SlideShare a Scribd company logo
Machine	
  Learning	
  for	
  Language	
  Technology	
  2015	
  
h6p://stp.lingfil.uu.se/~san?nim/ml/2015/ml4lt_2015.htm	
  
	
  	
  
Sta%s%cal	
  Inference	
  (2)	
  
Interval	
  Es?ma?on	
  
Marina	
  San%ni	
  
	
  
san%nim@stp.lingfil.uu.se	
  
	
  
Department	
  of	
  Linguis%cs	
  and	
  Philology	
  
Uppsala	
  University,	
  Uppsala,	
  Sweden	
  
	
  
Autumn	
  2015	
  
	
  
Acknowledgements	
  
•  The	
  web,	
  sta%s%cal	
  websites,	
  online	
  
calculators	
  	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
2
Outline	
  
•  Confidence	
  intervals	
  
– On	
  propor%ons	
  
– On	
  means	
  
•  Standard	
  error	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
3
Sta%s%cal	
  Inference:	
  	
  
Interval	
  Es%ma%on	
  
•  Suppose	
  we	
  measure	
  the	
  error	
  of	
  a	
  classifier	
  on	
  a	
  test	
  
set	
  and	
  obtain	
  a	
  certain	
  numerical	
  error	
  rate,	
  eg.	
  25%.	
  	
  
•  This	
  corresponds	
  to	
  a	
  success	
  rate	
  of	
  75%.	
  	
  
•  This	
  is	
  an	
  es%mate	
  on	
  a	
  sample	
  (our	
  dataset).	
  	
  
•  What	
  can	
  we	
  say	
  about	
  the	
  "true"	
  success	
  rate	
  on	
  the	
  
target	
  popula%on?	
  	
  
•  Remember:	
  We	
  have	
  observed	
  the	
  propor%on	
  of	
  
correct	
  classifica%ons	
  on	
  a	
  sample,	
  while	
  the	
  
popula%on	
  is	
  unknown	
  to	
  us.	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
4
Our	
  prac%cal	
  ques%on	
  is…	
  
l  When the estimated success rate is 75%, how
close is this value to the true success rate, ie the
success rate on the population?
♦  Depends on the amount of sample size
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
5
What	
  is	
  a	
  confidence	
  interval?	
  
	
  •  In	
  sta%s%cal	
  inference,	
  one	
  wishes	
  to	
  es%mate	
  popula%on	
  
parameters	
  using	
  observed	
  sample	
  data	
  
•  Confidence	
  intervals	
  provide	
  an	
  essen%al	
  understanding	
  of	
  how	
  
much	
  faith	
  we	
  can	
  have	
  in	
  our	
  sample	
  es%mates	
  
•  A	
  confidence	
  interval	
  is	
  a	
  range	
  computed	
  using	
  sample	
  sta%s%cs	
  
to	
  es%mate	
  an	
  unknown	
  popula%on	
  parameter	
  with	
  a	
  given	
  level	
  
of	
  confidence.	
  	
  
–  For	
  example,	
  we	
  want	
  to	
  say:	
  “we	
  are	
  80%	
  certain	
  that	
  true	
  
popula%on	
  propor%on	
  falls	
  within	
  the	
  range	
  of	
  73.25%	
  and	
  76.75%	
  
–  We	
  usually	
  write	
  the	
  confidence	
  interval	
  in	
  this	
  way:	
  [0.732,0.767]	
  
	
  
	
  
	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
6
Generally	
  speaking...	
  
•  A	
  confidence	
  interval	
  is	
  constructed	
  by	
  taking	
  
the	
  point	
  es%mate	
  (p̂)	
  plus	
  and	
  minus	
  the	
  
margin	
  of	
  error.	
  	
  
•  The	
  margin	
  of	
  error	
  is	
  computed	
  by	
  
mul%plying	
  a	
  z	
  mul%plier	
  by	
  the	
  
standard	
  error,	
  SE(p̂).	
  
	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
7
Defini%on:	
  Standard	
  Error	
  	
  	
  	
  	
  
•  Standard	
  error	
  is	
  a	
  sta%s%cal	
  term	
  that	
  measures	
  the	
  
accuracy	
  with	
  which	
  a	
  sample	
  represents	
  a	
  popula%on.	
  	
  
•  In	
  sta%s%cs,	
  a	
  sample	
  mean	
  or	
  a	
  sample	
  propor%on	
  
deviates	
  from	
  the	
  actual	
  mean	
  or	
  propor%on	
  of	
  a	
  
popula%on;	
  this	
  devia%on	
  is	
  the	
  standard	
  error.	
  
	
  
The	
  smaller	
  the	
  standard	
  error,	
  the	
  more	
  
representa%ve	
  the	
  sample	
  will	
  be	
  of	
  the	
  overall	
  
popula%on.	
  The	
  standard	
  error	
  is	
  also	
  inversely	
  
propor%onal	
  to	
  the	
  sample	
  size;	
  the	
  larger	
  the	
  sample	
  
size,	
  the	
  smaller	
  the	
  standard	
  error	
  because	
  the	
  
sta%s%c	
  will	
  approach	
  the	
  actual	
  value.	
  	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
8
The	
  Mul%plier	
  
The multiplier is a constant that indicates the number of standard
deviations in a normal curve. The larger the multiplier, the higher
the confidence level, the narrower the confidence interval, the
more reliable the prediction of the performace.The constant for
80% percent confidence intervals is 1.28 (see table or use a
calculator: http://www.gngroup.com/stat.html )
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
9
Confidence	
  intervals	
  
•  Confidence	
  intervals	
  of	
  a	
  propor%on	
  
•  Confidence	
  intervals	
  of	
  the	
  mean	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
10
Confidence	
  interval	
  for	
  propor%on	
  
•  A	
  confidence	
  interval	
  for	
  a	
  propor%on	
  is	
  
constructed	
  by	
  taking	
  the	
  point	
  es%mate	
  (p̂)	
  
plus	
  and	
  minus	
  the	
  margin	
  of	
  error.	
  The	
  
margin	
  of	
  error	
  is	
  computed	
  by	
  mul%plying	
  a	
  
mul%plier	
  by	
  the	
  standard	
  error,	
  SE(pˆ).	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
11
The	
  standard	
  error	
  of	
  propor%on:	
  
p̂	
  (p-­‐hat)	
  
•  The	
  standard	
  error	
  is	
  an	
  es%mate	
  of	
  the	
  standard	
  devia%on	
  
of	
  a	
  sta%s%c.	
  	
  
•  This	
  is	
  the	
  formula	
  of	
  the	
  Standard	
  Error	
  of	
  an	
  es%mated	
  
propor%on	
  (the	
  hat	
  always	
  represents	
  an	
  es%mate)	
  
•  p̂	
  =	
  es%mated	
  propor%on	
  
•  n	
  =	
  sample	
  (number	
  of	
  observa%ons)	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
12
Our	
  prac%cal	
  ques%on	
  is…	
  
l  When the estimated success rate is 75%, how
close is this value to the true success rate, ie the
success rate on the population?
♦  Depends on the amount of sample size
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
13
Confidence	
  intervals	
  on	
  our	
  
propor%on	
  
l  We can say that our point estimate 75% lies
within a certain specified interval with a certain
specified confidence (say 80%):
l  Example: S=750 successes in N=1000 trials
l  Estimated success rate: 75%
l  How close is this to true success rate p?
l  Answer: with 80% confidence p in [73.2,76.7]
l  Another example: S=75 and N=100
l  Estimated success rate: 75%
l  Answer: With 80% confidence p in [69.1,80.1]
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
14
l  p̂ = 75%, n = 1000, confidence = 80% (so that z =
1.28):
p∈[0.732,0.767]
l  p̂ = 75%, n = 100, confidence = 80% (so that z = 1.28):
p∈[0.691,0.801]
l  Usually the normal distribution assumption is only valid
for large n (i.e. n > 100)
l  In a case like this: p̂ = 75%, n = 10, confidence = 80%
(so that z = 1.28): p∈[0.549,0.881]
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
15
Confidence	
  Interval	
  Calculator	
  for	
  Propor%ons	
  
hdps://www.mccallum-­‐layton.co.uk/tools/sta%s%c-­‐calculators/confidence-­‐interval-­‐for-­‐propor%ons-­‐
calculator/	
  	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
16
Confidence	
  intervals	
  around	
  the	
  mean	
  
Confidence	
  intervals	
  are	
  calculated	
  based	
  on	
  the	
  
standard	
  error	
  of	
  the	
  mean	
  (SEM):	
  
	
  
s	
  =	
  sample	
  standard	
  devia%on	
  (see	
  formula	
  below)	
  	
  
n	
  =	
  sample	
  (number	
  of	
  observa%ons)	
  
	
  
The	
  following	
  is	
  the	
  sample	
  standard	
  devia%on	
  formula	
  (see	
  also	
  lecture	
  2):	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
 17
Example:	
  How	
  to	
  compute	
  the	
  
confidence	
  interval	
  of	
  teh	
  mean	
  
	
  
A	
  brand	
  ra%ng	
  on	
  a	
  five	
  point	
  scale	
  from	
  62	
  par%cipants	
  was	
  4.32	
  with	
  a	
  standard	
  devia%on	
  of	
  .845.	
  
What	
  is	
  the	
  95%	
  confidence	
  interval?	
  
	
  
1)	
  Find	
  the	
  mean:	
  4.32	
  
2)	
  Compute	
  the	
  standard	
  devia%on:	
  .845	
  
3)	
  Compute	
  the	
  standard	
  error	
  by	
  dividing	
  the	
  standard	
  devia%on	
  by	
  the	
  square	
  root	
  of	
  the	
  sample	
  size:	
  	
  
.845/	
  √(62)	
  =	
  .11	
  
4)	
  Compute	
  the	
  margin	
  of	
  error	
  by	
  mul%plying	
  the	
  standard	
  error	
  by	
  2	
  (it	
  is	
  common	
  to	
  round	
  up	
  1.96	
  
to	
  2).	
  =	
  .11	
  x	
  2	
  =	
  .22	
  
5)	
  Compute	
  the	
  confidence	
  interval	
  by	
  adding	
  the	
  margin	
  of	
  error	
  to	
  the	
  mean	
  from	
  Step	
  1	
  and	
  then	
  
subtrac%ng	
  the	
  margin	
  of	
  error	
  from	
  the	
  mean:	
  	
  
	
  	
  
	
  Lower	
  limit:	
  4.32-­‐.22	
  =	
  4.10	
  
	
  Upper	
  limit:	
  4.32+.22	
  =	
  4.54	
  
	
  	
  
The	
  95%	
  confidence	
  interval	
  is	
  4.10	
  to	
  4.54.	
  We	
  don't	
  have	
  any	
  historical	
  data	
  using	
  this	
  5-­‐point	
  
branding	
  scale,	
  however,	
  historically,	
  scores	
  above	
  80%	
  of	
  the	
  maximum	
  value	
  tend	
  to	
  be	
  above	
  
average	
  (4	
  out	
  of	
  5	
  on	
  a	
  5	
  point	
  scale).	
  	
  Therefore	
  we	
  can	
  be	
  fairly	
  confident	
  that	
  the	
  brand	
  is	
  at	
  least	
  
above	
  the	
  average	
  threshold	
  of	
  4	
  because	
  the	
  lower	
  end	
  of	
  the	
  confidence	
  interval	
  exceeds	
  4.	
  
	
  
Source:	
  hdp://www.measuringu.com/blog/ci-­‐five-­‐steps.php	
  	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
18
Confidence	
  Interval	
  Calculator	
  for	
  Means	
  
	
  
hdps://www.mccallum-­‐layton.co.uk/tools/sta%s%c-­‐calculators/confidence-­‐interval-­‐for-­‐mean-­‐calculator/	
  	
  
	
  
	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
19
Quiz	
  1:	
  Confidence	
  Interval	
  (Mean)	
  
You	
  take	
  a	
  sample	
  of	
  25	
  test	
  scores	
  from	
  a	
  
popula%on.	
  The	
  sample	
  mean	
  is	
  38	
  and	
  the	
  
populaton	
  standard	
  devia%on	
  is	
  6.5.	
  What	
  is	
  the	
  
95%	
  confidence	
  interval	
  of	
  the	
  mean?	
  
	
  
1.  [37.49,38.51]	
  
2.  [36.49,39.51]	
  
3.  [35.45,40.55]	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
20
Calculator	
  	
  
hdps://www.mccallum-­‐layton.co.uk/tools/sta%s%c-­‐calculators/confidence-­‐
interval-­‐for-­‐mean-­‐calculator	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
21
Quiz	
  2:	
  Confidence	
  Interval	
  
(Propor%on)	
  
747	
  out	
  of	
  1168	
  female	
  students	
  said	
  they	
  
always	
  use	
  a	
  seatbelt	
  when	
  driving.	
  What	
  is	
  the	
  
99%	
  confidence	
  interval	
  for	
  the	
  propor%on	
  of	
  
female	
  students	
  in	
  the	
  popula%on	
  who	
  always	
  
use	
  a	
  seatbelt	
  when	
  driving?	
  
1.  [.612,.668]	
  
2.  [.604,.676]	
  
3.  None	
  of	
  the	
  above	
  
	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
22
Calculator	
  
hdps://www.mccallum-­‐layton.co.uk/tools/sta%s%c-­‐calculators/confidence-­‐
interval-­‐for-­‐propor%ons-­‐calculator/	
  	
  
	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
23
Conclusions	
  
•  A	
  confidence	
  interval	
  is	
  a	
  range	
  of	
  values	
  that	
  is	
  likely	
  to	
  contain	
  an	
  
unknown	
  popula%on	
  parameter.	
  	
  
•  Confidence	
  intervals	
  serve	
  as	
  good	
  es%mates	
  of	
  the	
  popula%on	
  
parameter	
  because	
  the	
  procedure	
  tends	
  to	
  produce	
  intervals	
  that	
  
contain	
  the	
  parameter.	
  	
  
•  Confidence	
  intervals	
  are	
  comprised	
  of	
  the	
  point	
  es%mate	
  (the	
  most	
  
likely	
  value)	
  and	
  a	
  margin	
  of	
  error	
  around	
  that	
  point	
  es%mate.	
  The	
  
margin	
  of	
  error	
  indicates	
  the	
  amount	
  of	
  uncertainty	
  that	
  surrounds	
  
the	
  sample	
  es%mate	
  of	
  the	
  popula%on	
  parameter.	
  
	
  
We	
  will	
  resume	
  this	
  topic	
  in	
  Lecture	
  8.	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
24
The	
  end	
  
Lecture  5:  Statistical  Inference  2:  
Interval  Estimation	
25

More Related Content

PPTX
6. point and interval estimation
PPTX
Point Estimation
PPT
Confidence Intervals
PPT
Ch4 Confidence Interval
PPTX
The t Test for Two Related Samples
PDF
Point Estimate, Confidence Interval, Hypotesis tests
PPTX
Point estimation
PPT
Estimation
6. point and interval estimation
Point Estimation
Confidence Intervals
Ch4 Confidence Interval
The t Test for Two Related Samples
Point Estimate, Confidence Interval, Hypotesis tests
Point estimation
Estimation

What's hot (20)

PPTX
Hypothesis testing
PPT
Testing Hypothesis
PPTX
Confidence interval & probability statements
PPTX
Central limit theorem
PPTX
Central limit theorem
PPTX
Introduction to the t Statistic
PPT
Estimation and hypothesis testing 1 (graduate statistics2)
PPTX
Point and Interval Estimation
PPTX
STATISTICS: Hypothesis Testing
PPT
PPT
Inferential Statistics
PPT
HYPOTHESIS TESTING.ppt
PPT
Chap07 interval estimation
PPTX
Statistical inference: Estimation
PPTX
Statistical inference concept, procedure of hypothesis testing
PPTX
The t Test for Two Independent Samples
PPTX
Descriptive Statistics
PPTX
Inferential statistics
PPTX
R square vs adjusted r square
Hypothesis testing
Testing Hypothesis
Confidence interval & probability statements
Central limit theorem
Central limit theorem
Introduction to the t Statistic
Estimation and hypothesis testing 1 (graduate statistics2)
Point and Interval Estimation
STATISTICS: Hypothesis Testing
Inferential Statistics
HYPOTHESIS TESTING.ppt
Chap07 interval estimation
Statistical inference: Estimation
Statistical inference concept, procedure of hypothesis testing
The t Test for Two Independent Samples
Descriptive Statistics
Inferential statistics
R square vs adjusted r square
Ad

Similar to Lecture 5: Interval Estimation (20)

PPTX
STAT 206 - Chapter 8 (Confidence Interval Estimation).pptx
PPTX
STATISTICAL-INTERVALS 2202 Math 403.pptx
PPTX
M1-4 Estimasi Titik dan Intervaltttt.pptx
PPT
PPT
Chapter09
PPTX
PPTX
Chapter 8 review
DOCX
Section 7 Analyzing our Marketing Test, Survey Results .docx
PPTX
Interval estimation for proportions
PDF
Estimation and hypothesis testing (2).pdf
PPT
Business Statistics Chapter 8
PPTX
ENGINEERING DATA ANALYSIS FOR MIDTERM-COVERAGE.pptx
DOC
ch 9 Confidence interval.doc
PPTX
statistical inference.pptx
PPT
Business Statistics CHapter six power points
PPT
Chap009.ppt
PPT
PPTX
estimation.pptx
DOCX
Module 7 Interval estimatorsMaster for Business Statistics.docx
PPT
Lecture-3 inferential stastistics.ppt
STAT 206 - Chapter 8 (Confidence Interval Estimation).pptx
STATISTICAL-INTERVALS 2202 Math 403.pptx
M1-4 Estimasi Titik dan Intervaltttt.pptx
Chapter09
Chapter 8 review
Section 7 Analyzing our Marketing Test, Survey Results .docx
Interval estimation for proportions
Estimation and hypothesis testing (2).pdf
Business Statistics Chapter 8
ENGINEERING DATA ANALYSIS FOR MIDTERM-COVERAGE.pptx
ch 9 Confidence interval.doc
statistical inference.pptx
Business Statistics CHapter six power points
Chap009.ppt
estimation.pptx
Module 7 Interval estimatorsMaster for Business Statistics.docx
Lecture-3 inferential stastistics.ppt
Ad

More from Marina Santini (20)

PDF
Can We Quantify Domainhood? Exploring Measures to Assess Domain-Specificity i...
PDF
Towards a Quality Assessment of Web Corpora for Language Technology Applications
PDF
A Web Corpus for eCare: Collection, Lay Annotation and Learning -First Results-
PDF
An Exploratory Study on Genre Classification using Readability Features
PDF
Lecture: Semantic Word Clouds
PDF
Lecture: Ontologies and the Semantic Web
PDF
Lecture: Summarization
PDF
Relation Extraction
PDF
Lecture: Question Answering
PDF
IE: Named Entity Recognition (NER)
PDF
Lecture: Vector Semantics (aka Distributional Semantics)
PDF
Lecture: Word Sense Disambiguation
PDF
Lecture: Word Senses
PDF
Sentiment Analysis
PDF
Semantic Role Labeling
PDF
Semantics and Computational Semantics
PDF
Lecture 9: Machine Learning in Practice (2)
PDF
Lecture 8: Machine Learning in Practice (1)
PDF
Lecture 4 Decision Trees (2): Entropy, Information Gain, Gain Ratio
PDF
Lecture 3b: Decision Trees (1 part)
Can We Quantify Domainhood? Exploring Measures to Assess Domain-Specificity i...
Towards a Quality Assessment of Web Corpora for Language Technology Applications
A Web Corpus for eCare: Collection, Lay Annotation and Learning -First Results-
An Exploratory Study on Genre Classification using Readability Features
Lecture: Semantic Word Clouds
Lecture: Ontologies and the Semantic Web
Lecture: Summarization
Relation Extraction
Lecture: Question Answering
IE: Named Entity Recognition (NER)
Lecture: Vector Semantics (aka Distributional Semantics)
Lecture: Word Sense Disambiguation
Lecture: Word Senses
Sentiment Analysis
Semantic Role Labeling
Semantics and Computational Semantics
Lecture 9: Machine Learning in Practice (2)
Lecture 8: Machine Learning in Practice (1)
Lecture 4 Decision Trees (2): Entropy, Information Gain, Gain Ratio
Lecture 3b: Decision Trees (1 part)

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PDF
01-Introduction-to-Information-Management.pdf
PPTX
Pharma ospi slides which help in ospi learning
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PDF
Pre independence Education in Inndia.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Complications of Minimal Access Surgery at WLH
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
RMMM.pdf make it easy to upload and study
VCE English Exam - Section C Student Revision Booklet
01-Introduction-to-Information-Management.pdf
Pharma ospi slides which help in ospi learning
102 student loan defaulters named and shamed – Is someone you know on the list?
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Insiders guide to clinical Medicine.pdf
Final Presentation General Medicine 03-08-2024.pptx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Pre independence Education in Inndia.pdf
Supply Chain Operations Speaking Notes -ICLT Program
PPH.pptx obstetrics and gynecology in nursing
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
TR - Agricultural Crops Production NC III.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Complications of Minimal Access Surgery at WLH
O7-L3 Supply Chain Operations - ICLT Program
RMMM.pdf make it easy to upload and study

Lecture 5: Interval Estimation

  • 1. Machine  Learning  for  Language  Technology  2015   h6p://stp.lingfil.uu.se/~san?nim/ml/2015/ml4lt_2015.htm       Sta%s%cal  Inference  (2)   Interval  Es?ma?on   Marina  San%ni     san%nim@stp.lingfil.uu.se     Department  of  Linguis%cs  and  Philology   Uppsala  University,  Uppsala,  Sweden     Autumn  2015    
  • 2. Acknowledgements   •  The  web,  sta%s%cal  websites,  online   calculators     Lecture  5:  Statistical  Inference  2:   Interval  Estimation 2
  • 3. Outline   •  Confidence  intervals   – On  propor%ons   – On  means   •  Standard  error   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 3
  • 4. Sta%s%cal  Inference:     Interval  Es%ma%on   •  Suppose  we  measure  the  error  of  a  classifier  on  a  test   set  and  obtain  a  certain  numerical  error  rate,  eg.  25%.     •  This  corresponds  to  a  success  rate  of  75%.     •  This  is  an  es%mate  on  a  sample  (our  dataset).     •  What  can  we  say  about  the  "true"  success  rate  on  the   target  popula%on?     •  Remember:  We  have  observed  the  propor%on  of   correct  classifica%ons  on  a  sample,  while  the   popula%on  is  unknown  to  us.   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 4
  • 5. Our  prac%cal  ques%on  is…   l  When the estimated success rate is 75%, how close is this value to the true success rate, ie the success rate on the population? ♦  Depends on the amount of sample size Lecture  5:  Statistical  Inference  2:   Interval  Estimation 5
  • 6. What  is  a  confidence  interval?    •  In  sta%s%cal  inference,  one  wishes  to  es%mate  popula%on   parameters  using  observed  sample  data   •  Confidence  intervals  provide  an  essen%al  understanding  of  how   much  faith  we  can  have  in  our  sample  es%mates   •  A  confidence  interval  is  a  range  computed  using  sample  sta%s%cs   to  es%mate  an  unknown  popula%on  parameter  with  a  given  level   of  confidence.     –  For  example,  we  want  to  say:  “we  are  80%  certain  that  true   popula%on  propor%on  falls  within  the  range  of  73.25%  and  76.75%   –  We  usually  write  the  confidence  interval  in  this  way:  [0.732,0.767]         Lecture  5:  Statistical  Inference  2:   Interval  Estimation 6
  • 7. Generally  speaking...   •  A  confidence  interval  is  constructed  by  taking   the  point  es%mate  (p̂)  plus  and  minus  the   margin  of  error.     •  The  margin  of  error  is  computed  by   mul%plying  a  z  mul%plier  by  the   standard  error,  SE(p̂).     Lecture  5:  Statistical  Inference  2:   Interval  Estimation 7
  • 8. Defini%on:  Standard  Error           •  Standard  error  is  a  sta%s%cal  term  that  measures  the   accuracy  with  which  a  sample  represents  a  popula%on.     •  In  sta%s%cs,  a  sample  mean  or  a  sample  propor%on   deviates  from  the  actual  mean  or  propor%on  of  a   popula%on;  this  devia%on  is  the  standard  error.     The  smaller  the  standard  error,  the  more   representa%ve  the  sample  will  be  of  the  overall   popula%on.  The  standard  error  is  also  inversely   propor%onal  to  the  sample  size;  the  larger  the  sample   size,  the  smaller  the  standard  error  because  the   sta%s%c  will  approach  the  actual  value.     Lecture  5:  Statistical  Inference  2:   Interval  Estimation 8
  • 9. The  Mul%plier   The multiplier is a constant that indicates the number of standard deviations in a normal curve. The larger the multiplier, the higher the confidence level, the narrower the confidence interval, the more reliable the prediction of the performace.The constant for 80% percent confidence intervals is 1.28 (see table or use a calculator: http://www.gngroup.com/stat.html ) Lecture  5:  Statistical  Inference  2:   Interval  Estimation 9
  • 10. Confidence  intervals   •  Confidence  intervals  of  a  propor%on   •  Confidence  intervals  of  the  mean   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 10
  • 11. Confidence  interval  for  propor%on   •  A  confidence  interval  for  a  propor%on  is   constructed  by  taking  the  point  es%mate  (p̂)   plus  and  minus  the  margin  of  error.  The   margin  of  error  is  computed  by  mul%plying  a   mul%plier  by  the  standard  error,  SE(pˆ).   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 11
  • 12. The  standard  error  of  propor%on:   p̂  (p-­‐hat)   •  The  standard  error  is  an  es%mate  of  the  standard  devia%on   of  a  sta%s%c.     •  This  is  the  formula  of  the  Standard  Error  of  an  es%mated   propor%on  (the  hat  always  represents  an  es%mate)   •  p̂  =  es%mated  propor%on   •  n  =  sample  (number  of  observa%ons)   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 12
  • 13. Our  prac%cal  ques%on  is…   l  When the estimated success rate is 75%, how close is this value to the true success rate, ie the success rate on the population? ♦  Depends on the amount of sample size Lecture  5:  Statistical  Inference  2:   Interval  Estimation 13
  • 14. Confidence  intervals  on  our   propor%on   l  We can say that our point estimate 75% lies within a certain specified interval with a certain specified confidence (say 80%): l  Example: S=750 successes in N=1000 trials l  Estimated success rate: 75% l  How close is this to true success rate p? l  Answer: with 80% confidence p in [73.2,76.7] l  Another example: S=75 and N=100 l  Estimated success rate: 75% l  Answer: With 80% confidence p in [69.1,80.1] Lecture  5:  Statistical  Inference  2:   Interval  Estimation 14
  • 15. l  p̂ = 75%, n = 1000, confidence = 80% (so that z = 1.28): p∈[0.732,0.767] l  p̂ = 75%, n = 100, confidence = 80% (so that z = 1.28): p∈[0.691,0.801] l  Usually the normal distribution assumption is only valid for large n (i.e. n > 100) l  In a case like this: p̂ = 75%, n = 10, confidence = 80% (so that z = 1.28): p∈[0.549,0.881] Lecture  5:  Statistical  Inference  2:   Interval  Estimation 15
  • 16. Confidence  Interval  Calculator  for  Propor%ons   hdps://www.mccallum-­‐layton.co.uk/tools/sta%s%c-­‐calculators/confidence-­‐interval-­‐for-­‐propor%ons-­‐ calculator/     Lecture  5:  Statistical  Inference  2:   Interval  Estimation 16
  • 17. Confidence  intervals  around  the  mean   Confidence  intervals  are  calculated  based  on  the   standard  error  of  the  mean  (SEM):     s  =  sample  standard  devia%on  (see  formula  below)     n  =  sample  (number  of  observa%ons)     The  following  is  the  sample  standard  devia%on  formula  (see  also  lecture  2):   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 17
  • 18. Example:  How  to  compute  the   confidence  interval  of  teh  mean     A  brand  ra%ng  on  a  five  point  scale  from  62  par%cipants  was  4.32  with  a  standard  devia%on  of  .845.   What  is  the  95%  confidence  interval?     1)  Find  the  mean:  4.32   2)  Compute  the  standard  devia%on:  .845   3)  Compute  the  standard  error  by  dividing  the  standard  devia%on  by  the  square  root  of  the  sample  size:     .845/  √(62)  =  .11   4)  Compute  the  margin  of  error  by  mul%plying  the  standard  error  by  2  (it  is  common  to  round  up  1.96   to  2).  =  .11  x  2  =  .22   5)  Compute  the  confidence  interval  by  adding  the  margin  of  error  to  the  mean  from  Step  1  and  then   subtrac%ng  the  margin  of  error  from  the  mean:          Lower  limit:  4.32-­‐.22  =  4.10    Upper  limit:  4.32+.22  =  4.54       The  95%  confidence  interval  is  4.10  to  4.54.  We  don't  have  any  historical  data  using  this  5-­‐point   branding  scale,  however,  historically,  scores  above  80%  of  the  maximum  value  tend  to  be  above   average  (4  out  of  5  on  a  5  point  scale).    Therefore  we  can  be  fairly  confident  that  the  brand  is  at  least   above  the  average  threshold  of  4  because  the  lower  end  of  the  confidence  interval  exceeds  4.     Source:  hdp://www.measuringu.com/blog/ci-­‐five-­‐steps.php     Lecture  5:  Statistical  Inference  2:   Interval  Estimation 18
  • 19. Confidence  Interval  Calculator  for  Means     hdps://www.mccallum-­‐layton.co.uk/tools/sta%s%c-­‐calculators/confidence-­‐interval-­‐for-­‐mean-­‐calculator/         Lecture  5:  Statistical  Inference  2:   Interval  Estimation 19
  • 20. Quiz  1:  Confidence  Interval  (Mean)   You  take  a  sample  of  25  test  scores  from  a   popula%on.  The  sample  mean  is  38  and  the   populaton  standard  devia%on  is  6.5.  What  is  the   95%  confidence  interval  of  the  mean?     1.  [37.49,38.51]   2.  [36.49,39.51]   3.  [35.45,40.55]   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 20
  • 22. Quiz  2:  Confidence  Interval   (Propor%on)   747  out  of  1168  female  students  said  they   always  use  a  seatbelt  when  driving.  What  is  the   99%  confidence  interval  for  the  propor%on  of   female  students  in  the  popula%on  who  always   use  a  seatbelt  when  driving?   1.  [.612,.668]   2.  [.604,.676]   3.  None  of  the  above     Lecture  5:  Statistical  Inference  2:   Interval  Estimation 22
  • 24. Conclusions   •  A  confidence  interval  is  a  range  of  values  that  is  likely  to  contain  an   unknown  popula%on  parameter.     •  Confidence  intervals  serve  as  good  es%mates  of  the  popula%on   parameter  because  the  procedure  tends  to  produce  intervals  that   contain  the  parameter.     •  Confidence  intervals  are  comprised  of  the  point  es%mate  (the  most   likely  value)  and  a  margin  of  error  around  that  point  es%mate.  The   margin  of  error  indicates  the  amount  of  uncertainty  that  surrounds   the  sample  es%mate  of  the  popula%on  parameter.     We  will  resume  this  topic  in  Lecture  8.   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 24
  • 25. The  end   Lecture  5:  Statistical  Inference  2:   Interval  Estimation 25