SlideShare a Scribd company logo
DATA MINING
Lecture 3: KnowYour Data
Slides Adapted from Jiawei Han et al. and Jianlin Cheng
DEPARTMENTOFCOMPUTER
SCIENCE,UNIVERSITYOF
COLORADO,COLORADO
SPRINGS.
CS4434/5434ANDDASE4435
DATAMINING,
FALL2023
DR.OLUWATOSIN
OLUWADARE,2023
2
Data Mining:
Concepts and Techniques
— Chapter 2 —
Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign
Simon Fraser University
©2011 Han, Kamber, and Pei. All rights reserved.
3
Chapter 2: Getting to Know Your Data
 Data Objects and Attribute Types
 Basic Statistical Descriptions of Data
 Data Visualization
 Measuring Data Similarity and Dissimilarity
 Summary
4
Types of Data Sets
 Record
 Relational records
 Data matrix, e.g., numerical matrix,
crosstabs
 Document data: text documents: term-
frequency vector
 Transaction data
 Graph and network
 World Wide Web
 Social or information networks
 Molecular Structures
 Ordered
 Video data: sequence of images
 Temporal data: time-series
 Sequential Data: transaction sequences
 Genetic sequence data
 Spatial, image and multimedia:
 Spatial data: maps
 Image data:
 Video data:
Document 1
season
timeout
lost
wi
n
game
score
ball
pla
y
coach
team
Document 2
Document 3
3 0 5 0 2 6 0 2 0 2
0
0
7 0 2 1 0 0 3 0 0
1 0 0 1 2 2 0 3 0
TID Items
1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk
5
Important Characteristics of Structured
Data
 Dimensionality
 Curse of dimensionality
 Sparsity
 Only presence counts
 Resolution
 Patterns depend on the scale
 Distribution
 Centrality and dispersion
6
Data Objects
 Data sets are made up of data objects.
 A data object represents an entity.
 Examples:
 sales database: customers, store items, sales
 medical database: patients, treatments
 university database: students, professors, courses
 Also called samples , examples, instances, data points,
objects, tuples.
 Data objects are described by attributes.
 Database rows -> data objects; columns ->attributes.
7
Attributes
 Attribute (or dimensions, features, variables):
a data field, representing a characteristic or feature
of a data object.
 E.g., customer _ID, name, address
 Types:
 Nominal
 Binary
 Numeric: quantitative
 Interval-scaled
 Ratio-scaled
Data Attributes
 Attribute refers to the characteristic of the data
object.
 The nouns defining the characteristics are used
interchangeably: Attribute, dimension, feature,
and variable.
8
Field
Data Warehousing
Database and Data Mining
Statistic
Machine Learning
Characteristic term Used
Feature
Attribute
Variable
Dimension
9
Attribute Types
 Nominal: categories, states, or “names of things”
 Hair_color = {auburn, black, blond, brown, grey, red, white}
 marital status, occupation, ID numbers, zip codes
 Binary
 Nominal attribute with only 2 states (0 and 1)
 Symmetric binary: both outcomes equally important
 e.g., cat or dog
 Asymmetric binary: outcomes not equally important.
 e.g., medical test (positive vs. negative)
 Convention: assign 1 to most important outcome (e.g., HIV
positive)
 the positive (1) and negative (0) outcomes of a disease test.
 Ordinal
 Values have a meaningful order (ranking) but magnitude between
successive values is not known.
 Size = {small, medium, large}, grades, army rankings
10
Numeric Attribute Types
 Quantity (integer or real-valued)
 Interval
 Measured on a scale of equal-sized units
 Values have order
 E.g., temperature in C˚or F˚, calendar dates
 No true zero-point
 Ratio
 Inherent zero-point
 We can speak of values as being an order of
magnitude larger than the unit of measurement
(10 K˚ is twice as high as 5 K˚).
 e.g., temperature in Kelvin, length, counts,
monetary quantities
11
Discrete vs. Continuous Attributes
 Discrete Attribute
 Has only a finite or countably infinite set of values
 E.g., zip codes, profession, or the set of words in a
collection of documents
 Sometimes, represented as integer variables
 Note: Binary attributes are a special case of discrete
attributes
 Continuous Attribute
 Has real numbers as attribute values
 E.g., temperature, height, or weight
 Practically, real values can only be measured and
represented using a finite number of digits
 Continuous attributes are typically represented as
floating-point variables
12
Chapter 2: Getting to Know Your Data
 Data Objects and Attribute Types
 Basic Statistical Descriptions of Data
 Data Visualization
 Measuring Data Similarity and Dissimilarity
 Summary
13
Basic Statistical Descriptions of Data
 Motivation
 To better understand the data: central tendency,
variation and spread
 Data dispersion characteristics
 median, max, min, quantiles, outliers, variance, etc.
 Numerical dimensions correspond to sorted intervals
 Data dispersion: analyzed with multiple granularities
of precision
 Boxplot or quantile analysis on sorted intervals
 Dispersion analysis on computed measures
 Folding measures into numerical dimensions
 Boxplot or quantile analysis on the transformed cube
14
Measuring the Central Tendency
 Mean (algebraic measure) (sample vs. population):
Note: n is sample size and N is population size.
 Weighted arithmetic mean:
 Trimmed mean: chopping extreme values
 Median:
 Middle value if odd number of values, or average of
the middle two values otherwise
 Estimated by interpolation (for grouped data):
 Mode
 Value that occurs most frequently in the data
 Unimodal, bimodal, trimodal
 Empirical formula:



n
i
i
x
n
x
1
1




 n
i
i
n
i
i
i
w
x
w
x
1
1
width
freq
l
freq
n
L
median
median
)
)
(
2
/
(
1




)
(
3 median
mean
mode
mean 



N
x



May 8, 2024 Data Mining: Concepts and Techniques 15
Symmetric vs. Skewed
Data
 Median, mean and mode of
symmetric, positively and
negatively skewed data
positively skewed negatively skewed
symmetric
16
Measuring the Dispersion of Data
 Quartiles, outliers and boxplots
 Quartiles: Q1 (25th percentile), Q3 (75th percentile)
 Inter-quartile range: IQR = Q3 – Q1
 Five number summary: min, Q1, median, Q3, max
 Boxplot: ends of the box are the quartiles; median is marked; add
whiskers, and plot outliers individually
 Outlier: usually, a value higher/lower than Q3 + 1.5 x IQR or Q1 – 1.5 x
IQR
 Variance and standard deviation (sample: s, population: σ)
 Variance: (algebraic, scalable computation)
 Standard deviation s (or σ) is the square root of variance s2 (or σ2)
 
  







n
i
n
i
i
i
n
i
i x
n
x
n
x
x
n
s
1 1
2
2
1
2
2
]
)
(
1
[
1
1
)
(
1
1

 





n
i
i
n
i
i x
N
x
N 1
2
2
1
2
2 1
)
(
1



17
Boxplot Analysis
 Five-number summary of a distribution
 Minimum, Q1, Median, Q3, Maximum
 Boxplot
 Data is represented with a box
 The ends of the box are at the first and third
quartiles, i.e., the height of the box is IQR
 The median is marked by a line within the
box
 Whiskers: two lines outside the box extended
to Minimum and Maximum
 Outliers: points beyond a specified outlier
threshold, plotted individually
Boxplot Analysis Example
 Distribution A is positively skewed, because the whisker and half-box are longer on
the right side of the median than on the left side.
 Distribution B is approximately symmetric, because both half-boxes are almost the
same length (0.11 on the left side and 0.10 on the right side).
 Distribution C is negatively skewed because the whisker and half-box are longer on
the left side of the median than on the right side.
18
https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch12/5214889-eng.htm
May 8, 2024 Data Mining: Concepts and Techniques 19
Visualization of Data Dispersion: 3-D Boxplots
20
Properties of Normal Distribution Curve
 The normal (distribution) curve
 From μ–σ to μ+σ: contains about 68% of the
measurements (μ: mean, σ: standard deviation)
 From μ–2σ to μ+2σ: contains about 95% of it
 From μ–3σ to μ+3σ: contains about 99.7% of it
Standard deviation in a Normal Distribution
21
Images/google
22
Graphic Displays of Basic Statistical
Descriptions
 Boxplot: graphic display of five-number summary
 Histogram: x-axis are values, y-axis repres. frequencies
 Quantile plot: each value xi is paired with fi indicating
that approximately 100 fi % of data are  xi
 Quantile-quantile (q-q) plot: graphs the quantiles of
one univariant distribution against the corresponding
quantiles of another
 Scatter plot: each pair of values is a pair of coordinates
and plotted as points in the plane
23
Histogram Analysis
 Histogram: Graph display of
tabulated frequencies, shown as
bars
 It shows what proportion of cases
fall into each of several categories
 Differs from a bar chart in that it is
the area of the bar that denotes the
value, not the height as in bar
charts, a crucial distinction when the
categories are not of uniform width
 The categories are usually specified
as non-overlapping intervals of
some variable. The categories (bars)
must be adjacent
0
5
10
15
20
25
30
35
40
10000 30000 50000 70000 90000
Homework 1
 Homework 1 has been posted at the course web
site and on Canvas.
 Due Sept. 12, 2023
 Submit it to Canvas
May 8, 2024
Data Mining: Concepts and Techniques 24
25
Histograms Often Tell More than Boxplots
 The two histograms
shown in the left may
have the same boxplot
representation
 The same values
for: min, Q1,
median, Q3, max
 But they have rather
different data
distributions
Data Mining: Concepts and Techniques 26
Quantile Plot
 Displays all of the data (allowing the user to assess both
the overall behavior and unusual occurrences)
 Plots quantile information
 For a data xi data sorted in increasing order, fi
indicates that approximately 100 fi% of the data are
below or equal to the value xi
27
Quantile-Quantile (Q-Q) Plot
 Graphs the quantiles of one univariate distribution against the
corresponding quantiles of another
 View: Is there is a shift in going from one distribution to another?
 Example shows unit price of items sold at Branch 1 vs. Branch 2 for
each quantile. Unit prices of items sold at Branch 1 tend to be lower
than those at Branch 2.
28
Scatter plot
 Provides a first look at bivariate data to see clusters of
points, outliers, etc
 Each pair of values is treated as a pair of coordinates and
plotted as points in the plane
29
Positively and Negatively Correlated Data
 The left half fragment is positively
correlated
 The right half is negative correlated
30
Uncorrelated Data
31
Chapter 2: Getting to Know Your Data
 Data Objects and Attribute Types
 Basic Statistical Descriptions of Data
 Data Visualization
 Measuring Data Similarity and Dissimilarity
 Summary
32
Similarity and Dissimilarity
 Similarity
 Numerical measure of how alike two data objects are
 Value is higher when objects are more alike
 Often falls in the range [0,1]
 Dissimilarity (e.g., distance)
 Numerical measure of how different two data objects
are
 Lower when objects are more alike
 Minimum dissimilarity is often 0
 Upper limit varies
 Proximity refers to a similarity or dissimilarity
33
Data Matrix and Dissimilarity Matrix
 Data matrix
 n data points with p
dimensions
 Two modes
 Dissimilarity matrix
 n data points, but
registers only the
distance
 A triangular matrix
 Single mode


















np
x
...
nf
x
...
n1
x
...
...
...
...
...
ip
x
...
if
x
...
i1
x
...
...
...
...
...
1p
x
...
1f
x
...
11
x
















0
...
)
2
,
(
)
1
,
(
:
:
:
)
2
,
3
(
)
...
n
d
n
d
0
d
d(3,1
0
d(2,1)
0
34
Proximity Measure for Nominal Attributes
 Can take 2 or more states, e.g., red, yellow, blue,
green (generalization of a binary attribute)
 Method 1: Simple matching
 m: # of matches, p: total # of variables
 Method 2: Use a large number of binary attributes
 creating a new binary attribute for each of the
M nominal states
p
m
p
j
i
d 

)
,
(
Class Example: Method 1
35
















0
...
)
2
,
(
)
1
,
(
:
:
:
)
2
,
3
(
)
...
n
d
n
d
0
d
d(3,1
0
d(2,1)
0
p
m
p
j
i
d 

)
,
(
36
Proximity Measure for Binary Attributes
 A contingency table for binary data
 Distance measure for symmetric
binary variables:
 Distance measure for asymmetric
binary variables:
 Jaccard coefficient (similarity
measure for asymmetric binary
variables):
 Note: Jaccard coefficient is the same as “coherence”:
Object i
Object j
Variables (q, r, s ,t)
 q is the number of attributes that equal 1 for
both objects i and j,
 r is the number of attributes that equal 1 for
object i but equal 0 for object j,
 s is the number of attributes that equal 0 for
object i but equal 1 for object j, and
 t is the number of attributes that equal 0 for both
objects i and j.
37
38
Dissimilarity between Binary Variables
 Example
 Gender is a symmetric attribute
 The remaining attributes are asymmetric binary attributes
 Let the values Y(yes) and P(positive) be 1, and the value N(no
and negative) 0
Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N
Mary F Y N P N P N
Jim M Y P N N N N
Calculate the Dissimilarity
 d(Jack, Mary) = ?
 d(Jack, Jim). = ?
 d(Jim, Jack) = ?
 q is the number of attributes that equal 1 for both objects i and j,
 r is the number of attributes that equal 1 for object i but equal 0 for object j,
 s is the number of attributes that equal 0 for object i but equal 1 for object j,
and
 t is the number of attributes that equal 0 for both objects i and j.
39
OR
40
Dissimilarity between Binary Variables
 Example
 Gender is a symmetric attribute
 The remaining attributes are asymmetric binary attributes
 Let the values Y(yes) and P(positive) be 1, and the value N(no
and negative) 0
Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4
Jack M Y N P N N N
Mary F Y N P N P N
Jim M Y P N N N N
75
.
0
2
1
1
2
1
)
,
(
67
.
0
1
1
1
1
1
)
,
(
33
.
0
1
0
2
1
0
)
,
(















mary
jim
d
jim
jack
d
mary
jack
d
Comment on the Result
 What does the measurement suggest?
 These measurements suggest that Jim and
Mary are unlikely to have a similar disease
because they have the highest dissimilarity
value among the three pairs.
 Of the three patients, Jack and Mary are the
most likely to have a similar disease.
41
42
Standardizing Numeric Data
 Z-score:
 X: raw score to be standardized, μ: mean of the population, σ:
standard deviation
 the distance between the raw score and the population mean in
units of the standard deviation
 negative when the raw score is below the mean, “+” when above
 An alternative way: Calculate the mean absolute deviation
where
 standardized measure (z-score):
 Using mean absolute deviation is more robust than using standard
deviation
.
)
...
2
1
1
nf
f
f
f
x
x
(x
n
m 



|)
|
...
|
|
|
(|
1
2
1 f
nf
f
f
f
f
f
m
x
m
x
m
x
n
s 






f
f
if
if s
m
x
z





 x
z
43
Example:
Data Matrix and Dissimilarity Matrix
point attribute1 attribute2
x1 1 2
x2 3 5
x3 2 0
x4 4 5
Dissimilarity Matrix
(with Euclidean Distance)
x1 x2 x3 x4
x1 0
x2 3.61 0
x3 5.1 5.1 0
x4 4.24 1 5.39 0
Data Matrix
44
Distance on Numeric Data: Minkowski
Distance
 Minkowski distance: A popular distance measure
where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two
p-dimensional data objects, and h is the order (the
distance so defined is also called L-h norm)
 Properties
 d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)
 d(i, j) = d(j, i) (Symmetry)
 d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)
 A distance that satisfies these properties is a metric
45
Special Cases of Minkowski Distance
 h = 1: Manhattan (city block, L1 norm) distance
 E.g., the Hamming distance: the number of bits that are
different between two binary vectors
 h = 2: (L2 norm) Euclidean distance
 h  . “supremum” (Lmax norm, L norm) distance.
 This is the maximum difference between any component
(attribute) of the vectors
)
|
|
...
|
|
|
(|
)
,
( 2
2
2
2
2
1
1 p
p j
x
i
x
j
x
i
x
j
x
i
x
j
i
d 






|
|
...
|
|
|
|
)
,
(
2
2
1
1 p
p j
x
i
x
j
x
i
x
j
x
i
x
j
i
d 






46
Example: Minkowski Distance
Dissimilarity Matrices
point attribute 1 attribute 2
x1 1 2
x2 3 5
x3 2 0
x4 4 5
L x1 x2 x3 x4
x1 0
x2 5 0
x3 3 6 0
x4 6 1 7 0
L2 x1 x2 x3 x4
x1 0
x2 3.61 0
x3 2.24 5.1 0
x4 4.24 1 5.39 0
L x1 x2 x3 x4
x1 0
x2 3 0
x3 2 5 0
x4 3 1 5 0
Manhattan (L1)
Euclidean (L2)
Supremum
47
Ordinal Variables
 An ordinal variable can be discrete or continuous
 Order is important, e.g., rank
 Can be treated like interval-scaled
 replace xif by their rank
 map the range of each variable onto [0, 1] by replacing
i-th object in the f-th variable by
 compute the dissimilarity using methods for interval-
scaled variables
1
1



f
if
if M
r
z
}
,...,
1
{ f
if
M
r 
48
Attributes of Mixed Type
 A database may contain all attribute types
 Nominal, symmetric binary, asymmetric binary, numeric,
ordinal
 One may use a weighted formula to combine their effects
 f is binary or nominal:
dij
(f) = 0 if xif = xjf , or dij
(f) = 1 otherwise
 f is numeric: use the normalized distance
 f is ordinal
 Compute ranks rif and
 Treat zif as interval-scaled
)
(
1
)
(
)
(
1
)
,
( f
ij
p
f
f
ij
f
ij
p
f
d
j
i
d







1
1



f
if
M
r
zif
49
Cosine Similarity
 A document can be represented by thousands of attributes, each
recording the frequency of a particular word (such as keywords) or
phrase in the document.
 Other vector objects: gene features in micro-arrays, …
 Applications: information retrieval, biologic taxonomy, gene feature
mapping, ...
 Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency
vectors), then
cos(d1, d2) = (d1  d2) /||d1|| ||d2|| ,
where  indicates vector dot product, ||d||: the length of vector d
50
Example: Cosine Similarity
 cos(d1, d2) = (d1  d2) /||d1|| ||d2|| ,
where  indicates vector dot product, ||d|: the length of vector d
 Ex: Find the similarity between documents 1 and 2.
d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0)
d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1)
d1d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25
||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5
= 6.481
||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5
= 4.12
cos(d1, d2 ) = 0.94
51
Chapter 2: Getting to Know Your Data
 Data Objects and Attribute Types
 Basic Statistical Descriptions of Data
 Data Visualization
 Measuring Data Similarity and Dissimilarity
 Summary
Summary
 Data attribute types: nominal, binary, ordinal, interval-scaled, ratio-
scaled
 Many types of data sets, e.g., numerical, text, graph, Web, image.
 Gain insight into the data by:
 Basic statistical data description: central tendency, dispersion,
graphical displays
 Data visualization: map data onto graphical primitives
 Measure data similarity
 Above steps are the beginning of data preprocessing.
 Many methods have been developed but still an active area of research.
52
References
 W. Cleveland, Visualizing Data, Hobart Press, 1993
 T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003
 U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and
Knowledge Discovery, Morgan Kaufmann, 2001
 L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster
Analysis. John Wiley & Sons, 1990.
 H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech.
Committee on Data Eng., 20(4), Dec. 1997
 D. A. Keim. Information visualization and visual data mining, IEEE trans. on
Visualization and Computer Graphics, 8(1), 2002
 D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999
 S. Santini and R. Jain,” Similarity measures”, IEEE Trans. on Pattern Analysis and
Machine Intelligence, 21(9), 1999
 E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press,
2001
 C. Yu , et al., Visual data mining of multimedia data for social and behavioral studies,
Information Visualization, 8(1), 2009
53

More Related Content

PPT
Data Mining: Concepts and Techniques — Chapter 2 —
PPT
Data mining :Concepts and Techniques Chapter 2, data
PPT
02 data
PPT
02Data(1).ppt Computer Science Computer Science
PPT
Upstate CSCI 525 Data Mining Chapter 2
PPT
02Data.ppt
PPT
02Data.ppt
PPT
Getting to Know Your Data Some sources from where you can access datasets for...
Data Mining: Concepts and Techniques — Chapter 2 —
Data mining :Concepts and Techniques Chapter 2, data
02 data
02Data(1).ppt Computer Science Computer Science
Upstate CSCI 525 Data Mining Chapter 2
02Data.ppt
02Data.ppt
Getting to Know Your Data Some sources from where you can access datasets for...

Similar to Know Your Data in data mining applications (20)

PPT
Data mining techniques in data mining with examples
PPT
DATA MINING: CONCEPTS AND TECHNIQUES OF DATA MINING
PPT
02Data mining 243657786756868766758(1).ppt
PPT
02Dataccccccccccccccccccccccccccccccccccccccc.ppt
PPT
Data mining data characteristics
PPT
Data Mining and Warehousing Concept and Techniques
PPT
data mining chapter no 2 concepts and techniques
PPT
Chapter 2. Know Your Data.ppt
PPTX
Getting to Know Data presentation basics
PPT
Data mining Concepts and Techniques
PPT
hanjia chapter_2.ppt data mining chapter 2
PPT
02Data.ppt 02Data.ppt data mining introduction topic1
PPT
02Data.ppt data mining introduction topic
PPTX
Chap2-Data.pptx. It is all about data in data mining.
PDF
02Data-osu-0829.pdf
PPT
Pre_processing_the_data_using_advance_technique
PPT
Datamining tools and techniques_lec-2.ppt
PPT
4_22865_IS465_2019_1__2_1_02Data-2.ppt
PDF
Deepak_DAI101_Data_Anal_lec tures4_5.pdf
PDF
Cluster Analysis: Measuring Similarity & Dissimilarity
Data mining techniques in data mining with examples
DATA MINING: CONCEPTS AND TECHNIQUES OF DATA MINING
02Data mining 243657786756868766758(1).ppt
02Dataccccccccccccccccccccccccccccccccccccccc.ppt
Data mining data characteristics
Data Mining and Warehousing Concept and Techniques
data mining chapter no 2 concepts and techniques
Chapter 2. Know Your Data.ppt
Getting to Know Data presentation basics
Data mining Concepts and Techniques
hanjia chapter_2.ppt data mining chapter 2
02Data.ppt 02Data.ppt data mining introduction topic1
02Data.ppt data mining introduction topic
Chap2-Data.pptx. It is all about data in data mining.
02Data-osu-0829.pdf
Pre_processing_the_data_using_advance_technique
Datamining tools and techniques_lec-2.ppt
4_22865_IS465_2019_1__2_1_02Data-2.ppt
Deepak_DAI101_Data_Anal_lec tures4_5.pdf
Cluster Analysis: Measuring Similarity & Dissimilarity
Ad

Recently uploaded (20)

PDF
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
PPTX
Global journeys: estimating international migration
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
PPTX
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPTX
Major-Components-ofNKJNNKNKNKNKronment.pptx
PPTX
Computer network topology notes for revision
PPTX
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
PDF
Launch Your Data Science Career in Kochi – 2025
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Introduction to Knowledge Engineering Part 1
PDF
Introduction to Business Data Analytics.
PPT
Reliability_Chapter_ presentation 1221.5784
PDF
Clinical guidelines as a resource for EBP(1).pdf
PPTX
Data_Analytics_and_PowerBI_Presentation.pptx
PDF
Lecture1 pattern recognition............
PPTX
oil_refinery_comprehensive_20250804084928 (1).pptx
PPTX
Acceptance and paychological effects of mandatory extra coach I classes.pptx
PPTX
Supervised vs unsupervised machine learning algorithms
BF and FI - Blockchain, fintech and Financial Innovation Lesson 2.pdf
Global journeys: estimating international migration
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
MODULE 8 - DISASTER risk PREPAREDNESS.pptx
Introduction to Basics of Ethical Hacking and Penetration Testing -Unit No. 1...
Introduction-to-Cloud-ComputingFinal.pptx
Major-Components-ofNKJNNKNKNKNKronment.pptx
Computer network topology notes for revision
Introduction to Firewall Analytics - Interfirewall and Transfirewall.pptx
Launch Your Data Science Career in Kochi – 2025
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Introduction to Knowledge Engineering Part 1
Introduction to Business Data Analytics.
Reliability_Chapter_ presentation 1221.5784
Clinical guidelines as a resource for EBP(1).pdf
Data_Analytics_and_PowerBI_Presentation.pptx
Lecture1 pattern recognition............
oil_refinery_comprehensive_20250804084928 (1).pptx
Acceptance and paychological effects of mandatory extra coach I classes.pptx
Supervised vs unsupervised machine learning algorithms
Ad

Know Your Data in data mining applications

  • 1. DATA MINING Lecture 3: KnowYour Data Slides Adapted from Jiawei Han et al. and Jianlin Cheng DEPARTMENTOFCOMPUTER SCIENCE,UNIVERSITYOF COLORADO,COLORADO SPRINGS. CS4434/5434ANDDASE4435 DATAMINING, FALL2023 DR.OLUWATOSIN OLUWADARE,2023
  • 2. 2 Data Mining: Concepts and Techniques — Chapter 2 — Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University ©2011 Han, Kamber, and Pei. All rights reserved.
  • 3. 3 Chapter 2: Getting to Know Your Data  Data Objects and Attribute Types  Basic Statistical Descriptions of Data  Data Visualization  Measuring Data Similarity and Dissimilarity  Summary
  • 4. 4 Types of Data Sets  Record  Relational records  Data matrix, e.g., numerical matrix, crosstabs  Document data: text documents: term- frequency vector  Transaction data  Graph and network  World Wide Web  Social or information networks  Molecular Structures  Ordered  Video data: sequence of images  Temporal data: time-series  Sequential Data: transaction sequences  Genetic sequence data  Spatial, image and multimedia:  Spatial data: maps  Image data:  Video data: Document 1 season timeout lost wi n game score ball pla y coach team Document 2 Document 3 3 0 5 0 2 6 0 2 0 2 0 0 7 0 2 1 0 0 3 0 0 1 0 0 1 2 2 0 3 0 TID Items 1 Bread, Coke, Milk 2 Beer, Bread 3 Beer, Coke, Diaper, Milk 4 Beer, Bread, Diaper, Milk 5 Coke, Diaper, Milk
  • 5. 5 Important Characteristics of Structured Data  Dimensionality  Curse of dimensionality  Sparsity  Only presence counts  Resolution  Patterns depend on the scale  Distribution  Centrality and dispersion
  • 6. 6 Data Objects  Data sets are made up of data objects.  A data object represents an entity.  Examples:  sales database: customers, store items, sales  medical database: patients, treatments  university database: students, professors, courses  Also called samples , examples, instances, data points, objects, tuples.  Data objects are described by attributes.  Database rows -> data objects; columns ->attributes.
  • 7. 7 Attributes  Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object.  E.g., customer _ID, name, address  Types:  Nominal  Binary  Numeric: quantitative  Interval-scaled  Ratio-scaled
  • 8. Data Attributes  Attribute refers to the characteristic of the data object.  The nouns defining the characteristics are used interchangeably: Attribute, dimension, feature, and variable. 8 Field Data Warehousing Database and Data Mining Statistic Machine Learning Characteristic term Used Feature Attribute Variable Dimension
  • 9. 9 Attribute Types  Nominal: categories, states, or “names of things”  Hair_color = {auburn, black, blond, brown, grey, red, white}  marital status, occupation, ID numbers, zip codes  Binary  Nominal attribute with only 2 states (0 and 1)  Symmetric binary: both outcomes equally important  e.g., cat or dog  Asymmetric binary: outcomes not equally important.  e.g., medical test (positive vs. negative)  Convention: assign 1 to most important outcome (e.g., HIV positive)  the positive (1) and negative (0) outcomes of a disease test.  Ordinal  Values have a meaningful order (ranking) but magnitude between successive values is not known.  Size = {small, medium, large}, grades, army rankings
  • 10. 10 Numeric Attribute Types  Quantity (integer or real-valued)  Interval  Measured on a scale of equal-sized units  Values have order  E.g., temperature in C˚or F˚, calendar dates  No true zero-point  Ratio  Inherent zero-point  We can speak of values as being an order of magnitude larger than the unit of measurement (10 K˚ is twice as high as 5 K˚).  e.g., temperature in Kelvin, length, counts, monetary quantities
  • 11. 11 Discrete vs. Continuous Attributes  Discrete Attribute  Has only a finite or countably infinite set of values  E.g., zip codes, profession, or the set of words in a collection of documents  Sometimes, represented as integer variables  Note: Binary attributes are a special case of discrete attributes  Continuous Attribute  Has real numbers as attribute values  E.g., temperature, height, or weight  Practically, real values can only be measured and represented using a finite number of digits  Continuous attributes are typically represented as floating-point variables
  • 12. 12 Chapter 2: Getting to Know Your Data  Data Objects and Attribute Types  Basic Statistical Descriptions of Data  Data Visualization  Measuring Data Similarity and Dissimilarity  Summary
  • 13. 13 Basic Statistical Descriptions of Data  Motivation  To better understand the data: central tendency, variation and spread  Data dispersion characteristics  median, max, min, quantiles, outliers, variance, etc.  Numerical dimensions correspond to sorted intervals  Data dispersion: analyzed with multiple granularities of precision  Boxplot or quantile analysis on sorted intervals  Dispersion analysis on computed measures  Folding measures into numerical dimensions  Boxplot or quantile analysis on the transformed cube
  • 14. 14 Measuring the Central Tendency  Mean (algebraic measure) (sample vs. population): Note: n is sample size and N is population size.  Weighted arithmetic mean:  Trimmed mean: chopping extreme values  Median:  Middle value if odd number of values, or average of the middle two values otherwise  Estimated by interpolation (for grouped data):  Mode  Value that occurs most frequently in the data  Unimodal, bimodal, trimodal  Empirical formula:    n i i x n x 1 1      n i i n i i i w x w x 1 1 width freq l freq n L median median ) ) ( 2 / ( 1     ) ( 3 median mean mode mean     N x   
  • 15. May 8, 2024 Data Mining: Concepts and Techniques 15 Symmetric vs. Skewed Data  Median, mean and mode of symmetric, positively and negatively skewed data positively skewed negatively skewed symmetric
  • 16. 16 Measuring the Dispersion of Data  Quartiles, outliers and boxplots  Quartiles: Q1 (25th percentile), Q3 (75th percentile)  Inter-quartile range: IQR = Q3 – Q1  Five number summary: min, Q1, median, Q3, max  Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually  Outlier: usually, a value higher/lower than Q3 + 1.5 x IQR or Q1 – 1.5 x IQR  Variance and standard deviation (sample: s, population: σ)  Variance: (algebraic, scalable computation)  Standard deviation s (or σ) is the square root of variance s2 (or σ2)             n i n i i i n i i x n x n x x n s 1 1 2 2 1 2 2 ] ) ( 1 [ 1 1 ) ( 1 1         n i i n i i x N x N 1 2 2 1 2 2 1 ) ( 1   
  • 17. 17 Boxplot Analysis  Five-number summary of a distribution  Minimum, Q1, Median, Q3, Maximum  Boxplot  Data is represented with a box  The ends of the box are at the first and third quartiles, i.e., the height of the box is IQR  The median is marked by a line within the box  Whiskers: two lines outside the box extended to Minimum and Maximum  Outliers: points beyond a specified outlier threshold, plotted individually
  • 18. Boxplot Analysis Example  Distribution A is positively skewed, because the whisker and half-box are longer on the right side of the median than on the left side.  Distribution B is approximately symmetric, because both half-boxes are almost the same length (0.11 on the left side and 0.10 on the right side).  Distribution C is negatively skewed because the whisker and half-box are longer on the left side of the median than on the right side. 18 https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch12/5214889-eng.htm
  • 19. May 8, 2024 Data Mining: Concepts and Techniques 19 Visualization of Data Dispersion: 3-D Boxplots
  • 20. 20 Properties of Normal Distribution Curve  The normal (distribution) curve  From μ–σ to μ+σ: contains about 68% of the measurements (μ: mean, σ: standard deviation)  From μ–2σ to μ+2σ: contains about 95% of it  From μ–3σ to μ+3σ: contains about 99.7% of it
  • 21. Standard deviation in a Normal Distribution 21 Images/google
  • 22. 22 Graphic Displays of Basic Statistical Descriptions  Boxplot: graphic display of five-number summary  Histogram: x-axis are values, y-axis repres. frequencies  Quantile plot: each value xi is paired with fi indicating that approximately 100 fi % of data are  xi  Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another  Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane
  • 23. 23 Histogram Analysis  Histogram: Graph display of tabulated frequencies, shown as bars  It shows what proportion of cases fall into each of several categories  Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width  The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent 0 5 10 15 20 25 30 35 40 10000 30000 50000 70000 90000
  • 24. Homework 1  Homework 1 has been posted at the course web site and on Canvas.  Due Sept. 12, 2023  Submit it to Canvas May 8, 2024 Data Mining: Concepts and Techniques 24
  • 25. 25 Histograms Often Tell More than Boxplots  The two histograms shown in the left may have the same boxplot representation  The same values for: min, Q1, median, Q3, max  But they have rather different data distributions
  • 26. Data Mining: Concepts and Techniques 26 Quantile Plot  Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)  Plots quantile information  For a data xi data sorted in increasing order, fi indicates that approximately 100 fi% of the data are below or equal to the value xi
  • 27. 27 Quantile-Quantile (Q-Q) Plot  Graphs the quantiles of one univariate distribution against the corresponding quantiles of another  View: Is there is a shift in going from one distribution to another?  Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile. Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2.
  • 28. 28 Scatter plot  Provides a first look at bivariate data to see clusters of points, outliers, etc  Each pair of values is treated as a pair of coordinates and plotted as points in the plane
  • 29. 29 Positively and Negatively Correlated Data  The left half fragment is positively correlated  The right half is negative correlated
  • 31. 31 Chapter 2: Getting to Know Your Data  Data Objects and Attribute Types  Basic Statistical Descriptions of Data  Data Visualization  Measuring Data Similarity and Dissimilarity  Summary
  • 32. 32 Similarity and Dissimilarity  Similarity  Numerical measure of how alike two data objects are  Value is higher when objects are more alike  Often falls in the range [0,1]  Dissimilarity (e.g., distance)  Numerical measure of how different two data objects are  Lower when objects are more alike  Minimum dissimilarity is often 0  Upper limit varies  Proximity refers to a similarity or dissimilarity
  • 33. 33 Data Matrix and Dissimilarity Matrix  Data matrix  n data points with p dimensions  Two modes  Dissimilarity matrix  n data points, but registers only the distance  A triangular matrix  Single mode                   np x ... nf x ... n1 x ... ... ... ... ... ip x ... if x ... i1 x ... ... ... ... ... 1p x ... 1f x ... 11 x                 0 ... ) 2 , ( ) 1 , ( : : : ) 2 , 3 ( ) ... n d n d 0 d d(3,1 0 d(2,1) 0
  • 34. 34 Proximity Measure for Nominal Attributes  Can take 2 or more states, e.g., red, yellow, blue, green (generalization of a binary attribute)  Method 1: Simple matching  m: # of matches, p: total # of variables  Method 2: Use a large number of binary attributes  creating a new binary attribute for each of the M nominal states p m p j i d   ) , (
  • 35. Class Example: Method 1 35                 0 ... ) 2 , ( ) 1 , ( : : : ) 2 , 3 ( ) ... n d n d 0 d d(3,1 0 d(2,1) 0 p m p j i d   ) , (
  • 36. 36 Proximity Measure for Binary Attributes  A contingency table for binary data  Distance measure for symmetric binary variables:  Distance measure for asymmetric binary variables:  Jaccard coefficient (similarity measure for asymmetric binary variables):  Note: Jaccard coefficient is the same as “coherence”: Object i Object j
  • 37. Variables (q, r, s ,t)  q is the number of attributes that equal 1 for both objects i and j,  r is the number of attributes that equal 1 for object i but equal 0 for object j,  s is the number of attributes that equal 0 for object i but equal 1 for object j, and  t is the number of attributes that equal 0 for both objects i and j. 37
  • 38. 38 Dissimilarity between Binary Variables  Example  Gender is a symmetric attribute  The remaining attributes are asymmetric binary attributes  Let the values Y(yes) and P(positive) be 1, and the value N(no and negative) 0 Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4 Jack M Y N P N N N Mary F Y N P N P N Jim M Y P N N N N
  • 39. Calculate the Dissimilarity  d(Jack, Mary) = ?  d(Jack, Jim). = ?  d(Jim, Jack) = ?  q is the number of attributes that equal 1 for both objects i and j,  r is the number of attributes that equal 1 for object i but equal 0 for object j,  s is the number of attributes that equal 0 for object i but equal 1 for object j, and  t is the number of attributes that equal 0 for both objects i and j. 39 OR
  • 40. 40 Dissimilarity between Binary Variables  Example  Gender is a symmetric attribute  The remaining attributes are asymmetric binary attributes  Let the values Y(yes) and P(positive) be 1, and the value N(no and negative) 0 Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4 Jack M Y N P N N N Mary F Y N P N P N Jim M Y P N N N N 75 . 0 2 1 1 2 1 ) , ( 67 . 0 1 1 1 1 1 ) , ( 33 . 0 1 0 2 1 0 ) , (                mary jim d jim jack d mary jack d
  • 41. Comment on the Result  What does the measurement suggest?  These measurements suggest that Jim and Mary are unlikely to have a similar disease because they have the highest dissimilarity value among the three pairs.  Of the three patients, Jack and Mary are the most likely to have a similar disease. 41
  • 42. 42 Standardizing Numeric Data  Z-score:  X: raw score to be standardized, μ: mean of the population, σ: standard deviation  the distance between the raw score and the population mean in units of the standard deviation  negative when the raw score is below the mean, “+” when above  An alternative way: Calculate the mean absolute deviation where  standardized measure (z-score):  Using mean absolute deviation is more robust than using standard deviation . ) ... 2 1 1 nf f f f x x (x n m     |) | ... | | | (| 1 2 1 f nf f f f f f m x m x m x n s        f f if if s m x z       x z
  • 43. 43 Example: Data Matrix and Dissimilarity Matrix point attribute1 attribute2 x1 1 2 x2 3 5 x3 2 0 x4 4 5 Dissimilarity Matrix (with Euclidean Distance) x1 x2 x3 x4 x1 0 x2 3.61 0 x3 5.1 5.1 0 x4 4.24 1 5.39 0 Data Matrix
  • 44. 44 Distance on Numeric Data: Minkowski Distance  Minkowski distance: A popular distance measure where i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-dimensional data objects, and h is the order (the distance so defined is also called L-h norm)  Properties  d(i, j) > 0 if i ≠ j, and d(i, i) = 0 (Positive definiteness)  d(i, j) = d(j, i) (Symmetry)  d(i, j)  d(i, k) + d(k, j) (Triangle Inequality)  A distance that satisfies these properties is a metric
  • 45. 45 Special Cases of Minkowski Distance  h = 1: Manhattan (city block, L1 norm) distance  E.g., the Hamming distance: the number of bits that are different between two binary vectors  h = 2: (L2 norm) Euclidean distance  h  . “supremum” (Lmax norm, L norm) distance.  This is the maximum difference between any component (attribute) of the vectors ) | | ... | | | (| ) , ( 2 2 2 2 2 1 1 p p j x i x j x i x j x i x j i d        | | ... | | | | ) , ( 2 2 1 1 p p j x i x j x i x j x i x j i d       
  • 46. 46 Example: Minkowski Distance Dissimilarity Matrices point attribute 1 attribute 2 x1 1 2 x2 3 5 x3 2 0 x4 4 5 L x1 x2 x3 x4 x1 0 x2 5 0 x3 3 6 0 x4 6 1 7 0 L2 x1 x2 x3 x4 x1 0 x2 3.61 0 x3 2.24 5.1 0 x4 4.24 1 5.39 0 L x1 x2 x3 x4 x1 0 x2 3 0 x3 2 5 0 x4 3 1 5 0 Manhattan (L1) Euclidean (L2) Supremum
  • 47. 47 Ordinal Variables  An ordinal variable can be discrete or continuous  Order is important, e.g., rank  Can be treated like interval-scaled  replace xif by their rank  map the range of each variable onto [0, 1] by replacing i-th object in the f-th variable by  compute the dissimilarity using methods for interval- scaled variables 1 1    f if if M r z } ,..., 1 { f if M r 
  • 48. 48 Attributes of Mixed Type  A database may contain all attribute types  Nominal, symmetric binary, asymmetric binary, numeric, ordinal  One may use a weighted formula to combine their effects  f is binary or nominal: dij (f) = 0 if xif = xjf , or dij (f) = 1 otherwise  f is numeric: use the normalized distance  f is ordinal  Compute ranks rif and  Treat zif as interval-scaled ) ( 1 ) ( ) ( 1 ) , ( f ij p f f ij f ij p f d j i d        1 1    f if M r zif
  • 49. 49 Cosine Similarity  A document can be represented by thousands of attributes, each recording the frequency of a particular word (such as keywords) or phrase in the document.  Other vector objects: gene features in micro-arrays, …  Applications: information retrieval, biologic taxonomy, gene feature mapping, ...  Cosine measure: If d1 and d2 are two vectors (e.g., term-frequency vectors), then cos(d1, d2) = (d1  d2) /||d1|| ||d2|| , where  indicates vector dot product, ||d||: the length of vector d
  • 50. 50 Example: Cosine Similarity  cos(d1, d2) = (d1  d2) /||d1|| ||d2|| , where  indicates vector dot product, ||d|: the length of vector d  Ex: Find the similarity between documents 1 and 2. d1 = (5, 0, 3, 0, 2, 0, 0, 2, 0, 0) d2 = (3, 0, 2, 0, 1, 1, 0, 1, 0, 1) d1d2 = 5*3+0*0+3*2+0*0+2*1+0*1+0*1+2*1+0*0+0*1 = 25 ||d1||= (5*5+0*0+3*3+0*0+2*2+0*0+0*0+2*2+0*0+0*0)0.5=(42)0.5 = 6.481 ||d2||= (3*3+0*0+2*2+0*0+1*1+1*1+0*0+1*1+0*0+1*1)0.5=(17)0.5 = 4.12 cos(d1, d2 ) = 0.94
  • 51. 51 Chapter 2: Getting to Know Your Data  Data Objects and Attribute Types  Basic Statistical Descriptions of Data  Data Visualization  Measuring Data Similarity and Dissimilarity  Summary
  • 52. Summary  Data attribute types: nominal, binary, ordinal, interval-scaled, ratio- scaled  Many types of data sets, e.g., numerical, text, graph, Web, image.  Gain insight into the data by:  Basic statistical data description: central tendency, dispersion, graphical displays  Data visualization: map data onto graphical primitives  Measure data similarity  Above steps are the beginning of data preprocessing.  Many methods have been developed but still an active area of research. 52
  • 53. References  W. Cleveland, Visualizing Data, Hobart Press, 1993  T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley, 2003  U. Fayyad, G. Grinstein, and A. Wierse. Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001  L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: an Introduction to Cluster Analysis. John Wiley & Sons, 1990.  H. V. Jagadish, et al., Special Issue on Data Reduction Techniques. Bulletin of the Tech. Committee on Data Eng., 20(4), Dec. 1997  D. A. Keim. Information visualization and visual data mining, IEEE trans. on Visualization and Computer Graphics, 8(1), 2002  D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, 1999  S. Santini and R. Jain,” Similarity measures”, IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(9), 1999  E. R. Tufte. The Visual Display of Quantitative Information, 2nd ed., Graphics Press, 2001  C. Yu , et al., Visual data mining of multimedia data for social and behavioral studies, Information Visualization, 8(1), 2009 53