The document describes an experiment to measure the refractive index of HCl gas using a Michelson interferometer. A HeNe laser beam is split into two paths, with one path passing through an evacuated glass cell. As the cell is pumped out, the interference fringes shift due to the changing optical path length. Counting the number of fringe shifts allows calculating the refractive index from the changing wavelength of light in the gas versus vacuum. The experiment is performed at varying HCl pressures and temperatures, with results corrected to standard temperature and pressure for comparison to literature values of the molar refractivity and effective molecular radius of HCl.