SlideShare a Scribd company logo
International Journal of Mathematics and Statistics Invention (IJMSI)
E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759
www.ijmsi.org Volume 4 Issue 10 || December. 2016 || PP-41-43
www.ijmsi.org 41 | Page
K-th Upper Record Values from Power Lomax Distribution
Ibrahim B. Abdul-Moniem
Department of Statistics, Higher Institute of Management sciences in Sohag, Sohag, Egypt
ABSTRACT: In this paper, recurrence relations between the single and the product moments of the K-th
upper record values from Power Lomax distribution are obtained.
Keywords: K-th upper record values, Power Lomax distribution, recurrence relations.
I. INTRODUCTION
The probability density function (pdf) of the Power Lomax (PL) distribution is defined by (Rady et al. [1])
 
 
 
1
1 1
1 ; 0, , , 0 .
x
f x x x



     

 
 
 
    
 
 
(1.1)
The corresponding reliability (survival) function of PL distribution is given by,
   1 ; 0, , , 0 .
x
F x x


  


 
    
 
 
(1.2)
In view of (1.1) and (1.2), we get
     
1
.F x x x f x

  

  (1.3)
For more details on this distribution and its application one may refer to Rady et al. [1].
Let 1 2, , ..., nX X X be a sequence of independent and identically (iid) random variables with pdf  f x and
distribution function (df)  F x . For a fixed 1k  , we defined the sequence of K-th upper record times
 
 , 1
k
nU n  , of the sequence  1 2, , ..., nX X X as  
1
1
k
U  and
   
    : 11 : 1
m in : k k
n n
k k
n j j kn U U k
U J U X X   
  
For 1k  and 1, 2,...n  , we write  1
n nU U . Then  
 , 1
k
nU n  is the sequence of record times of
 1 2, , ..., nX X X . The sequence  
 , 1
k
nY n  , where  
 k
n
k
n
U
Y X is called the sequence of K-th upper
record values of  1 2, , ..., nX X X for convenience, we shall also take  
0
0
k
Y  . Note that for 1k  we have
 1
, 0
nn UY X n  which are record values of  1 2, , ..., nX X X (Ahsanullah, [2]).
The pdf of  
 1
k
nY n  is given by Dziubdziela and Kopocinski [3] as follows:
   
 
      
1 1
ln 1 1
1 !
k
n
n
n k
Y
k
f x F x F x f x
n
 
      
   

, (1.4)
and the joint pdf of    
, ; 1 , 2
k k
m nY Y m n n   is denoted by Grudzien [4] as:
     
   
            
1 1 1
,
, 1
1 ! 1 !
k k
m n
n
m n m k
Y Y
k
f x y H x H y H x h x F y f y
m n m
   
     
   
  
, (1.5)
where      
 
 
ln 1 an d
1
f z
H z F z h z
F z
    
 

,
K-th Upper Record Values from Power Lomax Distribution
www.ijmsi.org 42 | P a g e
Recurrence relations for single and product moments of k-th record values from some distributions are
established by many authors. From Weibull distribution is introduced by Pawlas and Szynal [5]. Saran and
Singh [6], discussed recurrence relations for single and product moments of k-th record values from linear
exponential distribution. Pawlas and Szynal [7], introduced recurrence relations for single and product moments
of k-th record values from Pareto, generalized Pareto and Burr distributions. Amin [8], introduced K-th upper
record values and their moments for uniform and Lomax distributions.
Relations for single and product moments of upper record values from Lomax distribution are introduced by
Balakrishnan and Ahsanullah [9].
II. SINGLE MOMENTS OF K-TH RECORD VALUES FROM PL DISTRIBUTION
In this section, recurrence relation for single moments of the K-th upper record values from PL distribution is
obtained. The single moments of K-th upper record values for PL distribution can be obtained from (1.4) (when
r is positive integer) as follows:
 
 
 
      
1 1
:
0
ln 1 1
1 !
n
n kr r
n k
k
x F x F x f x dx
n


 
      
   
  (2.1)
Lemma 2.1. For PL distribution, the following recurrence relation is satisfied.
 
 
 
 
 
 
 
 
 1 1 1 1
: : : 1 :
1
r r r r
n k n k n k n k
k
r
  
    
    

  

(2.2)
Proof. From (1.3) and (2.1), we get
 
 
 
 
 
        
 
    
1 11 1 1 1
: :
0
1
0
ln
1 !
ln
1 !
n n kr r r r
n k n k
n n k
r
k
x x F x F x f x d x
n
k
x F x F x d x
n
 
   
 

      


      
   
    
   


Integrating by parts, treating r
x for integration and the rest of the integrand for differentiation and after
simplification yields (2.2). □
Remarks
 When 1  , we get the recurrence relation for the single moments of K-th upper record values from
Lomax distribution, established by Amin [8].
 When 1  and 1k  , we get the recurrence relation for the single moments of upper record values from
Lomax distribution, established by Balakrishnan and Ahsanullah [9].
III. PRODUCT MOMENTS OF K-TH RECORD VALUES FROM PL DISTRIBUTION
In this section, recurrence relation for product moments of the K-th upper record values from PL distribution is
obtained. The product moments of K-th upper record values for PL distribution can be obtained from (1.5)
(when r and s are positive integers) as follows:
 
 
   
            
1 1 1,
, :
0
1
1 ! 1 !
n
m n m kr s r s
m n k
x
k
x y H x H y H x h x F y f y dy dx
m n m

 
   
     
   
    
(3.1)
Lemma 3.1. Let X be a non-negative random variable having a pdf (1.1), then
 
   
 
 
 
 , 1 , 1 , 1
, : , : , 1 :
1
, 1 2 an d , 0,1, 2, ...
1 1
r s r s r s
m n k m n k m n k
s
m n r s
k s k s
  
  
   
   


     
   
(3.2)
and
 
   
 
 
 
 , 1 , 1 , 1
, 1 : , 1 : :
1
, 1 an d , 0,1, 2, ...
1 1
r s r s r s
m m k m m k m k
s
m r s
k s k s
  
  
   
   
 

   
   
(3.3)
Proof.
For 1 2 and , 0,1, 2,...m n r s   
From (1.3) and (3.1), we have
K-th Upper Record Values from Power Lomax Distribution
www.ijmsi.org 43 | P a g e
 
 
 
 
   
             
   
   
, 1 , 1
, : , :
1 1 11
0
1
0
1 ! 1 !
1
1 ! 1 !
n
r s r s
m n k m n k
m n m kr s
x
n
mr s
x
k
m n m
x y y y H x H y H x h x F y f y d y d x
k
x y H x H y
m n m


  

 
  
 
   
 

 
  
       
     
 
 
  
 
       
   
     
1
1
0
1
,
1 ! 1 !
n m k
n
mr
H x h x F y d y d x
k
x H x h x I x d x
m n m
 
 


    
   
 
 
   
where
        
1
1
n m ks
x
I x y H y H x F y dy

 
   
 
Integrating by parts, we get
                
2 111
1 1
1
n m ks
x
I x y H y H x F y k H y H x n m f y dy
s

  
           
     
 
This is implies that
 
 
 
 
 
 
 
 , 1 , 1 , 1 , 1
, : , : , : , 1 :
1
r s r s r s r s
m n k m n k m n k m n k
k
s
  
    
    

   
  
,
and after simplification yields (3.2). Proceeding in a similar manner for the case 1n m  , the recurrence
relation given in (3.3) can easily be established. □
Remarks
 When 1  , we get the recurrence relation for the product moments of K-th upper record values from
Lomax distribution, established by Amin [8].
 When 1  and 1k  , we get the recurrence relation for the product moments of upper record values from
Lomax distribution, established by Balakrishnan and Ahsanullah [9].
IV. CONCLUSION
In this paper, we introduce recurrence relations between the single and the product moments of the K-
th upper record values from Power Lomax distribution. Two special cases are obtained. These special cases are
recurrence relations between the single and the product moments of the K-th upper record values from Lomax
distribution introduced by Amin [8] and recurrence relations between the single and the product moments of an
upper record values from Lomax distribution established by Balakrishnan and Ahsanullah [9].
REFERENCES
[1] E. A. Rady, W. A. Hassanein, and T. A. Elhaddad, The power Lomax distribution with an application to bladder cancer data.
SpringerPlus 5:1838, 2016.
[2] M. Ahsanullah, Record Statistics, Nova Science Publishers, New York, 1995.
[3] W. Dziubdziela, B. Kopocinski, Limiting properties of the k-th record value, Appl. Math. (Warsaw) 15, 1976, 187–190.
[4] Z. Grudzien´ , Characterization of distribution of time limits in record statistics as well as distributions and moments of linear record
statistics from the samples of random numbers, PracaDoktorska, UMCS, Lublin, 1982.
[5] P. Pawlas, D. Szynal, Recurrence relations for single and product moments of k-th record values from Weibull distributions, and a
characterization, J. Appl. Statist. Sci. 10, 2000, 17–26.
[6] J. Saran, and S.K. Singh, Recurrence relations for single and product moments of k-th record values from linear exponential
distribution and a characterization, Asian J. Math. Stat. 1, 2008, 159–164.
[7] P. Pawlas and D. Szynal, Recurrence relations for single and product moments of k-th record values from Pareto, generalized Pareto
and Burr distributions, Comm. Statist. Theory Methods 28, 1999, 1699–1709.
[8] E. A. Amin, K-th Upper Record Values and their Moments. International Mathematical Forum, 6, 2011, 3013 - 3021
[9] N. Balakrishnan and M. Ahsanullah, Relations for single and product moments of record values from Lomax distribution, Sankhya
Ser. B 56, 1994, 140–146.

More Related Content

PDF
F0523740
PDF
N. Bilić: AdS Braneworld with Back-reaction
PDF
SULI_Report
PDF
governing_equations_radiation_problem
PDF
PDF
Higgsbosontoelectron positron decay14042021_dsply
PDF
Higgsbosontoelectron positron decay_dsply
PDF
CMB Likelihood Part 1
F0523740
N. Bilić: AdS Braneworld with Back-reaction
SULI_Report
governing_equations_radiation_problem
Higgsbosontoelectron positron decay14042021_dsply
Higgsbosontoelectron positron decay_dsply
CMB Likelihood Part 1

What's hot (20)

PDF
A Global Approach with Cutoff Exponential Function, Mathematically Well Defin...
PDF
Öncel Akademi: İstatistiksel Sismoloji
DOCX
Advance heat transfer 2
PDF
Closed-Form Solutions For Optimum Rotor in Hover and Climb
PDF
International Journal of Computational Engineering Research(IJCER)
PPTX
Lagrangeon Points
PPT
QTPIE and water (Part 1)
PDF
Sensor Fusion Study - Ch9. Optimal Smoothing [Hayden]
PPT
Sergey seriy thomas fermi-dirac theory
PDF
NANO266 - Lecture 4 - Introduction to DFT
PDF
Pulsar - White Dwarf Binaries as Gravity Labs
PPT
Sergey Seriy - Modern realization of ThomasFermi-Dirac theory
PDF
report
DOCX
Outgoing ingoingkleingordon ghp
PDF
Large-scale structure non-Gaussianities with modal methods (Ascona)
PDF
Power point presentation
PPTX
GR analysis techniques
PDF
Principles of soil dynamics 3rd edition das solutions manual
PDF
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
A Global Approach with Cutoff Exponential Function, Mathematically Well Defin...
Öncel Akademi: İstatistiksel Sismoloji
Advance heat transfer 2
Closed-Form Solutions For Optimum Rotor in Hover and Climb
International Journal of Computational Engineering Research(IJCER)
Lagrangeon Points
QTPIE and water (Part 1)
Sensor Fusion Study - Ch9. Optimal Smoothing [Hayden]
Sergey seriy thomas fermi-dirac theory
NANO266 - Lecture 4 - Introduction to DFT
Pulsar - White Dwarf Binaries as Gravity Labs
Sergey Seriy - Modern realization of ThomasFermi-Dirac theory
report
Outgoing ingoingkleingordon ghp
Large-scale structure non-Gaussianities with modal methods (Ascona)
Power point presentation
GR analysis techniques
Principles of soil dynamics 3rd edition das solutions manual
1+3 gr reduced_as_1+1_gravity_set_1_fordisplay
Ad

Viewers also liked (14)

PPTX
Presentation1
PPTX
20150809 dc23nocreview
PPTX
Seminario implantología
PDF
RF-sturing-van-openbare-verlichting-rev1-77
DOC
Estilo css
PPTX
Sistema operativo
PDF
R2L Buzz Article
PPTX
שירותי ייעוץ נבחרים
PDF
Gener musica 2013
PDF
Degree Certificate
PDF
Mootes15 - gestión de Moodle por años académicos
PPTX
H ελληνική μουσική τις δεκαετίες ’50 ’60
PPTX
Dan Laybourn Painting
DOCX
Células 01 reinaldo
Presentation1
20150809 dc23nocreview
Seminario implantología
RF-sturing-van-openbare-verlichting-rev1-77
Estilo css
Sistema operativo
R2L Buzz Article
שירותי ייעוץ נבחרים
Gener musica 2013
Degree Certificate
Mootes15 - gestión de Moodle por años académicos
H ελληνική μουσική τις δεκαετίες ’50 ’60
Dan Laybourn Painting
Células 01 reinaldo
Ad

Similar to K-th Upper Record Values from Power Lomax Distribution (20)

PDF
International Journal of Computational Engineering Research(IJCER)
PDF
Öncel Akademi: İstatistiksel Sismoloji
PDF
On approximate bounds of zeros of polynomials within
PDF
Mtwtalkcibivmar12 120305183200-phpapp02
PPTX
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
PDF
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric KFibonacci Matrices.
PDF
Control Analysis of a mass- loaded String
PDF
Gauge theory field
PDF
Hydraulic similitude and model analysis
PDF
47032417.pdf
PDF
The Generalized Difference Operator of the 퐧 퐭퐡 Kind
PDF
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
PDF
Quantum Physics 3rd Edition 3rd Edition Stephen Gasiorowicz
PDF
Synchronizing Chaotic Systems - Karl Dutson
PDF
M.Sc. Phy SII UIV Quantum Mechanics
PDF
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
PDF
A GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGN
PDF
A03401001005
International Journal of Computational Engineering Research(IJCER)
Öncel Akademi: İstatistiksel Sismoloji
On approximate bounds of zeros of polynomials within
Mtwtalkcibivmar12 120305183200-phpapp02
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
On the K-Fibonacci Hankel and the 4 X 4 Skew Symmetric KFibonacci Matrices.
Control Analysis of a mass- loaded String
Gauge theory field
Hydraulic similitude and model analysis
47032417.pdf
The Generalized Difference Operator of the 퐧 퐭퐡 Kind
Necessary and Sufficient Conditions for Oscillations of Neutral Delay Differe...
Quantum Physics 3rd Edition 3rd Edition Stephen Gasiorowicz
Synchronizing Chaotic Systems - Karl Dutson
M.Sc. Phy SII UIV Quantum Mechanics
A Generalized Sampling Theorem Over Galois Field Domains for Experimental Des...
A GENERALIZED SAMPLING THEOREM OVER GALOIS FIELD DOMAINS FOR EXPERIMENTAL DESIGN
A03401001005

Recently uploaded (20)

PPTX
Foundation to blockchain - A guide to Blockchain Tech
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PDF
PPT on Performance Review to get promotions
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Construction Project Organization Group 2.pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
Project quality management in manufacturing
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
additive manufacturing of ss316l using mig welding
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
Sustainable Sites - Green Building Construction
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
Foundation to blockchain - A guide to Blockchain Tech
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPT on Performance Review to get promotions
Fundamentals of safety and accident prevention -final (1).pptx
CH1 Production IntroductoryConcepts.pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Construction Project Organization Group 2.pptx
R24 SURVEYING LAB MANUAL for civil enggi
Project quality management in manufacturing
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
additive manufacturing of ss316l using mig welding
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Automation-in-Manufacturing-Chapter-Introduction.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
OOP with Java - Java Introduction (Basics)
Sustainable Sites - Green Building Construction
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Model Code of Practice - Construction Work - 21102022 .pdf

K-th Upper Record Values from Power Lomax Distribution

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 4 Issue 10 || December. 2016 || PP-41-43 www.ijmsi.org 41 | Page K-th Upper Record Values from Power Lomax Distribution Ibrahim B. Abdul-Moniem Department of Statistics, Higher Institute of Management sciences in Sohag, Sohag, Egypt ABSTRACT: In this paper, recurrence relations between the single and the product moments of the K-th upper record values from Power Lomax distribution are obtained. Keywords: K-th upper record values, Power Lomax distribution, recurrence relations. I. INTRODUCTION The probability density function (pdf) of the Power Lomax (PL) distribution is defined by (Rady et al. [1])       1 1 1 1 ; 0, , , 0 . x f x x x                          (1.1) The corresponding reliability (survival) function of PL distribution is given by,    1 ; 0, , , 0 . x F x x                   (1.2) In view of (1.1) and (1.2), we get       1 .F x x x f x        (1.3) For more details on this distribution and its application one may refer to Rady et al. [1]. Let 1 2, , ..., nX X X be a sequence of independent and identically (iid) random variables with pdf  f x and distribution function (df)  F x . For a fixed 1k  , we defined the sequence of K-th upper record times    , 1 k nU n  , of the sequence  1 2, , ..., nX X X as   1 1 k U  and         : 11 : 1 m in : k k n n k k n j j kn U U k U J U X X       For 1k  and 1, 2,...n  , we write  1 n nU U . Then    , 1 k nU n  is the sequence of record times of  1 2, , ..., nX X X . The sequence    , 1 k nY n  , where    k n k n U Y X is called the sequence of K-th upper record values of  1 2, , ..., nX X X for convenience, we shall also take   0 0 k Y  . Note that for 1k  we have  1 , 0 nn UY X n  which are record values of  1 2, , ..., nX X X (Ahsanullah, [2]). The pdf of    1 k nY n  is given by Dziubdziela and Kopocinski [3] as follows:              1 1 ln 1 1 1 ! k n n n k Y k f x F x F x f x n               , (1.4) and the joint pdf of     , ; 1 , 2 k k m nY Y m n n   is denoted by Grudzien [4] as:                        1 1 1 , , 1 1 ! 1 ! k k m n n m n m k Y Y k f x y H x H y H x h x F y f y m n m                  , (1.5) where           ln 1 an d 1 f z H z F z h z F z         ,
  • 2. K-th Upper Record Values from Power Lomax Distribution www.ijmsi.org 42 | P a g e Recurrence relations for single and product moments of k-th record values from some distributions are established by many authors. From Weibull distribution is introduced by Pawlas and Szynal [5]. Saran and Singh [6], discussed recurrence relations for single and product moments of k-th record values from linear exponential distribution. Pawlas and Szynal [7], introduced recurrence relations for single and product moments of k-th record values from Pareto, generalized Pareto and Burr distributions. Amin [8], introduced K-th upper record values and their moments for uniform and Lomax distributions. Relations for single and product moments of upper record values from Lomax distribution are introduced by Balakrishnan and Ahsanullah [9]. II. SINGLE MOMENTS OF K-TH RECORD VALUES FROM PL DISTRIBUTION In this section, recurrence relation for single moments of the K-th upper record values from PL distribution is obtained. The single moments of K-th upper record values for PL distribution can be obtained from (1.4) (when r is positive integer) as follows:              1 1 : 0 ln 1 1 1 ! n n kr r n k k x F x F x f x dx n                  (2.1) Lemma 2.1. For PL distribution, the following recurrence relation is satisfied.                  1 1 1 1 : : : 1 : 1 r r r r n k n k n k n k k r                   (2.2) Proof. From (1.3) and (2.1), we get                           1 11 1 1 1 : : 0 1 0 ln 1 ! ln 1 ! n n kr r r r n k n k n n k r k x x F x F x f x d x n k x F x F x d x n                                         Integrating by parts, treating r x for integration and the rest of the integrand for differentiation and after simplification yields (2.2). □ Remarks  When 1  , we get the recurrence relation for the single moments of K-th upper record values from Lomax distribution, established by Amin [8].  When 1  and 1k  , we get the recurrence relation for the single moments of upper record values from Lomax distribution, established by Balakrishnan and Ahsanullah [9]. III. PRODUCT MOMENTS OF K-TH RECORD VALUES FROM PL DISTRIBUTION In this section, recurrence relation for product moments of the K-th upper record values from PL distribution is obtained. The product moments of K-th upper record values for PL distribution can be obtained from (1.5) (when r and s are positive integers) as follows:                      1 1 1, , : 0 1 1 ! 1 ! n m n m kr s r s m n k x k x y H x H y H x h x F y f y dy dx m n m                       (3.1) Lemma 3.1. Let X be a non-negative random variable having a pdf (1.1), then              , 1 , 1 , 1 , : , : , 1 : 1 , 1 2 an d , 0,1, 2, ... 1 1 r s r s r s m n k m n k m n k s m n r s k s k s                           (3.2) and              , 1 , 1 , 1 , 1 : , 1 : : 1 , 1 an d , 0,1, 2, ... 1 1 r s r s r s m m k m m k m k s m r s k s k s                          (3.3) Proof. For 1 2 and , 0,1, 2,...m n r s    From (1.3) and (3.1), we have
  • 3. K-th Upper Record Values from Power Lomax Distribution www.ijmsi.org 43 | P a g e                                   , 1 , 1 , : , : 1 1 11 0 1 0 1 ! 1 ! 1 1 ! 1 ! n r s r s m n k m n k m n m kr s x n mr s x k m n m x y y y H x H y H x h x F y f y d y d x k x y H x H y m n m                                                                   1 1 0 1 , 1 ! 1 ! n m k n mr H x h x F y d y d x k x H x h x I x d x m n m                        where          1 1 n m ks x I x y H y H x F y dy          Integrating by parts, we get                  2 111 1 1 1 n m ks x I x y H y H x F y k H y H x n m f y dy s                         This is implies that                , 1 , 1 , 1 , 1 , : , : , : , 1 : 1 r s r s r s r s m n k m n k m n k m n k k s                      , and after simplification yields (3.2). Proceeding in a similar manner for the case 1n m  , the recurrence relation given in (3.3) can easily be established. □ Remarks  When 1  , we get the recurrence relation for the product moments of K-th upper record values from Lomax distribution, established by Amin [8].  When 1  and 1k  , we get the recurrence relation for the product moments of upper record values from Lomax distribution, established by Balakrishnan and Ahsanullah [9]. IV. CONCLUSION In this paper, we introduce recurrence relations between the single and the product moments of the K- th upper record values from Power Lomax distribution. Two special cases are obtained. These special cases are recurrence relations between the single and the product moments of the K-th upper record values from Lomax distribution introduced by Amin [8] and recurrence relations between the single and the product moments of an upper record values from Lomax distribution established by Balakrishnan and Ahsanullah [9]. REFERENCES [1] E. A. Rady, W. A. Hassanein, and T. A. Elhaddad, The power Lomax distribution with an application to bladder cancer data. SpringerPlus 5:1838, 2016. [2] M. Ahsanullah, Record Statistics, Nova Science Publishers, New York, 1995. [3] W. Dziubdziela, B. Kopocinski, Limiting properties of the k-th record value, Appl. Math. (Warsaw) 15, 1976, 187–190. [4] Z. Grudzien´ , Characterization of distribution of time limits in record statistics as well as distributions and moments of linear record statistics from the samples of random numbers, PracaDoktorska, UMCS, Lublin, 1982. [5] P. Pawlas, D. Szynal, Recurrence relations for single and product moments of k-th record values from Weibull distributions, and a characterization, J. Appl. Statist. Sci. 10, 2000, 17–26. [6] J. Saran, and S.K. Singh, Recurrence relations for single and product moments of k-th record values from linear exponential distribution and a characterization, Asian J. Math. Stat. 1, 2008, 159–164. [7] P. Pawlas and D. Szynal, Recurrence relations for single and product moments of k-th record values from Pareto, generalized Pareto and Burr distributions, Comm. Statist. Theory Methods 28, 1999, 1699–1709. [8] E. A. Amin, K-th Upper Record Values and their Moments. International Mathematical Forum, 6, 2011, 3013 - 3021 [9] N. Balakrishnan and M. Ahsanullah, Relations for single and product moments of record values from Lomax distribution, Sankhya Ser. B 56, 1994, 140–146.