Principal Component Analysis (PCA) is a technique used to reduce the dimensionality of data by transforming it to a new coordinate system. It works by finding the principal components - linear combinations of variables with the highest variance - and using those to project the data to a lower dimensional space. PCA is useful for visualizing high-dimensional data, reducing dimensions without much loss of information, and finding patterns. It involves calculating the covariance matrix and solving the eigenvalue problem to determine the principal components.