The document discusses different types of linear regression models including simple linear regression, multiple linear regression, ridge regression, lasso regression, and elastic net regression. It explains the concepts of slope, intercept, underfitting, overfitting, and regularization techniques used to constrain model weights. Specifically, it describes how ridge regression uses an L2 penalty, lasso regression uses an L1 penalty, and elastic net uses a combination of L1 and L2 penalties to regularize linear regression models and reduce overfitting.
Related topics: