh” 
name 
“Tony Church” 
“Toty fCurch” 
description 
“James Anthony Church (Tony Church) (May 11, 1930 - March 25, 2008) was a British Shakespearean actor, who has appeared on stage and screen” 
“Jpes Athwobyi tuscr(nTons Courh)pMa y1sl1,9 3i- mrc 25, 200hoa s Bahirtishwaksepearna ctdor, woh hmwse appezrem yo nytmlaenn dscerepnq” 
Typographical Errors
30 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Structural Variations IIMB 2009 
Original Instance 
Transformed Insance 
type (uri1, “Actor”) 
type (uri2, “Actor”) 
cogito-Name (uri1, “Wheeler Dryden”) 
cogito-Name (uri2, “Wheeler Dryden”) 
cogito-first_sentence (uri1, “George Wheeler Dryden (August 31, 1892 in London - September 30, 1957 in Los Angeles) was an English actor and film director, the son of Hannah Chaplin and” ...) 
cogito-first_sentence (uri2,uri3) 
hasDataValue (uri3, “George Wheeler Dryden (August 31, 1892 in London - September 30, 1957 in Los Angeles) was an English actor and film director, the son of Hannah Chaplin and” ...) 
cogito-tag (uri1, “Actor”) 
cogito-tag (uri2,uri4) 
hasDataValue (uri4, “Actor”) 
*Triples in the form of property (subject ,object)
31 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Logical Variations IIMB 2009 
Property name 
Original instance 
Transformed instance 
type 
“Sportsperson” 
owl:Thing 
wikipedia-name 
“Sammy Lee” 
“Sammy Lee” 
cogito-first_sentence 
“Dr. Sammy Lee (born August 1, 1920 in Fresno, California) is the first Asian American to win an Olympic gold…” 
“Dr. Sammy Lee (born August 1, 1920 in Fresno, California) is the first Asian American to win an Olympic gold …” 
cogito-tag 
“Sportperson” 
“Sportperson” 
cogito-domain 
“Sport” 
“Sport “ 
Sportsperson subClassOf Thing 
*Triples in the form of property, object
32 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Gold Standard IIMB 2009 
–RDF/XML file 
–Pairs of mapped instances 
–Contains mappings in the form of <Cell> 
<Cell> 
<entity1 rdf:resource=“http://www.okkam.org/ens/id1"/> 
<entity2 rdf:resource=“http://islab.dico.unimi.it/iimb/abox.owl#ID3"/> 
<measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">1.0</measure> <relation>=</relation> 
</Cell>
33 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Systems- Results IIMB 2009 
*Source OAEI 2009 http://oaei.ontologymatching.org/2009/results/oaei2009.pdf 
Balanced benchmark - shows both good and bad results from systems.
34 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview IIMB 2009 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations (limited) 
Multilinguality 
Variations 
~200 
6
35 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
OAEI IIMB (2010) [EFM+10] 
•Datasets 
–Freebase Ontology- Domain independent. 
–Implemented in small version with ~ 350 instances and large version with ~ 1400 instances 
–OWL ontologies consisting of 29 classes (81 for large), 32 object prop, 13 data prop. 
–Shallow ontology with max depth=3 
•Test cases (divided into 80 test cases) 
–Test cases 1-20 containing Value variations (all types of variations) 
–Test cases 21-40 containing Structural variations (all types of variations) 
–Test cases 41-60 containing Logical variations (all types of variations) 
–Test cases 61-80 Combination of the above 
•Ground Truth 
–Automatically created Gold Standards (same format as IIMB 2009) 
–Created using the SWING Tool [FMN+11]
36 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Value Variations IIMB (2010) 
Variation 
Original Instance 
Transformed instance 
Typographical errors 
“Luke Skywalker” 
“L4kd Skiwaldek” 
Date Format 
1948-12-21 
December 21, 1948 
Name Format 
“Samuel L. Jackson” 
“Jackson, S.L.” 
Gender Format 
“Male” 
“M” 
Synonyms 
“Jackson has won multiple awards(...).” 
“Jackson has gained several prizes (…).” 
Integer 
10 
110 
Float 
1.3 
1.30
37 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Structural Variations IIMB (2010)[FMN+11] 
Original Instance 
Transformed Instance 
name (uri1, “Natalie Portman”) 
name (uri3, “Natalie”) 
name (uri3, “Portman”) 
born_in (uri1, uri2) 
born_in (uri3, uri4) 
name (uri2, “Jerusalem”) 
name (uri4, “Jerusalem”) 
name (uri4, “Aukland”) 
gender (uri1, “Female”) 
obj_gender( uri3 , uri5) 
date_of_birth(uri1, “1981-06-09”) 
has_value(uri5, “Female”) 
*Triples in the form of property( subject, object)
38 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Logical Variations IIMB (2010) 
Original Values 
Transformed values 
Character(uri1) 
Creature(uri4) 
Creature(uri2) 
Creature(uri5) 
Creature(uri3) 
Thing(uri6) 
created_by(uri1,uri2) 
creates(uri5,uri4) 
acted_by(uri1,uri3) 
featuring(uri4,uri6) 
name(uri1, “Luke Skywalker”) 
name(uri4, “Luke Skywalker”) 
name(uri1, “George Lucas”) 
name(uri4, “George Lucas”) 
name(uri1, “Mark Hamill”) 
name(uri4, “Mark Hamill”) 
Character subClassOf Creature created_by inverseOf creates acted_by subPropertyOf featuring Creature subClassOf Thing 
*Triples in the form of property( subject, object)
39 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Systems Results OAEI 2010 (large version) 
*Source OAEI 2010 Results http://disi.unitn.it/~p2p/OM-2010/oaei10_paper0.pdf 
The closer to the reality it comes, the more challenging it gets.
40 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview IIMB 2010 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
~ 1400 
3
41 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
OAEI Persons & Restaurants Benchmark (2010) [EFM+10] 
First Benchmark that includes the clustering matchings (1-n matchings) 
•Datasets 
–Febrl project about Persons 
–Fodor’s and Zagat’s restaurant guides about Restaurants 
–Domain specific Datasets 
–Same Schemata 
•TestCases (Small number of instances) 
–Person 1 ~500 instances (Max. 1 mod./property) 
–Person 2 ~600 instances (Max 3 mod./property and max 10 mod./instance) 
–Restaurant ~860 instances (no known number of modifications) 
•Variations 
–Combination of Value and Structural variations (all types of variations) 
•Ground Truth 
–Automatically created gold standard (same format as IIMB 2009) 
–1-N matching in Person 2
42 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Systems Results PR 2010 
*Source OAEI 2010 Results http://disi.unitn.it/~p2p/OM-2010/oaei10_paper0.pdf 
F-Measure 
1. The more variations are added the worse the systems perform 
2. Some systems could not cope with 1-n mappings requirement
43 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview PR 2010 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
~860 
6
44 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
OAEI IIMB (2011) [EHH+11] 
•Datasets 
–Freebase Ontology- Domain independent. 
–OWL ontologies consisting of 29 concepts, 20 object properties, 12 data properties 
–~4000 instances 
•Testcases (Divided into 80 test cases) 
–Divided into 80 test cases 
–Test cases 1-20 containing Value variations (all types of variations) 
–Test cases 21-40 containing Structural variations (all types of variations) 
–Test cases 41-60 containing Logical variations (all types of variations) 
–Test cases 61-80 Combination of the above 
•Ground Truth 
–Automatically created Gold Standard (same format as IIMB 2009) 
–Created using the SWING Tool
45 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
System Results IIMB 2011 
Test 
Precision 
F-measure 
Recall 
001–010 
0.94 
0.84 
0.76 
011–020 
0.94 
0.87 
0.81 
021–030 
0.89 
0.79 
0.70 
031–040 
0.83 
0.66 
0.55 
041–050 
0.86 
0.72 
0.62 
051–060 
0.83 
0.72 
0.64 
061–070 
0.89 
0.59 
0.44 
071–080 
0.73 
0.33 
0.21 
CODI system results 
The closer to the reality it comes, the more challenging it gets.
46 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview IIMB 2011 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
~4000 
1
47 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
OAEI Sandbox (2012) [AEE+12] 
•Datasets 
–Freebase Ontology- Domain independent 
–Collection of OWL files consisting of 31 concepts, 36 object properties, 13 data properties 
–~375 instances 
•Test cases (Divided into 10 test cases) 
–Divided into 10 test cases containing Value Variations 
•Ground Truth 
–Automatically created Gold Standard (same format as IIMB 2009) 
Attracted new systems to participate in instance matching task
48 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Systems Results Sandbox 2012 
Systems/Results 
Precision 
Recall 
F- Measure 
LogMap 
0.94 
0.94 
0.94 
LogMap Lite 
0.95 
0.89 
0.92 
SBUEI 
0.95 
0.98 
0.96 
Simple tests – Very good Results
49 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview Sandbox 2012 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
3 
~375
50 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
OAEI IIMB (2012) [AEE+12] 
Enhanced Sandbox Benchmarks 
•Datasets 
–Freebase Ontology- Domain independent 
–No information about classes and instances 
•Test Cases 
–Divided into 80 test cases 
–Test cases 1-20 containing Value variations 
–Test cases 21-40 containing Structural variations 
–Test cases 41-60 containing Logical variations 
–Test cases 61-80 Combination of the above 
•Ground Truth 
–Automatically created Gold Standard (same format as IIMB 2009) 
–Generated using the SWING Tool
51 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
IIMB 2012 Systems & Results 
*Source OAEI 2012 Results http://oaei.ontologymatching.org/2012/results/oaei2012.pdf 
Slight drop on F-measure when combination of variations occur
52 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview IIMB 2012 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
4
53 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
OAEI RDFT (2013) [GDE+13] 
First synthetic Benchmark with language variations 
First synthetic Benchmark with Blind Evaluation 
•Datasets 
–RDF benchmark created by extracting data from DBPedia – Domain independent 
–430 instances, 11 RDF properties and 1744 triples 
–Use of same schemata 
•Test Cases 
–Divided into 5 test cases 
–Test case 1 contains Value variations 
–Test case 2 contains Structural variations 
–Test case 3 contains Language variations for comments and labels (English – French) 
–Test case 4 contains combinations of the above variations 
–Test case 5 contains combinations of the above variations 
•Ground Truth 
–Automatically created Gold Standard (same format as IIMB 2009) 
–Cardinality 1-n matchings for test case 5
54 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
*Source OAEI 2013 Results http://ceur-ws.org/Vol-1111/oaei13_paper0.pdf 
RDFT Systems - Results 
1.Systems can cope with multilingualism 
2.Slight drop of the F-measure for cluster mappings (apart from RiMOM)
55 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview RDFT 2013 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
~430 
4
56 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Semantic Web Instance Generation (SWING 2010) [FMN+11] 
Semi-automatic generator of IM Benchmarks 
•Contributed in the generation of IIMB Benchmarks of OAEI in 2010, 2011 and 2012 
•Freely available (https://code.google.com/p/swing-generator/) 
•Variations allowed 
–All kind of variations (apart from Multilingualism) 
•Ground Truth 
–Automatically created Gold Standard
57 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
SWING phases 
Data Acquisition 
•Data Selection 
•Ontology Enrichment 
Data Transformation 
•All kinds of variations 
•Combination 
Data Evaluation 
•Creation of Gold Standard 
•Testing
58 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview SWING 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
3
59 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Comparison of synthetic Benchmarks 
IIMB 2009 
IIMB 2010 
PR 
2010 
IIMB 2011 
Sandbox 
2012 
IIMB 2012 
RDFT 
2013 
SWING 
2010 
Systematic Procedure 
Quality 
Equity 
Availability 
Volume 
Dissemination 
Ground Truth 
Value variations 
Structural variations 
Logical variations 
Multilinguality 
Blind Evaluations 
1-n Mappings 
~430 
4 
3 
4 
3 
~375 
~4000 
1 
~860 
6 
~ 1400 
3 
~200 
6
60 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview 
•Introduction into Linked Data 
•Instance Matching 
•Benchmarks for linked Data 
–Why Benchmarks? 
–Benchmarks Characteristics 
–Benchmarks Dimensions 
•Benchmarks in the literature 
–Synthetic Benchmarks 
–Real Benchmarks 
–Isolated Benchmarks 
•Outcomes & Conclusions
61 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Real Benchmarks 
ARS (OAEI 2009) 
VLCR (OAEI 2009) 
DI (OAEI 2010) 
DI-NYT 
(OAEI 2011)
62 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
AKT-Rexa-DBLP (ARS - OAEI 2009) [EFH+09] 
•Datasets 
–AKT-Eprints archive - information about papers produced within the AKT project. 
–Rexa dataset- computer science research literature, people, organizations, venues and research communities data 
–SWETO-DBLP dataset - publicly available dataset listing publications from the computer science domain. 
–All three datasets were structured using the same schema - SWETO-DBLP ontology 
–Domain dependent 
•Test cases (Value/Structural variations) 
–AKT / Rexa 
–AKT /DBLP 
–Rexa / DBLP 
•Challenges 
– Many instances (almost 1M instances) 
– Ambiguous labels (person names and paper titles) and 
– Noisy data (some sources contained incorrect information)
63 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
ARS Data Statistics 
•Dataset Statistics 
–AKT-Eprints: 564-foaf: Persons and 283-sweto:Publications 
–Rexa : 11.050-foaf: Persons and 3.721-sweto:Publications 
–SWETO-DBLP : 307.774-foaf: Persons and 983.337-sweto:Publications 
•Ground Truth 
–Manually constructed - Error prone Reference Alignment 
–AKT-REXA contains 777 overall mappings 
–AKT-DBLP contains 544 overall mappings 
–REXA-DBLP contains 1540 overall mappings
64 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
ARS Systems & Results 
*Source OAEI results 2009 http://ceur-ws.org/Vol-551/oaei09_paper0.pdf 
1.Scalability issues from some the systems 
2.Structural variations in names of Persons lower the F-measure of systems
65 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview ARS 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Reference Alignment 
Variations 
~1M 
5
66 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Very Large Crosslingual Resources (OAEI 2008-2009) [EFH+09] 
First attempt to interlink sources with different languages 
•Datasets 
–Thesaurus of the Netherlands Institute for Sound and Vision (GTAA- National television thesaurus) in SKOS representation 
–English WordNet from Princeton University (Lexical database of English. Nouns, verbs, adjectives and adverbs) in RDF/OWL representation 
–DBPedia - Extracted structured information from Wikipedia - RDF/OWL representation 
•Dataset Statistics 
–GTAA : 27.000 Names, 14.000 Locations, 97.000 Persons, and 3.800 Subject keywords 
–WordNet : 117.000 synsets 
–DBPedia: 2.18 M "things"
67 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
VLCR Test cases 
•Test Cases 
–GTAA Names 
–GTAA Locations 
–GTAA Persons 
–GTAA Subject keywords 
–GTAA Names 
–GTAA Locations 
–GTAA Persons 
–GTAA Subject keywords 
•Ground Truth 
–Manually curated (links in the form of <skos:exactMatch>) 
–Small and error prone Reference Alignment 
–Precision: random sample of 71-97 mappings from each GTAA facet in each alignment manually assessed 
–Recall: Reference Alignment of 100 mappings for Subject keywords per alignment 
DBPedia Things 
Wordnet synsets
68 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
VCRL Results 
*Source OAEI results 2009 http://ceur-ws.org/Vol-551/oaei09_paper0.pdf 
Difficult to judge whether the problem of the bad results is due to the systems or because of the small and error prone Reference Alignment.
69 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview VLCR 2009 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Small Reference Alignment 
~2M 
2
70 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Data Interlinking (OAEI 2010) [EFM+10] 
The first real Benchmark that contained semi-automatically created 
reference alignments 
•Datasets 
–DailyMed - Provides marketed drug labels containing 4308 drugs 
–Diseasome - Contains information about 4212 disorders and genes 
–DrugBank - Is a repository of more than 5900 drugs approved by the US Federal Drugs Agency 
–SIDER - Contains information on marketed medicines (996 drugs) and their recorded adverse drug reaction (4192 side effects). 
•Reference Alignments 
– Semi-automatically created reference alignments 
– Running the test with Silk and LinQuer systems 
– In the form of pairs of matched instances (same as in IIMB 2009)
71 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
DI Results 
*Source OAEI 2010 Results http://disi.unitn.it/~p2p/OM-2010/oaei10_paper0.pdf 
1.Providing a reliable mechanism for systems’ evaluation 
2.Improving the performances of matching systems
72 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview DI 2010 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Reference Alignment 
Variations 
~6000 
2
73 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Data Integration (OAEI 2011) [EHH+11] 
•Datasets (No information about classes and instances) 
–New York Times 
–DBPedia 
–Freebase 
–Geonames 
•Tests cases 
–DBPedia locations 
–DBPedia organizations 
–DBPedia people 
–Freebase locations 
–Freebase organizations 
–Freebase people 
–Geonames 
•Reference Alignments 
–Based on the links present in the datasets 
–Provided matches are accurate but may not be complete 
New York Times Subject headings
74 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Data Integration – New York Times 
People 
Organizations 
Locations 
# NYT resources 
9958 
6088 
3840 
# Links to Freebase 
4979 
3044 
1920 
# Links to DBPedia 
4977 
1949 
1920 
# Links to Geonames 
0 
0 
1789
75 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
DI Results 
*Source OAEI 2010 http://oaei.ontologymatching.org/2010/vlcr/index.html 
1.Good results from all the systems 
2.Well known domain and datasets 
3.No logical variations
76 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview DI 2011 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
3
77 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Comparison of Real Benchmarks 
ARS 
VLCR 2009 
DI 2010 
DI 2011 
Systematic Procedure 
Quality 
Equity 
Availability 
Volume 
Dissemination 
Ground Truth 
Value variations 
Structural variations 
Logical variations 
Multilinguality 
Blind Evaluations 
~1M 
~2M 
~6000 
3 
2 
2 
5
78 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview 
•Introduction into Linked Data 
•Instance Matching 
•Benchmarks for linked Data 
–Why Benchmarks? 
–Benchmarks Characteristics 
–Benchmarks Dimensions 
•Benchmarks in the literature 
–Synthetic Benchmarks 
–Real Benchmarks 
–Isolated Benchmarks 
•Outcomes & Conclusions
79 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Isolated Benchmarks 
ONTOBI 
OpenPhacts
80 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
ONTOlogy matching Benchmark with many Instances (ONTOBI) [Z10] 
Synthetic Benchmark 
•Datasets 
–RDF/OWL benchmark created by extracting data from DBPedia v. 3.4 
–205 classes, 1144 object properties and 1024 data types properties 
–13.704 instances 
•Divided into 16 Test cases 
•Variations 
–Value variations 
–Structural variations 
–Combination of the above 
•Ground Truth 
–Automatically created Gold Standard
81 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
ONTOBI Variations 
Simple Variations 
Spelling mistakes 
(Value Variations) 
Change format 
(Value Variation) 
Suppressed Comments 
(Structural Variation) 
Delete data types 
(Structural Variation)
82 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
ONTOBI Variations 
Complex Variations 
Flatten/Expand Structure 
(Structural Variation) 
Language modification 
(Value Variation) 
Random names 
(Value Variation) 
Synonyms 
(Value Variation) 
Disjunct Dataset 
(Value Variation)
83 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
ONTOBI Predefined Variations 
Simple tests cases 
OS1: spelling mistakes 
OS2: suppressed comments 
OS3: disjunct dataset 
OS4: another language 
OS5: random names 
OS6: synonyms 
OS7: expanded structure 
OS8: flatten structure
84 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
ONTOBI Predefined Variations 
Complex tests 
(2 mods) 
OC1: spelling mistakes, suppressed comments 
OC2: random names, no datatype 
OC3: synonyms, overlapping datasets 
OC4: flatten structure, overlapping datasets 
Complex tests 
(>3 mods) 
OCC1: spelling mistakes, suppressed comments, no datatype, disjunct datasets 
OCC2: spelling mistakes, synonyms, no data types 
OCC3: synonyms, expanded structure, disjunct data sets, 
OCC4: suppressed comments, changed format, overlapping datasets
85 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
ONTOBI Systems & Results 
MICU system 
*Source K. Zaiß: Instance-Based Ontology Matching and the Evaluation of Matching Systems , 2011, Dissertation
86 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview ONTOBI 2010 
Characteristics 
Systematic Procedure 
Quality 
Equity 
Volume 
Dissemination 
Availability 
Ground Truth 
Value Variations 
Structural Variations 
Logical Variations 
Multilinguality 
Variations 
~13700 
1
87 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Open Pharmacological Space (Open PHACTS) [GGL+12] 
ConceptWiki 
DrugBank 
Gene 
Ontology 
ChemSpider 
ChEBI 
UniProt- SwissProt 
UMLS 
ChEMBL
Instance Matching Benchmarks for Linked Data 89 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
• Creation of sophisticated SPARQL queries for the Identity 
Mapping Service (IMS) 
• Semi-automatic creation of reference alignments, with the 
curation of domain experts 
• Links of <skos:exactMatch> 
Open PHACTS Reference Alignment 
<http://www.conceptwiki.org/concept/4918acc2-23e4-4bea-886b-b167d56f5a72> 
skos:exactMatch <http://www4.wiwiss.fu-berlin.de/drugbank/resource/targets/6511>. 
<http://www.conceptwiki.org/concept/09a60eb9-90f3-4938-92d8-b12133e27716> 
skos:exactMatch <http://www4.wiwiss.fu-berlin.de/drugbank/resource/targets/2686>. 
<http://www.conceptwiki.org/concept/8c847e1b-bf16-45b1-b899-f7403aa70e12> 
skos:exactMatch <http://www4.wiwiss.fu-berlin.de/drugbank/resource/targets/3417>. 
<http://www.conceptwiki.org/concept/39d2926f-10a4-4df2-a946-42912d1942ef> 
skos:exactMatch <http://www4.wiwiss.fu-berlin.de/drugbank/resource/targets/6524>. 
<http://www.conceptwiki.org/concept/ff832b6f-28b0-46e3-b85e-ec7d202ef388>
90 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Systems and Results 
TC1 : ConceptWiki – DrugBank Targets 
TC2 : ConceptWiki – Chemspider 
Results in terms of F-measure 
*Source http://ldbc.eu/sites/default/files/D4.4.1-final.pdf 
1.Bad results of the systems was not due to a problem of systems 
2.Matching methods did only take into consideration string matching 
3.Pharmacology domain is very difficult , because of the gene/drug labels 
4.Needed more sophisticated methods to match the datasets
93 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Overview 
•Introduction into Linked Data 
•Instance Matching 
•Benchmarks for linked Data 
–Why Benchmarks? 
–Benchmarks Characteristics 
–Benchmarks Dimensions 
•Benchmarks in the literature 
–Synthetic Benchmarks 
–Real Benchmarks 
–Isolated Benchmarks 
•Summary and Conclusions
94 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Wrapping up: Benchmarks 
Which benchmarks included multilingual datasets? 
OAEI RDFT 
2013 (French- English) 
VLCR (Dutch- English)
95 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Wrapping up: Benchmarks 
Which benchmarks included value variations into the test cases? 
OAEI IIMB 2009 
OAEI IIMB 2010 
OAEI Persons- Restaurants 2010 
OAEI IIMB 2011 
Sandbox 
OAEI IIMB 2012 
OAEI RDFT 
2013 
SWING 
ARS 
VLCR 
DI 2010 
DI 2011 
ONTOBI 
OpenPHACTS
96 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Wrapping up: Benchmarks 
Which benchmarks included structural variations into the test cases? 
OAEI IIMB 2009 
OAEI IIMB 2010 
OAEI Persons- Restaurants 2010 
OAEI IIMB 2011 
OAEI IIMB 2012 
OAEI RDFT 
2013 
SWING 
ARS 
VLCR 
DI 2010 
DI 2011 
ONTOBI 
OpenPHACTS
97 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Wrapping up: Benchmarks 
Which benchmarks included logical variations into the test cases? 
OAEI IIMB 2009 
OAEI IIMB 2010 
OAEI IIMB 2011 
OAEI IIMB 2012 
SWING
98 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Wrapping up: Benchmarks 
Which benchmarks included combination of the variations into the test cases? 
OAEI IIMB 2009 
OAEI IIMB 2010 
OAEI IIMB 2011 
OAEI IIMB 2012 
SWING
99 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Wrapping up: Benchmarks 
Which benchmarks are more voluminous? 
ARS 
VLCR 
DI 2011 
OpenPHACTS
100 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Wrapping up: Benchmarks 
Which benchmarks included both combination of the variations and was voluminous at the same time? 
None
101 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Open Issues 
Issue 1: 
No IM benchmark tackles both, combination of variations and scalability issues 
Issue 2 : 
No IM benchmark using the full expressiveness of RDF/OWL language 
•Complex class definitions (union, intersection) 
•Cardinality constraints (functional property) 
•Disjointness (properties)
102 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Wrapping Up: Systems for Benchmarks 
Outcomes as far as systems are concerned: 
•Systems can handle the value variations, the structural variation, and the simple logical variations separately. 
•Systems can cope with multilingual datasets 
•More work needed for complex variations (combination of value, structural, and logical) 
•Enhancement of systems to cope with the clustering of the mappings (1-n mappings)
103 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Conclusion 
•Need for benchmarks that will “show the way to the future” to the systems. 
• Standard Organization for IM Benchmarks , in the line of TPC. 
–OAEI not yet an Organizations 
–The Linked Data Benchmark Council (LDBC) is established as an independent authority responsible for specifying benchmarks, benchmarking procedures and verifying/publishing results for software systems designed to manage graph and RDF data. (http://ldbcouncil.org/ )
104 
Questions? Comments? 
Thank you!
105 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
References (1) 
# 
Reference 
Abbreviation 
1 
J. L. Aguirre, K. Eckert, A. F. J. Euzenat, W. R. van Hage, L. Hollink, C. Meilicke, A. N. D. Ritze, F. Scharffe, P. Shvaiko, O. Svab-Zamazal, C. Trojahn, E. Jimenez-Ruiz, B. C. Grau, and B. Zapilko. Results of the ontology alignment evaluation initiative 2012. In OM, 2012. 
[AEE+12] 
2 
I. Bhattacharya and L. Getoor. Entity resolution in graphs. Mining Graph Data. Wiley and Sons, 2006. 
[BG06] 
3 
J. Euzenat, A. Ferrara, L. Hollink, A. Isaac, C. Joslyn, V. Malaise, C. Meilicken, A. Nikolov, J. Pane, M. Sabou, F. Scharffe, P. Shvaiko, V. S. H., Stuckenschmidt, O. Svab-Zamazal, V. Svatek, , C. Trojahn, G. Vouros, and S. Wang. Results of the Ontology Alignment Evaluation Initiative 2009. In OM, 2009. 
[EFH+09] 
4 
J. Euzenat, A. Ferrara, C. Meilicke, J. Pane, F. Schar e, P. Shvaiko, H. Stuckenschmidt, O. Svab- Zamazal, V. Svatek, and C. Trojahn. Results of the Ontology Alignment Evaluation Initiative 2010. In OM, 2010. 
[EFM+10] 
5 
A. F. J. Euzenat, W. R. van Hage, L. Hollink, C. Meilicke, A. N. D. Ritze, F. Scharffe, P. Shvaiko, H. Stuckenschmidt, O. Svab-Zamazal, and C. Trojahn. Results of the Ontology Alignment Evaluation Initiative 2011. In OM, 2011. 
[EHH+11] 
6 
A. K. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate Record Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1), 2007. 
[EIV07] 
7 
J.Euzenat and P. Shvaiko, editors. Ontology Matching. Springer-Verlag, 2007. 
[ES07] 
8 
A. Ferrara, D. Lorusso, S. Montanelli, and G. Varese. Towards a Benchmark for Instance Matching. In OM, 2008. 
[FLM08] 
9 
A. Ferrara, S. Montanelli, J. Noessner, and H. Stuckenschmidt. Benchmarking Matching Applications on the Semantic Web. In ESWC, 2011. 
[FMN+11] 
10 
J. Gray, editor. The Benchmark Handbook for Database and Transaction Systems. Morgan Kaufmann, 1993. 
[G93]
106 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
References (2) 
# 
Reference 
Abbreviation 
11 
B. C. Grau, Z. Dragisic, K. Eckert, A. F. J. Euzenat, R. Granada, V. Ivanova, E. Jimenez-Ruiz, A. O. Kempf, P. Lambrix, A. Nikolov, H. Paulheim, D. Ritze, F. Schare, P. Shvaiko, C. Trojahn, and O. Zamazal. Results of the ontology alignment evaluation initiative 2013. In OM, 2013. 
[GDE+13] 
12 
Gray, A.J.G., Groth, P., Loizou, A., et al.: Applying linked data approaches to pharmacology: Architectural decisions and implementation. Semantic Web. (2012). 
[GGL+12] 
13 
P. Hayes. RDF Semantics. www.w3.org/TR/rdf-mt, February 2004. 
[H04] 
14 
R. Isele and C. Bizer. Learning linkage rules using genetic programming. In OM, 2011. 
[IB11] 
15 
A. Isaac, L. van der Meij, S. Schlobach, and S. Wang. An Empirical Study of Instance-Based Ontology Matching. In ISWC/ASWC, 2007. 
[IMS07] 
16 
E. Ioannou, N. Rassadko, and Y. Velegrakis. On Generating Benchmark Data for Entity Matching. Journal of Data Semantics, 2012. 
[IRV12] 
17 
A. Jentzsch, J. Zhao, O. Hassanzadeh, K.-H. Cheung, M. Samwald, and B. Andersson. Linking open drug data. In Linking Open Data Triplification Challenge, I-SEMANTICS, 2009. 
[JZH+09] 
18 
C. Li, L. Jin, and S. Mehrotra. Supporting ecient record linkage for large data sets using mapping techniques. In WWW, 2006. 
[LJM06] 
19 
D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/, 2004. 
[MH04] 
20 
B. M. F. Manola, E. Miller. RDF Primer. www.w3.org/TR/rdf-primer, February 2004. 
[MM04]
107 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Reference (3) 
# 
Reference 
Abbreviation 
21 
J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt. Leveraging Terminological Structure for Object Reconciliation. In ESWC, 2010. 
[NNM10] 
22 
A. Nikolov, V. Uren, E. Motta, and A. de Roeck. Refining instance coreferencing results using belief propagation. In ASWC, 2008. 
[NUM+08] 
23 
M. Perry. TOntoGen: A Synthetic Data Set Generator for Semantic Web Applications. AIS SIGSEMIS, 2(2), 2005. 
[P05] 
24 
E. Prud'hommeaux and A. Seaborne. SPARQL Query Language for RDF. www.w3.org/TR/rdfsparql- query, January 2008. 
[PS08] 
25 
S. Wang, G. Englebienne, and S.Schlobach: Learning Concept Mappingd from Instance Similarity International Semantic Web Conference 2008: 339-355 
[WES08] 
26 
Williams, A.J., Harland, L., Groth, P., Pettifer, S., Chichester, C., Willighagen, E.L., Evelo, C.T., Blomberg, N., Ecker, G., Goble, C., Mons, B.: Open PHACTS: Semantic interoperability for drug discovery. Drug Discovery Today. 17, 1188–1198 (2012). 
[WHG+12] 
27 
K. Zaiss, S. Conrad, and S. Vater. A Benchmark for Testing Instance-Based Ontology Matching Methods. In KMIS, 2010. 
[Z10] 
28 
Jim Gray. Benchmark Handbook: For Database and Transaction Processing Systems, ISBN:1558601597, 1992 
[G92]
108 
Instance Matching Benchmarks for Linked Data 
Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta 
Acknowledgments & Contact Information 
This work has been funded from the European project 
LDBC (317548) and the European project eHealthMonitor (287509). 
Contact Information: 
Evangelia Daskalaki - eva@ics.forth.gr 
Tzanina Saveta - jsaveta@ics.forth.gr 
Irini Fundulaki - fundul@ics.forth.gr 
Melanie Herschel - melanie.herschel@ipvs.uni-stuttgart.de

More Related Content

PDF
Getting Started with Unstructured Data
PPTX
Unstructured data processing webinar 06272016
PDF
Crowdsourcing Linked Data Quality Assessment
PDF
Amrapali Zaveri Defense
PPTX
Text Analytics Presentation
PPT
Analysis of ‘Unstructured’ Data
PPTX
An Introduction to Text Analytics: 2013 Workshop presentation
PDF
Tutorial Data Management and workflows
Getting Started with Unstructured Data
Unstructured data processing webinar 06272016
Crowdsourcing Linked Data Quality Assessment
Amrapali Zaveri Defense
Text Analytics Presentation
Analysis of ‘Unstructured’ Data
An Introduction to Text Analytics: 2013 Workshop presentation
Tutorial Data Management and workflows

What's hot (20)

PPTX
Semantic Similarity and Selection of Resources Published According to Linked ...
PDF
Linked Data Quality Assessment: A Survey
PPTX
Text Analytics Overview, 2011
PPTX
Popular Text Analytics Algorithms
PPTX
Melissa Informatics - Data Quality and AI
PPT
Predictive Text Analytics
PDF
Phd thesis final presentation
PPTX
Text Analytics for Dummies 2010
PPTX
Elsevier’s Healthcare Knowledge Graph
PPTX
Data Analytics
PPTX
Knowledge graph construction for research & medicine
PPTX
RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...
PPTX
Haystack keynote 2019: What is Search Relevance? - Max Irwin
PPTX
Directed versus undirected network analysis of student essays
PPTX
Data Scientist Salary, Skills, Jobs And Resume | Data Scientist Career | Data...
PDF
NLP Structured Data Investigation on Non-Text
PDF
Price "KBART: improving the supply of data to link resolvers and knowledge ba...
PDF
Provenance and Reuse of Open Data (PILOD 2.0 June 2014)
PDF
Conceptual framework for entity integration from multiple data sources - Draz...
Semantic Similarity and Selection of Resources Published According to Linked ...
Linked Data Quality Assessment: A Survey
Text Analytics Overview, 2011
Popular Text Analytics Algorithms
Melissa Informatics - Data Quality and AI
Predictive Text Analytics
Phd thesis final presentation
Text Analytics for Dummies 2010
Elsevier’s Healthcare Knowledge Graph
Data Analytics
Knowledge graph construction for research & medicine
RecSys 2015 Tutorial - Scalable Recommender Systems: Where Machine Learning m...
Haystack keynote 2019: What is Search Relevance? - Max Irwin
Directed versus undirected network analysis of student essays
Data Scientist Salary, Skills, Jobs And Resume | Data Scientist Career | Data...
NLP Structured Data Investigation on Non-Text
Price "KBART: improving the supply of data to link resolvers and knowledge ba...
Provenance and Reuse of Open Data (PILOD 2.0 June 2014)
Conceptual framework for entity integration from multiple data sources - Draz...
Ad

Viewers also liked (16)

PPTX
Komputer dalam industri
PDF
Знаки зодиака
PPTX
Cultural activities in Hua Hin
PPTX
Hydrateren door water te drinken
PDF
おいしいソーセージのひみつ
PPTX
Alexis
PPTX
Starten om je goddelijke zelf te ervaren
PPTX
Cultural activities in Hua Hin
PPTX
Komputer dalam industri
PDF
妙高の素材をいかしたデザートを作ろう!(お米編)
PPTX
PPTX
вилијам шекспир
PPTX
Similar artist - Charli XCX
PDF
Accelerated learning Certification Proposal
PPTX
Millennium & copthorne hotels singapore
PPTX
PLN Reflection
Komputer dalam industri
Знаки зодиака
Cultural activities in Hua Hin
Hydrateren door water te drinken
おいしいソーセージのひみつ
Alexis
Starten om je goddelijke zelf te ervaren
Cultural activities in Hua Hin
Komputer dalam industri
妙高の素材をいかしたデザートを作ろう!(お米編)
вилијам шекспир
Similar artist - Charli XCX
Accelerated learning Certification Proposal
Millennium & copthorne hotels singapore
PLN Reflection
Ad

Similar to ISWC 2014 Tutorial - Instance Matching Benchmarks for Linked Data (20)

PDF
Instance Matching Benchmarks for Linked Data - ESWC 2016 Tutorial
PDF
Link Discovery Tutorial Part III: Benchmarking for Instance Matching Systems
PDF
Instance Matching Benchmarks in the ERA of Linked Data - ISWC2017
PPTX
SPIMBENCH: A Scalable, Schema-Aware Instance Matching Benchmark for the Seman...
PPTX
SPIMBENCH: A scalable, Schema-Aware Instance Matching Benchmark for the Seman...
PPTX
SPIMBENCH: A scalable, Schema-Aware Instance Matching Benchmark for the Seman...
PDF
Entity Resolution Using Patient Records at CMMI
PPT
Pragmatic Approaches to the Semantic Web
PDF
Web-scale semantic search
PDF
Introduction about TRECVID (The Video Retreival benchmark)
PPTX
EDF2012 Peter Boncz - LOD benchmarking SRbench
PDF
Instance Search (INS) task at TRECVID
ODP
FOSDEM 2014: Social Network Benchmark (SNB) Graph Generator
PPTX
Linked Open Data (LOD) part 1
PPTX
WebAction In-Memory Computing Summit 2015
PDF
Semantics 2017 - Trying Not to Die Benchmarking using LITMUS
PDF
Fedbench - A Benchmark Suite for Federated Semantic Data Processing
PDF
How well does your Instance Matching system perform? Experimental evaluation ...
PPTX
Linkage in Haze: challenges and take-home messages of crowd-sourcing vaguenes...
PDF
FAIR data_ Superior data visibility and reuse without warehousing.pdf
Instance Matching Benchmarks for Linked Data - ESWC 2016 Tutorial
Link Discovery Tutorial Part III: Benchmarking for Instance Matching Systems
Instance Matching Benchmarks in the ERA of Linked Data - ISWC2017
SPIMBENCH: A Scalable, Schema-Aware Instance Matching Benchmark for the Seman...
SPIMBENCH: A scalable, Schema-Aware Instance Matching Benchmark for the Seman...
SPIMBENCH: A scalable, Schema-Aware Instance Matching Benchmark for the Seman...
Entity Resolution Using Patient Records at CMMI
Pragmatic Approaches to the Semantic Web
Web-scale semantic search
Introduction about TRECVID (The Video Retreival benchmark)
EDF2012 Peter Boncz - LOD benchmarking SRbench
Instance Search (INS) task at TRECVID
FOSDEM 2014: Social Network Benchmark (SNB) Graph Generator
Linked Open Data (LOD) part 1
WebAction In-Memory Computing Summit 2015
Semantics 2017 - Trying Not to Die Benchmarking using LITMUS
Fedbench - A Benchmark Suite for Federated Semantic Data Processing
How well does your Instance Matching system perform? Experimental evaluation ...
Linkage in Haze: challenges and take-home messages of crowd-sourcing vaguenes...
FAIR data_ Superior data visibility and reuse without warehousing.pdf

Recently uploaded (20)

PDF
Encapsulation theory and applications.pdf
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Encapsulation_ Review paper, used for researhc scholars
PPT
Teaching material agriculture food technology
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
Spectroscopy.pptx food analysis technology
PDF
Electronic commerce courselecture one. Pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Encapsulation theory and applications.pdf
Machine learning based COVID-19 study performance prediction
Programs and apps: productivity, graphics, security and other tools
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Encapsulation_ Review paper, used for researhc scholars
Teaching material agriculture food technology
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Network Security Unit 5.pdf for BCA BBA.
Reach Out and Touch Someone: Haptics and Empathic Computing
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
MYSQL Presentation for SQL database connectivity
Diabetes mellitus diagnosis method based random forest with bat algorithm
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Spectroscopy.pptx food analysis technology
Electronic commerce courselecture one. Pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
sap open course for s4hana steps from ECC to s4
Building Integrated photovoltaic BIPV_UPV.pdf
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf

ISWC 2014 Tutorial - Instance Matching Benchmarks for Linked Data

  • 1. 1 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Institute of Computer Science – FORTH , Greece Tzanina Saveta, Institute of Computer Science – FORTH , Greece Irini Fundulaki, Institute of Computer Science – FORTH , Greece Melanie Herschel, Inria ISWC 2014 , October 19th, Riva del Garda, Italy http://www.ics.forth.gr/isl/BenchmarksTutorial/
  • 2. 2 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Teaser Slide •We will talk about Benchmarks •Benchmarks are generally a set of tests to assess computer systems’ performances •Specifically we will talk about: Instance Matching (IM) Benchmark for Linked Data.
  • 3. 3 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview •Introduction into Linked Data •Instance Matching •Benchmarks for Linked Data –Why Benchmarks? –Benchmarks Characteristics –Benchmarks Dimensions •Benchmarks in the literature –Synthetic Benchmarks –Real Benchmarks –Isolated Benchmarks •Outcomes & Conclusions
  • 4. 4 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Linked Data - The LOD Cloud Media Government Geographic Publications User-generated Life sciences Cross-domain
  • 5. 5 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Linked Data – The LOD Cloud *Adapted from Suchanek & Weikum tutorial@SIGMOD 2013 Same entity can be described in different sources
  • 6. 6 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Different Descriptions of Same Entity in Different Sources "Riva del Garda description in GeoNames" "Riva del Garda description in DBPedia"
  • 7. 7 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview •Introduction into Linked Data •Instance Matching •Benchmarks for linked Data –Why Benchmarks? –Benchmarks Characteristics –Benchmarks Dimensions •Benchmarks in the literature –Benchmarks with synthetic dataset –Benchmarks with real dataset –Individually created Benchmarks •Outcomes & Conclusions
  • 8. 8 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Instance Matching: the cornerstone for Linked Data data acquisition data evolution data integration open/social data How can we automatically recognize multiple mentions of the same entity across or within sources? = Instance Matching
  • 9. 9 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Instance Matching •Problem has been considered for more than half a decade in Computer Science [EIV07] •Traditional instance matching over relational data (known as record linkage) Title Genre Year Director Troy Action 2004 Petersen Troj History Petersen contradiction missing value Nicely and homogeneously structured data.  Value variations Dense data. Typically few sources compared
  • 10. 10 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Web Data Instance Matching « The Early Days » •IM algorithms for semi-structured XML model used to represent and exchange data. m1,movie t1,title s1,set a11, actor a12, actor Troy Brad Pitt Eric Bana m2,movie t2,title s2,set a21, actor a22, actor Troja Brad Pit Erik Bana a23, actor Brian Cox y1,year 2004 y2,year 04 Solutions assume one common schema Structural variation Dense data
  • 11. 11 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Instance Matching Today RDF triples  graph *Adapted from Suchanek & Weikum tutorial@SIGMOD 2013 Sparse data Many sources to match Rich semantics Value Structure Logical variations
  • 12. 12 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Need for IM techniques •Continuously increasing number of datasets published in the LOD Cloud •People interconnect their dataset with existing ones. –These links are often manually curated (or semi-automatically generated). •Size and number of data sets is huge, so it is vital to automatically detect additional links : making the graph more dense.
  • 13. 13 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Benchmarking Instance matching research has led to the development of various systems. –How to compare these? –How can we assess their performance? –How can we push the systems to get better?  These systems need to be benchmarked!
  • 14. 14 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview •Introduction into Linked Data •Instance Matching •Benchmarks for linked Data –Why Benchmarks? –Benchmarks Characteristics –Benchmarks Dimensions •Benchmarks in the literature –Benchmarks with synthetic dataset –Benchmarks with real dataset –Individually created Benchmarks •Outcomes & Conclusions
  • 15. 15 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Benchmarking •Benchmarking from a philosophical point of view is: “the practice of being humble enough to admit that someone else is better at something, and wise enough to try to learn how to match and even surpass them at it.” [American Productivity & Quality Centre, 1993] •A domain specific Benchmark is: “A Benchmark specifies a workload characterizing typical applications in the specific domain. The performance of this workload of various computer systems gives a rough estimate of their relative performance on that problem domain”[G92]
  • 16. 16 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Instance Matching Benchmark Ingredients [FLM08] •Datasets The raw material of the benchmarks. These are the source and the target dataset that will be matched together to find the links •Ground Truth / Gold Standard / Reference Alignment The “correct answer sheet” used to judge the completeness and soundness of the instance matching algorithms. •Metrics The performance metric(s) that determine the systems behavior and performance •Organized into test cases each addressing different kind of requirements: •Source dataset •Target dataset •Ground Truth
  • 17. 17 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Datasets Real vs. Synthetic dataset Same vs. Different schemas Domain dependent / independent Multiple Languages
  • 18. 18 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Real vs. Synthetic Benchmarks Real datasets (in whole or part of it): –Real Realistic conditions for heterogeneity problems –Realistic distributions –Error prone Ground Truth Synthetic (variations added into the datasets): –Fully controlled test conditions –Accurate Gold Standards –Unrealistic distributions –Systematic heterogeneity problems
  • 19. 19 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Ground Truth Gold Standard vs. Reference Alignment Pairs of matched instances vs. Clusters of matching instances Represenation (owl:sameAs / skos:exactMatch)
  • 20. 20 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Metrics: Recall / Precision / F-measure Gold Standard Result set Recall r = TP / (TP + FN) Precision p = TP / (TP + FP) F-measure f = 2 * p * r / (p + r) True Positive (TP) False Positive (FP) False Negative (FN)
  • 21. 21 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Data Variations Value Variations Structural Variations Logical Variations Combination of the variations Multilingual variations
  • 22. 22 Variations Value - Random Character addition/ deletion - Token addition/deletion/shuffle - Change date/gender/number format - Name style abbreviation - Synonym Change - Multilingualism Structural -Change property depth -Delete/Add property -Split property values -Transformation of object to data type property -Transformation of data to object type property Logical -Delete/Modify Class Assertions -Invert property assertions -Change property hierarchy -Assert disjoint classes [FMN+11] Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta
  • 23. 23 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Benchmark Characteristics Systematic Procedure matching tasks are reproducible and the execution has to be comparable Availability related to the availability of the benchmark in time. Quality Precise evaluation rules and high quality ontologies Equity no system privileged during the evaluation process Dissemination How many systems have used this benchmark to be evaluated with Volume How many instances did the datasets contain Ground Truth existence of ground truth (Gold Standard/Reference Alignment) and it’s accuracy.
  • 24. 24 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Benchmarks Systems •Instance matching techniques have, until recently, been benchmarked in an ad-hoc way. •There does not exist a standard way of benchmarking the performance of the systems, when it comes to Linked Data. •On the other hand, IM benchmarks have been mainly driven forward by the Ontology Alignment Evaluation Initiative (OAEI)
  • 25. 25 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Ontology Alignment Evaluation Initiative •OAEI provides a family of data integration benchmarks •Since 2005, OAEI organizes an annual campaign aiming at evaluating ontology matching solutions •In 2009, OAEI introduced the Instance Matching (IM) Track –focuses on the evaluation of different instance matching techniques and tools for Linked Data
  • 26. 26 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview •Introduction into Linked Data •Instance Matching •Benchmarks for linked Data –Why Benchmarks? –Benchmarks Characteristics –Benchmarks Dimensions •Benchmarks in the literature –Synthetic Benchmarks –Real Benchmarks –Isolated Benchmarks •Outcomes & Conclusions
  • 27. 27 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Synthetic Benchmarks OAEI IIMB 2009 OAEI IIMB 2010 OAEI Persons- Restaurants 2010 OAEI IIMB 2011 Sandbox 2012 OAEI IIMB 2012 OAEI RDFT 2013 SWING
  • 28. 28 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta OAEI IIMB (2009) [EFH+09] First attempt to create IM benchmark a with synthetic dataset •Datasets –OKKAM project containing actors, sport persons, and business firms –Domain independent –Number of instances up to ~200 –Shallow ontology max depth=2 –Small RDF /OWL ontology comprised of 6 classes, 47 data type properties •TestCases (Divided into 37 test cases) –Test case 2-10 including value variations (Typographical errors, Use of different formats) –Test case 11-19 including structural variations (Property deletion, Change property types) –Test case 20-29 including logical variations (subClass of assertions, Modify class assertions) –Test case 30-37 including Combination of the above •Ground Truth –Automatically created gold standard
  • 29. 29 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Value Variations IIMB 2009 Property Original Instance Transformed Instance type “Actor” “Actor” Wikipedia- name “James Anthony Church” “qJaes Anthnodziurcdh” name “Tony Church” “Toty fCurch” description “James Anthony Church (Tony Church) (May 11, 1930 - March 25, 2008) was a British Shakespearean actor, who has appeared on stage and screen” “Jpes Athwobyi tuscr(nTons Courh)pMa y1sl1,9 3i- mrc 25, 200hoa s Bahirtishwaksepearna ctdor, woh hmwse appezrem yo nytmlaenn dscerepnq” Typographical Errors
  • 30. 30 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Structural Variations IIMB 2009 Original Instance Transformed Insance type (uri1, “Actor”) type (uri2, “Actor”) cogito-Name (uri1, “Wheeler Dryden”) cogito-Name (uri2, “Wheeler Dryden”) cogito-first_sentence (uri1, “George Wheeler Dryden (August 31, 1892 in London - September 30, 1957 in Los Angeles) was an English actor and film director, the son of Hannah Chaplin and” ...) cogito-first_sentence (uri2,uri3) hasDataValue (uri3, “George Wheeler Dryden (August 31, 1892 in London - September 30, 1957 in Los Angeles) was an English actor and film director, the son of Hannah Chaplin and” ...) cogito-tag (uri1, “Actor”) cogito-tag (uri2,uri4) hasDataValue (uri4, “Actor”) *Triples in the form of property (subject ,object)
  • 31. 31 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Logical Variations IIMB 2009 Property name Original instance Transformed instance type “Sportsperson” owl:Thing wikipedia-name “Sammy Lee” “Sammy Lee” cogito-first_sentence “Dr. Sammy Lee (born August 1, 1920 in Fresno, California) is the first Asian American to win an Olympic gold…” “Dr. Sammy Lee (born August 1, 1920 in Fresno, California) is the first Asian American to win an Olympic gold …” cogito-tag “Sportperson” “Sportperson” cogito-domain “Sport” “Sport “ Sportsperson subClassOf Thing *Triples in the form of property, object
  • 32. 32 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Gold Standard IIMB 2009 –RDF/XML file –Pairs of mapped instances –Contains mappings in the form of <Cell> <Cell> <entity1 rdf:resource=“http://www.okkam.org/ens/id1"/> <entity2 rdf:resource=“http://islab.dico.unimi.it/iimb/abox.owl#ID3"/> <measure rdf:datatype="http://www.w3.org/2001/XMLSchema#float">1.0</measure> <relation>=</relation> </Cell>
  • 33. 33 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Systems- Results IIMB 2009 *Source OAEI 2009 http://oaei.ontologymatching.org/2009/results/oaei2009.pdf Balanced benchmark - shows both good and bad results from systems.
  • 34. 34 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview IIMB 2009 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations (limited) Multilinguality Variations ~200 6
  • 35. 35 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta OAEI IIMB (2010) [EFM+10] •Datasets –Freebase Ontology- Domain independent. –Implemented in small version with ~ 350 instances and large version with ~ 1400 instances –OWL ontologies consisting of 29 classes (81 for large), 32 object prop, 13 data prop. –Shallow ontology with max depth=3 •Test cases (divided into 80 test cases) –Test cases 1-20 containing Value variations (all types of variations) –Test cases 21-40 containing Structural variations (all types of variations) –Test cases 41-60 containing Logical variations (all types of variations) –Test cases 61-80 Combination of the above •Ground Truth –Automatically created Gold Standards (same format as IIMB 2009) –Created using the SWING Tool [FMN+11]
  • 36. 36 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Value Variations IIMB (2010) Variation Original Instance Transformed instance Typographical errors “Luke Skywalker” “L4kd Skiwaldek” Date Format 1948-12-21 December 21, 1948 Name Format “Samuel L. Jackson” “Jackson, S.L.” Gender Format “Male” “M” Synonyms “Jackson has won multiple awards(...).” “Jackson has gained several prizes (…).” Integer 10 110 Float 1.3 1.30
  • 37. 37 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Structural Variations IIMB (2010)[FMN+11] Original Instance Transformed Instance name (uri1, “Natalie Portman”) name (uri3, “Natalie”) name (uri3, “Portman”) born_in (uri1, uri2) born_in (uri3, uri4) name (uri2, “Jerusalem”) name (uri4, “Jerusalem”) name (uri4, “Aukland”) gender (uri1, “Female”) obj_gender( uri3 , uri5) date_of_birth(uri1, “1981-06-09”) has_value(uri5, “Female”) *Triples in the form of property( subject, object)
  • 38. 38 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Logical Variations IIMB (2010) Original Values Transformed values Character(uri1) Creature(uri4) Creature(uri2) Creature(uri5) Creature(uri3) Thing(uri6) created_by(uri1,uri2) creates(uri5,uri4) acted_by(uri1,uri3) featuring(uri4,uri6) name(uri1, “Luke Skywalker”) name(uri4, “Luke Skywalker”) name(uri1, “George Lucas”) name(uri4, “George Lucas”) name(uri1, “Mark Hamill”) name(uri4, “Mark Hamill”) Character subClassOf Creature created_by inverseOf creates acted_by subPropertyOf featuring Creature subClassOf Thing *Triples in the form of property( subject, object)
  • 39. 39 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Systems Results OAEI 2010 (large version) *Source OAEI 2010 Results http://disi.unitn.it/~p2p/OM-2010/oaei10_paper0.pdf The closer to the reality it comes, the more challenging it gets.
  • 40. 40 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview IIMB 2010 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations ~ 1400 3
  • 41. 41 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta OAEI Persons & Restaurants Benchmark (2010) [EFM+10] First Benchmark that includes the clustering matchings (1-n matchings) •Datasets –Febrl project about Persons –Fodor’s and Zagat’s restaurant guides about Restaurants –Domain specific Datasets –Same Schemata •TestCases (Small number of instances) –Person 1 ~500 instances (Max. 1 mod./property) –Person 2 ~600 instances (Max 3 mod./property and max 10 mod./instance) –Restaurant ~860 instances (no known number of modifications) •Variations –Combination of Value and Structural variations (all types of variations) •Ground Truth –Automatically created gold standard (same format as IIMB 2009) –1-N matching in Person 2
  • 42. 42 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Systems Results PR 2010 *Source OAEI 2010 Results http://disi.unitn.it/~p2p/OM-2010/oaei10_paper0.pdf F-Measure 1. The more variations are added the worse the systems perform 2. Some systems could not cope with 1-n mappings requirement
  • 43. 43 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview PR 2010 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations ~860 6
  • 44. 44 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta OAEI IIMB (2011) [EHH+11] •Datasets –Freebase Ontology- Domain independent. –OWL ontologies consisting of 29 concepts, 20 object properties, 12 data properties –~4000 instances •Testcases (Divided into 80 test cases) –Divided into 80 test cases –Test cases 1-20 containing Value variations (all types of variations) –Test cases 21-40 containing Structural variations (all types of variations) –Test cases 41-60 containing Logical variations (all types of variations) –Test cases 61-80 Combination of the above •Ground Truth –Automatically created Gold Standard (same format as IIMB 2009) –Created using the SWING Tool
  • 45. 45 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta System Results IIMB 2011 Test Precision F-measure Recall 001–010 0.94 0.84 0.76 011–020 0.94 0.87 0.81 021–030 0.89 0.79 0.70 031–040 0.83 0.66 0.55 041–050 0.86 0.72 0.62 051–060 0.83 0.72 0.64 061–070 0.89 0.59 0.44 071–080 0.73 0.33 0.21 CODI system results The closer to the reality it comes, the more challenging it gets.
  • 46. 46 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview IIMB 2011 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations ~4000 1
  • 47. 47 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta OAEI Sandbox (2012) [AEE+12] •Datasets –Freebase Ontology- Domain independent –Collection of OWL files consisting of 31 concepts, 36 object properties, 13 data properties –~375 instances •Test cases (Divided into 10 test cases) –Divided into 10 test cases containing Value Variations •Ground Truth –Automatically created Gold Standard (same format as IIMB 2009) Attracted new systems to participate in instance matching task
  • 48. 48 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Systems Results Sandbox 2012 Systems/Results Precision Recall F- Measure LogMap 0.94 0.94 0.94 LogMap Lite 0.95 0.89 0.92 SBUEI 0.95 0.98 0.96 Simple tests – Very good Results
  • 49. 49 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview Sandbox 2012 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations 3 ~375
  • 50. 50 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta OAEI IIMB (2012) [AEE+12] Enhanced Sandbox Benchmarks •Datasets –Freebase Ontology- Domain independent –No information about classes and instances •Test Cases –Divided into 80 test cases –Test cases 1-20 containing Value variations –Test cases 21-40 containing Structural variations –Test cases 41-60 containing Logical variations –Test cases 61-80 Combination of the above •Ground Truth –Automatically created Gold Standard (same format as IIMB 2009) –Generated using the SWING Tool
  • 51. 51 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta IIMB 2012 Systems & Results *Source OAEI 2012 Results http://oaei.ontologymatching.org/2012/results/oaei2012.pdf Slight drop on F-measure when combination of variations occur
  • 52. 52 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview IIMB 2012 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations 4
  • 53. 53 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta OAEI RDFT (2013) [GDE+13] First synthetic Benchmark with language variations First synthetic Benchmark with Blind Evaluation •Datasets –RDF benchmark created by extracting data from DBPedia – Domain independent –430 instances, 11 RDF properties and 1744 triples –Use of same schemata •Test Cases –Divided into 5 test cases –Test case 1 contains Value variations –Test case 2 contains Structural variations –Test case 3 contains Language variations for comments and labels (English – French) –Test case 4 contains combinations of the above variations –Test case 5 contains combinations of the above variations •Ground Truth –Automatically created Gold Standard (same format as IIMB 2009) –Cardinality 1-n matchings for test case 5
  • 54. 54 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta *Source OAEI 2013 Results http://ceur-ws.org/Vol-1111/oaei13_paper0.pdf RDFT Systems - Results 1.Systems can cope with multilingualism 2.Slight drop of the F-measure for cluster mappings (apart from RiMOM)
  • 55. 55 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview RDFT 2013 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations ~430 4
  • 56. 56 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Semantic Web Instance Generation (SWING 2010) [FMN+11] Semi-automatic generator of IM Benchmarks •Contributed in the generation of IIMB Benchmarks of OAEI in 2010, 2011 and 2012 •Freely available (https://code.google.com/p/swing-generator/) •Variations allowed –All kind of variations (apart from Multilingualism) •Ground Truth –Automatically created Gold Standard
  • 57. 57 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta SWING phases Data Acquisition •Data Selection •Ontology Enrichment Data Transformation •All kinds of variations •Combination Data Evaluation •Creation of Gold Standard •Testing
  • 58. 58 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview SWING Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations 3
  • 59. 59 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Comparison of synthetic Benchmarks IIMB 2009 IIMB 2010 PR 2010 IIMB 2011 Sandbox 2012 IIMB 2012 RDFT 2013 SWING 2010 Systematic Procedure Quality Equity Availability Volume Dissemination Ground Truth Value variations Structural variations Logical variations Multilinguality Blind Evaluations 1-n Mappings ~430 4 3 4 3 ~375 ~4000 1 ~860 6 ~ 1400 3 ~200 6
  • 60. 60 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview •Introduction into Linked Data •Instance Matching •Benchmarks for linked Data –Why Benchmarks? –Benchmarks Characteristics –Benchmarks Dimensions •Benchmarks in the literature –Synthetic Benchmarks –Real Benchmarks –Isolated Benchmarks •Outcomes & Conclusions
  • 61. 61 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Real Benchmarks ARS (OAEI 2009) VLCR (OAEI 2009) DI (OAEI 2010) DI-NYT (OAEI 2011)
  • 62. 62 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta AKT-Rexa-DBLP (ARS - OAEI 2009) [EFH+09] •Datasets –AKT-Eprints archive - information about papers produced within the AKT project. –Rexa dataset- computer science research literature, people, organizations, venues and research communities data –SWETO-DBLP dataset - publicly available dataset listing publications from the computer science domain. –All three datasets were structured using the same schema - SWETO-DBLP ontology –Domain dependent •Test cases (Value/Structural variations) –AKT / Rexa –AKT /DBLP –Rexa / DBLP •Challenges – Many instances (almost 1M instances) – Ambiguous labels (person names and paper titles) and – Noisy data (some sources contained incorrect information)
  • 63. 63 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta ARS Data Statistics •Dataset Statistics –AKT-Eprints: 564-foaf: Persons and 283-sweto:Publications –Rexa : 11.050-foaf: Persons and 3.721-sweto:Publications –SWETO-DBLP : 307.774-foaf: Persons and 983.337-sweto:Publications •Ground Truth –Manually constructed - Error prone Reference Alignment –AKT-REXA contains 777 overall mappings –AKT-DBLP contains 544 overall mappings –REXA-DBLP contains 1540 overall mappings
  • 64. 64 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta ARS Systems & Results *Source OAEI results 2009 http://ceur-ws.org/Vol-551/oaei09_paper0.pdf 1.Scalability issues from some the systems 2.Structural variations in names of Persons lower the F-measure of systems
  • 65. 65 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview ARS Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Reference Alignment Variations ~1M 5
  • 66. 66 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Very Large Crosslingual Resources (OAEI 2008-2009) [EFH+09] First attempt to interlink sources with different languages •Datasets –Thesaurus of the Netherlands Institute for Sound and Vision (GTAA- National television thesaurus) in SKOS representation –English WordNet from Princeton University (Lexical database of English. Nouns, verbs, adjectives and adverbs) in RDF/OWL representation –DBPedia - Extracted structured information from Wikipedia - RDF/OWL representation •Dataset Statistics –GTAA : 27.000 Names, 14.000 Locations, 97.000 Persons, and 3.800 Subject keywords –WordNet : 117.000 synsets –DBPedia: 2.18 M "things"
  • 67. 67 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta VLCR Test cases •Test Cases –GTAA Names –GTAA Locations –GTAA Persons –GTAA Subject keywords –GTAA Names –GTAA Locations –GTAA Persons –GTAA Subject keywords •Ground Truth –Manually curated (links in the form of <skos:exactMatch>) –Small and error prone Reference Alignment –Precision: random sample of 71-97 mappings from each GTAA facet in each alignment manually assessed –Recall: Reference Alignment of 100 mappings for Subject keywords per alignment DBPedia Things Wordnet synsets
  • 68. 68 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta VCRL Results *Source OAEI results 2009 http://ceur-ws.org/Vol-551/oaei09_paper0.pdf Difficult to judge whether the problem of the bad results is due to the systems or because of the small and error prone Reference Alignment.
  • 69. 69 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview VLCR 2009 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Small Reference Alignment ~2M 2
  • 70. 70 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Data Interlinking (OAEI 2010) [EFM+10] The first real Benchmark that contained semi-automatically created reference alignments •Datasets –DailyMed - Provides marketed drug labels containing 4308 drugs –Diseasome - Contains information about 4212 disorders and genes –DrugBank - Is a repository of more than 5900 drugs approved by the US Federal Drugs Agency –SIDER - Contains information on marketed medicines (996 drugs) and their recorded adverse drug reaction (4192 side effects). •Reference Alignments – Semi-automatically created reference alignments – Running the test with Silk and LinQuer systems – In the form of pairs of matched instances (same as in IIMB 2009)
  • 71. 71 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta DI Results *Source OAEI 2010 Results http://disi.unitn.it/~p2p/OM-2010/oaei10_paper0.pdf 1.Providing a reliable mechanism for systems’ evaluation 2.Improving the performances of matching systems
  • 72. 72 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview DI 2010 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Reference Alignment Variations ~6000 2
  • 73. 73 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Data Integration (OAEI 2011) [EHH+11] •Datasets (No information about classes and instances) –New York Times –DBPedia –Freebase –Geonames •Tests cases –DBPedia locations –DBPedia organizations –DBPedia people –Freebase locations –Freebase organizations –Freebase people –Geonames •Reference Alignments –Based on the links present in the datasets –Provided matches are accurate but may not be complete New York Times Subject headings
  • 74. 74 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Data Integration – New York Times People Organizations Locations # NYT resources 9958 6088 3840 # Links to Freebase 4979 3044 1920 # Links to DBPedia 4977 1949 1920 # Links to Geonames 0 0 1789
  • 75. 75 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta DI Results *Source OAEI 2010 http://oaei.ontologymatching.org/2010/vlcr/index.html 1.Good results from all the systems 2.Well known domain and datasets 3.No logical variations
  • 76. 76 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview DI 2011 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations 3
  • 77. 77 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Comparison of Real Benchmarks ARS VLCR 2009 DI 2010 DI 2011 Systematic Procedure Quality Equity Availability Volume Dissemination Ground Truth Value variations Structural variations Logical variations Multilinguality Blind Evaluations ~1M ~2M ~6000 3 2 2 5
  • 78. 78 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview •Introduction into Linked Data •Instance Matching •Benchmarks for linked Data –Why Benchmarks? –Benchmarks Characteristics –Benchmarks Dimensions •Benchmarks in the literature –Synthetic Benchmarks –Real Benchmarks –Isolated Benchmarks •Outcomes & Conclusions
  • 79. 79 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Isolated Benchmarks ONTOBI OpenPhacts
  • 80. 80 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta ONTOlogy matching Benchmark with many Instances (ONTOBI) [Z10] Synthetic Benchmark •Datasets –RDF/OWL benchmark created by extracting data from DBPedia v. 3.4 –205 classes, 1144 object properties and 1024 data types properties –13.704 instances •Divided into 16 Test cases •Variations –Value variations –Structural variations –Combination of the above •Ground Truth –Automatically created Gold Standard
  • 81. 81 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta ONTOBI Variations Simple Variations Spelling mistakes (Value Variations) Change format (Value Variation) Suppressed Comments (Structural Variation) Delete data types (Structural Variation)
  • 82. 82 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta ONTOBI Variations Complex Variations Flatten/Expand Structure (Structural Variation) Language modification (Value Variation) Random names (Value Variation) Synonyms (Value Variation) Disjunct Dataset (Value Variation)
  • 83. 83 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta ONTOBI Predefined Variations Simple tests cases OS1: spelling mistakes OS2: suppressed comments OS3: disjunct dataset OS4: another language OS5: random names OS6: synonyms OS7: expanded structure OS8: flatten structure
  • 84. 84 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta ONTOBI Predefined Variations Complex tests (2 mods) OC1: spelling mistakes, suppressed comments OC2: random names, no datatype OC3: synonyms, overlapping datasets OC4: flatten structure, overlapping datasets Complex tests (>3 mods) OCC1: spelling mistakes, suppressed comments, no datatype, disjunct datasets OCC2: spelling mistakes, synonyms, no data types OCC3: synonyms, expanded structure, disjunct data sets, OCC4: suppressed comments, changed format, overlapping datasets
  • 85. 85 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta ONTOBI Systems & Results MICU system *Source K. Zaiß: Instance-Based Ontology Matching and the Evaluation of Matching Systems , 2011, Dissertation
  • 86. 86 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview ONTOBI 2010 Characteristics Systematic Procedure Quality Equity Volume Dissemination Availability Ground Truth Value Variations Structural Variations Logical Variations Multilinguality Variations ~13700 1
  • 87. 87 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Open Pharmacological Space (Open PHACTS) [GGL+12] ConceptWiki DrugBank Gene Ontology ChemSpider ChEBI UniProt- SwissProt UMLS ChEMBL
  • 88. Instance Matching Benchmarks for Linked Data 89 Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta • Creation of sophisticated SPARQL queries for the Identity Mapping Service (IMS) • Semi-automatic creation of reference alignments, with the curation of domain experts • Links of <skos:exactMatch> Open PHACTS Reference Alignment <http://www.conceptwiki.org/concept/4918acc2-23e4-4bea-886b-b167d56f5a72> skos:exactMatch <http://www4.wiwiss.fu-berlin.de/drugbank/resource/targets/6511>. <http://www.conceptwiki.org/concept/09a60eb9-90f3-4938-92d8-b12133e27716> skos:exactMatch <http://www4.wiwiss.fu-berlin.de/drugbank/resource/targets/2686>. <http://www.conceptwiki.org/concept/8c847e1b-bf16-45b1-b899-f7403aa70e12> skos:exactMatch <http://www4.wiwiss.fu-berlin.de/drugbank/resource/targets/3417>. <http://www.conceptwiki.org/concept/39d2926f-10a4-4df2-a946-42912d1942ef> skos:exactMatch <http://www4.wiwiss.fu-berlin.de/drugbank/resource/targets/6524>. <http://www.conceptwiki.org/concept/ff832b6f-28b0-46e3-b85e-ec7d202ef388>
  • 89. 90 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Systems and Results TC1 : ConceptWiki – DrugBank Targets TC2 : ConceptWiki – Chemspider Results in terms of F-measure *Source http://ldbc.eu/sites/default/files/D4.4.1-final.pdf 1.Bad results of the systems was not due to a problem of systems 2.Matching methods did only take into consideration string matching 3.Pharmacology domain is very difficult , because of the gene/drug labels 4.Needed more sophisticated methods to match the datasets
  • 90. 93 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Overview •Introduction into Linked Data •Instance Matching •Benchmarks for linked Data –Why Benchmarks? –Benchmarks Characteristics –Benchmarks Dimensions •Benchmarks in the literature –Synthetic Benchmarks –Real Benchmarks –Isolated Benchmarks •Summary and Conclusions
  • 91. 94 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Wrapping up: Benchmarks Which benchmarks included multilingual datasets? OAEI RDFT 2013 (French- English) VLCR (Dutch- English)
  • 92. 95 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Wrapping up: Benchmarks Which benchmarks included value variations into the test cases? OAEI IIMB 2009 OAEI IIMB 2010 OAEI Persons- Restaurants 2010 OAEI IIMB 2011 Sandbox OAEI IIMB 2012 OAEI RDFT 2013 SWING ARS VLCR DI 2010 DI 2011 ONTOBI OpenPHACTS
  • 93. 96 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Wrapping up: Benchmarks Which benchmarks included structural variations into the test cases? OAEI IIMB 2009 OAEI IIMB 2010 OAEI Persons- Restaurants 2010 OAEI IIMB 2011 OAEI IIMB 2012 OAEI RDFT 2013 SWING ARS VLCR DI 2010 DI 2011 ONTOBI OpenPHACTS
  • 94. 97 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Wrapping up: Benchmarks Which benchmarks included logical variations into the test cases? OAEI IIMB 2009 OAEI IIMB 2010 OAEI IIMB 2011 OAEI IIMB 2012 SWING
  • 95. 98 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Wrapping up: Benchmarks Which benchmarks included combination of the variations into the test cases? OAEI IIMB 2009 OAEI IIMB 2010 OAEI IIMB 2011 OAEI IIMB 2012 SWING
  • 96. 99 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Wrapping up: Benchmarks Which benchmarks are more voluminous? ARS VLCR DI 2011 OpenPHACTS
  • 97. 100 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Wrapping up: Benchmarks Which benchmarks included both combination of the variations and was voluminous at the same time? None
  • 98. 101 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Open Issues Issue 1: No IM benchmark tackles both, combination of variations and scalability issues Issue 2 : No IM benchmark using the full expressiveness of RDF/OWL language •Complex class definitions (union, intersection) •Cardinality constraints (functional property) •Disjointness (properties)
  • 99. 102 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Wrapping Up: Systems for Benchmarks Outcomes as far as systems are concerned: •Systems can handle the value variations, the structural variation, and the simple logical variations separately. •Systems can cope with multilingual datasets •More work needed for complex variations (combination of value, structural, and logical) •Enhancement of systems to cope with the clustering of the mappings (1-n mappings)
  • 100. 103 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Conclusion •Need for benchmarks that will “show the way to the future” to the systems. • Standard Organization for IM Benchmarks , in the line of TPC. –OAEI not yet an Organizations –The Linked Data Benchmark Council (LDBC) is established as an independent authority responsible for specifying benchmarks, benchmarking procedures and verifying/publishing results for software systems designed to manage graph and RDF data. (http://ldbcouncil.org/ )
  • 102. 105 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta References (1) # Reference Abbreviation 1 J. L. Aguirre, K. Eckert, A. F. J. Euzenat, W. R. van Hage, L. Hollink, C. Meilicke, A. N. D. Ritze, F. Scharffe, P. Shvaiko, O. Svab-Zamazal, C. Trojahn, E. Jimenez-Ruiz, B. C. Grau, and B. Zapilko. Results of the ontology alignment evaluation initiative 2012. In OM, 2012. [AEE+12] 2 I. Bhattacharya and L. Getoor. Entity resolution in graphs. Mining Graph Data. Wiley and Sons, 2006. [BG06] 3 J. Euzenat, A. Ferrara, L. Hollink, A. Isaac, C. Joslyn, V. Malaise, C. Meilicken, A. Nikolov, J. Pane, M. Sabou, F. Scharffe, P. Shvaiko, V. S. H., Stuckenschmidt, O. Svab-Zamazal, V. Svatek, , C. Trojahn, G. Vouros, and S. Wang. Results of the Ontology Alignment Evaluation Initiative 2009. In OM, 2009. [EFH+09] 4 J. Euzenat, A. Ferrara, C. Meilicke, J. Pane, F. Schar e, P. Shvaiko, H. Stuckenschmidt, O. Svab- Zamazal, V. Svatek, and C. Trojahn. Results of the Ontology Alignment Evaluation Initiative 2010. In OM, 2010. [EFM+10] 5 A. F. J. Euzenat, W. R. van Hage, L. Hollink, C. Meilicke, A. N. D. Ritze, F. Scharffe, P. Shvaiko, H. Stuckenschmidt, O. Svab-Zamazal, and C. Trojahn. Results of the Ontology Alignment Evaluation Initiative 2011. In OM, 2011. [EHH+11] 6 A. K. Elmagarmid, P. Ipeirotis, and V. Verykios. Duplicate Record Detection: A Survey. IEEE Transactions on Knowledge and Data Engineering, 19(1), 2007. [EIV07] 7 J.Euzenat and P. Shvaiko, editors. Ontology Matching. Springer-Verlag, 2007. [ES07] 8 A. Ferrara, D. Lorusso, S. Montanelli, and G. Varese. Towards a Benchmark for Instance Matching. In OM, 2008. [FLM08] 9 A. Ferrara, S. Montanelli, J. Noessner, and H. Stuckenschmidt. Benchmarking Matching Applications on the Semantic Web. In ESWC, 2011. [FMN+11] 10 J. Gray, editor. The Benchmark Handbook for Database and Transaction Systems. Morgan Kaufmann, 1993. [G93]
  • 103. 106 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta References (2) # Reference Abbreviation 11 B. C. Grau, Z. Dragisic, K. Eckert, A. F. J. Euzenat, R. Granada, V. Ivanova, E. Jimenez-Ruiz, A. O. Kempf, P. Lambrix, A. Nikolov, H. Paulheim, D. Ritze, F. Schare, P. Shvaiko, C. Trojahn, and O. Zamazal. Results of the ontology alignment evaluation initiative 2013. In OM, 2013. [GDE+13] 12 Gray, A.J.G., Groth, P., Loizou, A., et al.: Applying linked data approaches to pharmacology: Architectural decisions and implementation. Semantic Web. (2012). [GGL+12] 13 P. Hayes. RDF Semantics. www.w3.org/TR/rdf-mt, February 2004. [H04] 14 R. Isele and C. Bizer. Learning linkage rules using genetic programming. In OM, 2011. [IB11] 15 A. Isaac, L. van der Meij, S. Schlobach, and S. Wang. An Empirical Study of Instance-Based Ontology Matching. In ISWC/ASWC, 2007. [IMS07] 16 E. Ioannou, N. Rassadko, and Y. Velegrakis. On Generating Benchmark Data for Entity Matching. Journal of Data Semantics, 2012. [IRV12] 17 A. Jentzsch, J. Zhao, O. Hassanzadeh, K.-H. Cheung, M. Samwald, and B. Andersson. Linking open drug data. In Linking Open Data Triplification Challenge, I-SEMANTICS, 2009. [JZH+09] 18 C. Li, L. Jin, and S. Mehrotra. Supporting ecient record linkage for large data sets using mapping techniques. In WWW, 2006. [LJM06] 19 D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language. http://www.w3.org/TR/owl-features/, 2004. [MH04] 20 B. M. F. Manola, E. Miller. RDF Primer. www.w3.org/TR/rdf-primer, February 2004. [MM04]
  • 104. 107 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Reference (3) # Reference Abbreviation 21 J. Noessner, M. Niepert, C. Meilicke, and H. Stuckenschmidt. Leveraging Terminological Structure for Object Reconciliation. In ESWC, 2010. [NNM10] 22 A. Nikolov, V. Uren, E. Motta, and A. de Roeck. Refining instance coreferencing results using belief propagation. In ASWC, 2008. [NUM+08] 23 M. Perry. TOntoGen: A Synthetic Data Set Generator for Semantic Web Applications. AIS SIGSEMIS, 2(2), 2005. [P05] 24 E. Prud'hommeaux and A. Seaborne. SPARQL Query Language for RDF. www.w3.org/TR/rdfsparql- query, January 2008. [PS08] 25 S. Wang, G. Englebienne, and S.Schlobach: Learning Concept Mappingd from Instance Similarity International Semantic Web Conference 2008: 339-355 [WES08] 26 Williams, A.J., Harland, L., Groth, P., Pettifer, S., Chichester, C., Willighagen, E.L., Evelo, C.T., Blomberg, N., Ecker, G., Goble, C., Mons, B.: Open PHACTS: Semantic interoperability for drug discovery. Drug Discovery Today. 17, 1188–1198 (2012). [WHG+12] 27 K. Zaiss, S. Conrad, and S. Vater. A Benchmark for Testing Instance-Based Ontology Matching Methods. In KMIS, 2010. [Z10] 28 Jim Gray. Benchmark Handbook: For Database and Transaction Processing Systems, ISBN:1558601597, 1992 [G92]
  • 105. 108 Instance Matching Benchmarks for Linked Data Evangelia Daskalaki, Irini Fundulaki, Melanie Herschel, Tzanina Saveta Acknowledgments & Contact Information This work has been funded from the European project LDBC (317548) and the European project eHealthMonitor (287509). Contact Information: Evangelia Daskalaki - eva@ics.forth.gr Tzanina Saveta - jsaveta@ics.forth.gr Irini Fundulaki - fundul@ics.forth.gr Melanie Herschel - melanie.herschel@ipvs.uni-stuttgart.de