SlideShare a Scribd company logo
Multiplication of 2 Vectors by:
BAC

 (read as C equals A cross B)
 CROSS PRODUCT
 DOT PRODUCT
Dot product of vectors A and B is written as:
BAC

. (read as C equals A dot B)
Cross product of vectors A and B is written as:
DOT PRODUCT
Dot product of vectors A and B is written as:
BAC

.
(read as C equals A dot B)
Dot Product
• Laws of Operation
1. Commutative law
A·B = B·A
2. Multiplication by a scalar
a(A·B) = (aA)·B = A·(aB) = (A·B)a
3. Distribution law
A·(B + D) = (A·B) + (A·D)
Angle between 2-Vectors
‘Dot Product of Vectors’
‘Scalar Product of Vectors’
• First define the magnitudes of A and B
• The angle between their tails is θ
A·B = |A||B|cosθ
where 0° ≤ θ ≤ 180°
• The result is a scalar
• Cartesian Vector Formulation
- Dot product of Cartesian unit vectors
Eg: i·i = (1)(1)cos 0° = 1 and
i·j = (1)(1)cos 90° = 0
- Similarly
i·i = 1 j·j = 1 k·k = 1
i·j = 0 i·k = 0 j·k = 0
• Cartesian Vector Formulation
- Dot product of 2 vectors A and B
A·B = (Axi + Ayj + Azk)· (Bxi + Byj + Bzk)
= AxBx(i·i) + AxBy(i·j) + AxBz(i·k)
+ AyBx(j·i) + AyBy(j·j) + AyBz(j·k)
+ AzBx(k·i) + AzBy(k·j) + AzBz(k·k)
= AxBx + AyBy + AzBz
Note: since the result is a scalar, be careful of not
including any unit vectors in your result.
The angle formed between:
two vectors or intersecting lines are:
θ = cos-1 [(A·B)/(|A||B|)] 0°≤ θ ≤180°
Note 1: if A·B = 0, cos-1 0 = 90°,
so A is perpendicular to B
Note 2: if A·B = 1, cos-1 1 = 0°,
so A is parallel to B
U
V
Example:
The components of two vectors U and V are:
U= 6i – 5j – 3k and V= 4i + 2j + 2k.
(a) What is the value of U.V
(b) What is the angle between U and V when
they placed tail to tail.
x x y y z z
2 2 2 2 2 2
-1
U.V U V U V U V
(6)(4) ( 5)(2) ( 3)(2) 8
U.V
U.V U V cos so cos =
U V
8
cos 0.1952
(6) ( 5) ( 3 ). (4) (2) (2 )
=cos 0.1952 78.7436
  
    
  
  
     
   
r r
r r
r r
Multiplication of 2 Vectors by
Cross Product
BAC


read as C equals A cross B
Direction: Right Hand Rule
λC
Magnitude: C ABsin 
Cross Product
• Laws of Operation
1. Commutative law not applicable
A X B = B X A
2. Multiplication by a scalar
a(AxB) = (aA)xB = Ax(aB) = (AxB)a
3. Distribution law
Ax(B + D) = (AxB) + (AxD)
Cross Product of 2 Vectors
Not Commutative.
ABBA


)AB(BA


Right Hand Rule
• Cartesian Vector Formulation
- Cross product of Cartesian unit vectors
Eg: i x i = (1)(1) sin 0° = 0 and
i x j = (1)(1) sin 90° = 1
Hence;
i x i = 0 j x j = 0 k x k = 0
i x j = k i x k = -j j x k = i
j x i = -k k x i = j k x j = -i
i
k
j
+
Unit Vectors Cross Product
o
90 sin 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi i 0 i j k i k j
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆj i k j j 0 j k i
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆk i j k j i k k 0
    
      
      
      
Consider cross product of vector A and B
A X B = (Ax i + Ay j + Az k) X (Bx i + By j + Bz k)
= AxBx (i X i) + AxBy (i X j) + AxBz (i X k)
+ AyBx (j X i) + AyBy (j X j) + AyBz (j X k)
+ AzBx (k X i) + AzBy (k X j) + AzBz (k X k)
= + (AyBz – AzBy) i – (AxBz - AzBx) j + (AxBy – AyBx) k
zyx
zyx
BBB
AAA
kji
BA


X
In determinant form,
Sarrus’ Rule
Cross Product
Of even more utility, the cross product can be written as
Each component can be determined using 2  2 determinants.
zyx
zyx
zyx
zyx
BBB
AAA
kji
BBB
AAA
kji
BA


X
In determinant form:
+ + +- - -
= + (AyBz – AzBy) i + (AzBx -AxBz) j + (AxBy – AyBx) k
Sarrus’ Rule
U
V
Example:
The components of two vectors U and V are:
U= 6i – 5j – 3k and V= 4i + 2j + 2k.
(a) Determine the parallelface area formed by
these vectors? i.e find [U x V]?
(b) determine the smallest angle formed
between these vectors?
224
356
kji



VXU
Determinant form:
(a)
= (-10+6) i + (-12-12) j + (12+20) k = - 4 i -24 j + 32 k
= 1616 = 40.200 𝑢𝑛𝑖𝑡2
U = 70 V = 24
θ = sin-1 [(A X B)/(|A||B|)]
θ = sin-1 [( 1616)/( 70 24)]=78.7448°
(b)
Lecture 4 (27)
Example:
A=(4,0,-1), B=(1,1,2) and C=(-2,1,2) are the
corners of the tringle, determine its area?
z
y
x
A
C
B
AB = (1-4) i + (1-0) j + (2-(-1)) k = -3i+1j+3k
A=(4,0,-1), B=(1,1,2), C=(-2,1,2)
AC = (-2-4) i + (1-0) j + (2-(-1)) k = -6i+1j+3k
AB X AC = area of the rectangle
So (AB X AC) / 2 area of the triangle
316
313
kji



ABXAC
= (3-3) i + (9-18) j + (-3+6) k = -9 j + 3 k = 90 = 9.487 𝑢𝑛𝑖𝑡2
Area of the triangle = 9.487/2= 4.744 𝑢𝑛𝑖𝑡2
Example:
Calculate the volume of the parallel surface
bounded by lines OP, OQ and OT, where O= (0,0,0),
P= (4,0,-1), Q= (1,1,2) and T= (-2,1,2)?
Note: To determine the volume; use the mixed triple
vector product approach [(OP X OQ ) . OT].
O P
Q
T
OP = 4 i -1 k
O=(0,0,0) P=(4,0,-1), Q=(1,1,2), T=(-2,1,2)
OT = -2 i + 1 j + 2 k
OP X OQ = area of the rectangle
211
104
kji


OPXOQ
= (0-(-1) i + (-8-1) j + (4-0) k = 1i -9 j + 4 k 𝑢𝑛𝑖𝑡2
OQ = 1 i +1j + 2 k
So (OP X OQ ) . OT=
(1i -9 j + 4 k) . (-2i +1j+2k)= -2-9 +8 =3 𝑢𝑛𝑖𝑡3
Chapter Summary
• Dot product between two vectors A and B
(vectors expressed as Cartesian form)
A · B = AxBx + AyBy + AzBz
• Angle between the tails of two vectors
θ = cos-1 [(A·B)/(IAI IBI)]
• The projected component of A onto an axis defined
by its unit vector λ
A = A cos θ = A·λ
Dot Product
• Dot product between two vectors A and B
A·B = AB cos θ

More Related Content

PPTX
The vector or cross product
PPT
Engineering Curves
PPT
2. Vector Calculus.ppt
PDF
X2 t01 09 de moivres theorem
PPTX
Matlab complex numbers
PPTX
the inverse of the matrix
PPT
Matrix Multiplication(An example of concurrent programming)
PPT
Techniques of Integration ppt.ppt
The vector or cross product
Engineering Curves
2. Vector Calculus.ppt
X2 t01 09 de moivres theorem
Matlab complex numbers
the inverse of the matrix
Matrix Multiplication(An example of concurrent programming)
Techniques of Integration ppt.ppt

What's hot (20)

PPT
1579 parametric equations
PDF
Graph Theory: Planarity & Dual Graph
PPTX
Coordinate Geometry Concept Class
PPTX
Chapter 4 Cyclic Groups
PPTX
Unit 1: Topological spaces (its definition and definition of open sets)
PDF
1 complex numbers
PPT
Null space, Rank and nullity theorem
PPTX
Depth-First Search
PPTX
Graph theory
PPTX
Presentation on inverse matrix
PDF
Echelon forms
PPTX
CONFORMAL MAPPING.pptx
PPTX
Indefinite Integral
PPTX
construction of Ellipse by using eccentricity method
PPT
Single source stortest path bellman ford and dijkstra
PPTX
Relations in Discrete Math
PPTX
Dot & cross product of vectors
PPTX
Normal distribution
PPTX
6.2 volume of solid of revolution
PDF
Graph Theory Introduction
1579 parametric equations
Graph Theory: Planarity & Dual Graph
Coordinate Geometry Concept Class
Chapter 4 Cyclic Groups
Unit 1: Topological spaces (its definition and definition of open sets)
1 complex numbers
Null space, Rank and nullity theorem
Depth-First Search
Graph theory
Presentation on inverse matrix
Echelon forms
CONFORMAL MAPPING.pptx
Indefinite Integral
construction of Ellipse by using eccentricity method
Single source stortest path bellman ford and dijkstra
Relations in Discrete Math
Dot & cross product of vectors
Normal distribution
6.2 volume of solid of revolution
Graph Theory Introduction
Ad

Similar to Lecture 4 (27) (20)

DOCX
Notes on vectors
PPT
EMF arithmetic Vector multiplication.ppt
PPTX
MID TERM Revision on mechanicsxzxmfcl.pptx
PPTX
Vector Algebra.pptx
PPTX
Scalars and Vectors Part4
PPSX
Ch 2 ~ vector
PPTX
L.O.2.3 - Revision on Dot, Cross Product.pptx
PPTX
Motion in a plane
PPT
product of vector vectors Araddhana BSC I 2018
PPTX
Linear presentation
PPTX
Electromagnetic theory Chapter 1
PPTX
2.1-Unit-Vectors.pptx for engineering purposes
PDF
Vector Algebra One Shot #BounceBack.pdf
PPT
Scalers and Vectors: By DBU-MESA
PDF
1169 dfd8297
PDF
Lecture_1 Dot and Cross Product and its Applications (1).pdf
PDF
Chapter 1
PDF
Short Notes of First year Physics
PPT
Chapter 1(4)SCALAR AND VECTOR
PPTX
Scalars & vectors
Notes on vectors
EMF arithmetic Vector multiplication.ppt
MID TERM Revision on mechanicsxzxmfcl.pptx
Vector Algebra.pptx
Scalars and Vectors Part4
Ch 2 ~ vector
L.O.2.3 - Revision on Dot, Cross Product.pptx
Motion in a plane
product of vector vectors Araddhana BSC I 2018
Linear presentation
Electromagnetic theory Chapter 1
2.1-Unit-Vectors.pptx for engineering purposes
Vector Algebra One Shot #BounceBack.pdf
Scalers and Vectors: By DBU-MESA
1169 dfd8297
Lecture_1 Dot and Cross Product and its Applications (1).pdf
Chapter 1
Short Notes of First year Physics
Chapter 1(4)SCALAR AND VECTOR
Scalars & vectors
Ad

More from Basel Samhouri (20)

PPT
Lecture7 (37)
PPT
Lecture 5 (46)
PPTX
Lecture 3(95)
PPT
Lecture 2(57)
PPT
Lecture 1 (40)
DOCX
Project management
PPTX
nuclear waste
PDF
ثالثة وثانية 2015
PDF
الورقة الاولى شامل 2015 صيفي
PDF
علوم عسكرية العقيد حمدي شابسوغ
PDF
علوم عسكرية اسئلة
PDF
علوم عسكرية اسئلة (2)
PDF
جيش شعبي
PDF
تربيه وطنيه مقترحه
PDF
تربيه وطنيه 2013
PDF
تربية وطنية 2011
PDF
اسئله علوم عسكريه
PDF
اسئلة ثقافة عسكرية سنوات سابقة تجميع المقدم اسماعيل الازايده
PDF
1 تلخيص علوم عسكرية
PDF
عربي101+99
Lecture7 (37)
Lecture 5 (46)
Lecture 3(95)
Lecture 2(57)
Lecture 1 (40)
Project management
nuclear waste
ثالثة وثانية 2015
الورقة الاولى شامل 2015 صيفي
علوم عسكرية العقيد حمدي شابسوغ
علوم عسكرية اسئلة
علوم عسكرية اسئلة (2)
جيش شعبي
تربيه وطنيه مقترحه
تربيه وطنيه 2013
تربية وطنية 2011
اسئله علوم عسكريه
اسئلة ثقافة عسكرية سنوات سابقة تجميع المقدم اسماعيل الازايده
1 تلخيص علوم عسكرية
عربي101+99

Recently uploaded (20)

PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
01-Introduction-to-Information-Management.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Complications of Minimal Access Surgery at WLH
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Insiders guide to clinical Medicine.pdf
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PPTX
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
PPTX
master seminar digital applications in india
PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Pre independence Education in Inndia.pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Pharma ospi slides which help in ospi learning
01-Introduction-to-Information-Management.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Complications of Minimal Access Surgery at WLH
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
Supply Chain Operations Speaking Notes -ICLT Program
2.FourierTransform-ShortQuestionswithAnswers.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Insiders guide to clinical Medicine.pdf
Anesthesia in Laparoscopic Surgery in India
Microbial diseases, their pathogenesis and prophylaxis
Final Presentation General Medicine 03-08-2024.pptx
Microbial disease of the cardiovascular and lymphatic systems
The Healthy Child – Unit II | Child Health Nursing I | B.Sc Nursing 5th Semester
master seminar digital applications in india
VCE English Exam - Section C Student Revision Booklet
Pre independence Education in Inndia.pdf

Lecture 4 (27)

  • 1. Multiplication of 2 Vectors by: BAC   (read as C equals A cross B)  CROSS PRODUCT  DOT PRODUCT Dot product of vectors A and B is written as: BAC  . (read as C equals A dot B) Cross product of vectors A and B is written as:
  • 2. DOT PRODUCT Dot product of vectors A and B is written as: BAC  . (read as C equals A dot B)
  • 3. Dot Product • Laws of Operation 1. Commutative law A·B = B·A 2. Multiplication by a scalar a(A·B) = (aA)·B = A·(aB) = (A·B)a 3. Distribution law A·(B + D) = (A·B) + (A·D)
  • 4. Angle between 2-Vectors ‘Dot Product of Vectors’ ‘Scalar Product of Vectors’ • First define the magnitudes of A and B • The angle between their tails is θ A·B = |A||B|cosθ where 0° ≤ θ ≤ 180° • The result is a scalar
  • 5. • Cartesian Vector Formulation - Dot product of Cartesian unit vectors Eg: i·i = (1)(1)cos 0° = 1 and i·j = (1)(1)cos 90° = 0 - Similarly i·i = 1 j·j = 1 k·k = 1 i·j = 0 i·k = 0 j·k = 0
  • 6. • Cartesian Vector Formulation - Dot product of 2 vectors A and B A·B = (Axi + Ayj + Azk)· (Bxi + Byj + Bzk) = AxBx(i·i) + AxBy(i·j) + AxBz(i·k) + AyBx(j·i) + AyBy(j·j) + AyBz(j·k) + AzBx(k·i) + AzBy(k·j) + AzBz(k·k) = AxBx + AyBy + AzBz Note: since the result is a scalar, be careful of not including any unit vectors in your result.
  • 7. The angle formed between: two vectors or intersecting lines are: θ = cos-1 [(A·B)/(|A||B|)] 0°≤ θ ≤180° Note 1: if A·B = 0, cos-1 0 = 90°, so A is perpendicular to B Note 2: if A·B = 1, cos-1 1 = 0°, so A is parallel to B
  • 8. U V Example: The components of two vectors U and V are: U= 6i – 5j – 3k and V= 4i + 2j + 2k. (a) What is the value of U.V (b) What is the angle between U and V when they placed tail to tail.
  • 9. x x y y z z 2 2 2 2 2 2 -1 U.V U V U V U V (6)(4) ( 5)(2) ( 3)(2) 8 U.V U.V U V cos so cos = U V 8 cos 0.1952 (6) ( 5) ( 3 ). (4) (2) (2 ) =cos 0.1952 78.7436                         r r r r r r
  • 10. Multiplication of 2 Vectors by Cross Product BAC   read as C equals A cross B
  • 11. Direction: Right Hand Rule λC Magnitude: C ABsin 
  • 12. Cross Product • Laws of Operation 1. Commutative law not applicable A X B = B X A 2. Multiplication by a scalar a(AxB) = (aA)xB = Ax(aB) = (AxB)a 3. Distribution law Ax(B + D) = (AxB) + (AxD)
  • 13. Cross Product of 2 Vectors Not Commutative. ABBA   )AB(BA  
  • 15. • Cartesian Vector Formulation - Cross product of Cartesian unit vectors Eg: i x i = (1)(1) sin 0° = 0 and i x j = (1)(1) sin 90° = 1 Hence; i x i = 0 j x j = 0 k x k = 0 i x j = k i x k = -j j x k = i j x i = -k k x i = j k x j = -i i k j +
  • 16. Unit Vectors Cross Product o 90 sin 1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi i 0 i j k i k j ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆj i k j j 0 j k i ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆk i j k j i k k 0                          
  • 17. Consider cross product of vector A and B A X B = (Ax i + Ay j + Az k) X (Bx i + By j + Bz k) = AxBx (i X i) + AxBy (i X j) + AxBz (i X k) + AyBx (j X i) + AyBy (j X j) + AyBz (j X k) + AzBx (k X i) + AzBy (k X j) + AzBz (k X k) = + (AyBz – AzBy) i – (AxBz - AzBx) j + (AxBy – AyBx) k
  • 19. Cross Product Of even more utility, the cross product can be written as Each component can be determined using 2  2 determinants.
  • 20. zyx zyx zyx zyx BBB AAA kji BBB AAA kji BA   X In determinant form: + + +- - - = + (AyBz – AzBy) i + (AzBx -AxBz) j + (AxBy – AyBx) k Sarrus’ Rule
  • 21. U V Example: The components of two vectors U and V are: U= 6i – 5j – 3k and V= 4i + 2j + 2k. (a) Determine the parallelface area formed by these vectors? i.e find [U x V]? (b) determine the smallest angle formed between these vectors?
  • 22. 224 356 kji    VXU Determinant form: (a) = (-10+6) i + (-12-12) j + (12+20) k = - 4 i -24 j + 32 k = 1616 = 40.200 𝑢𝑛𝑖𝑡2 U = 70 V = 24 θ = sin-1 [(A X B)/(|A||B|)] θ = sin-1 [( 1616)/( 70 24)]=78.7448° (b)
  • 24. Example: A=(4,0,-1), B=(1,1,2) and C=(-2,1,2) are the corners of the tringle, determine its area? z y x A C B
  • 25. AB = (1-4) i + (1-0) j + (2-(-1)) k = -3i+1j+3k A=(4,0,-1), B=(1,1,2), C=(-2,1,2) AC = (-2-4) i + (1-0) j + (2-(-1)) k = -6i+1j+3k AB X AC = area of the rectangle So (AB X AC) / 2 area of the triangle 316 313 kji    ABXAC = (3-3) i + (9-18) j + (-3+6) k = -9 j + 3 k = 90 = 9.487 𝑢𝑛𝑖𝑡2 Area of the triangle = 9.487/2= 4.744 𝑢𝑛𝑖𝑡2
  • 26. Example: Calculate the volume of the parallel surface bounded by lines OP, OQ and OT, where O= (0,0,0), P= (4,0,-1), Q= (1,1,2) and T= (-2,1,2)? Note: To determine the volume; use the mixed triple vector product approach [(OP X OQ ) . OT]. O P Q T
  • 27. OP = 4 i -1 k O=(0,0,0) P=(4,0,-1), Q=(1,1,2), T=(-2,1,2) OT = -2 i + 1 j + 2 k OP X OQ = area of the rectangle 211 104 kji   OPXOQ = (0-(-1) i + (-8-1) j + (4-0) k = 1i -9 j + 4 k 𝑢𝑛𝑖𝑡2 OQ = 1 i +1j + 2 k So (OP X OQ ) . OT= (1i -9 j + 4 k) . (-2i +1j+2k)= -2-9 +8 =3 𝑢𝑛𝑖𝑡3
  • 28. Chapter Summary • Dot product between two vectors A and B (vectors expressed as Cartesian form) A · B = AxBx + AyBy + AzBz • Angle between the tails of two vectors θ = cos-1 [(A·B)/(IAI IBI)] • The projected component of A onto an axis defined by its unit vector λ A = A cos θ = A·λ Dot Product • Dot product between two vectors A and B A·B = AB cos θ