SlideShare a Scribd company logo
EE241 - Spring 2008
Advanced Digital Integrated
Circuits
Lecture 10: SRAM

Announcements
Homework 1
Due February 26

Homework 2
Next week

2

1
Agenda
SRAM stability metrics
Retention
Read
Write
Dynamic

Options for scaling
Column assist techniques
Migration away from 6T
Technology options
Departure from SRAM (eDRAM)
3

SRAM

Read/Write/Retention Margins

2
SRAM Scaling Trends
ITRS Effective Cell
Reported Effective Cell

2

SRAM Cell Size (um )

2

SRAM Cell Size (um )

100

ITRS Single Cell
Reported Individual Cell
Reported Cell in Array
10

1

0.1

10

1

0.5x effective cell area
scaling difficult
0.1

700 600 500 400

300

200

100 80 70 60
10090

50

40

30

300

Technology N d ( )
T h l
Node (nm)

200

100 90 80 70

60

50

40

30

Technology N d ( )
T h l
Node (nm)

Individual SRAM cell area able to track ITRS guideline
Array area deviates from ITRS guideline at 90nm
Memory design no longer sits on the 0.5x area scaling trend!

5

On-Die L3 Cache siz (MB)
ze

Memory Scaling
Server processors
10

Itanium®
It i ®
Processors
Xeon®
Processors

1
180

160

140

120

100

80

60

Technology Node ( )
gy
(nm)

•
•
•
•

Memory latency demands larger last level cache (LLC)
Memory is more energy-efficient than logic
LLC approaches 50% chip area for desktop and mobile processors
LLC approaches 80% chip area for server processors

Vivek De, Intel 2006

6

3
6-T SRAM Cell

• Improve CD control by unidirectional poly
• Relax critical layer patterning requirements
• Optimizing design rules is key

7

SRAM cell design trends
BL

BLB

IEDM 02

0.46x1.24μm

V
DD

’

GND
WL

Cell in 90nm
(1μm2)
•
•
•
•
•

Cell in 65nm
(0.57μm2)

Improve CD control by unidirectional poly
Relax critical layer patterning requirements
Optimizing design rules is key
Shorter bitline enables better cycle time and/or array efficiency
Full metal wordline with wider pitch achieves better RC
8

4
SRAM Cell Trends

0.242μm2 cell in 45nm from TSMC (IEDM’07)

0.346μm2 cell in 45nm from Intel (IEDM’07)

9

More SRAM Trends

0.15μm2 cell in 32nm from TSMC (IEDM’07)

10

5
Ion/Ioff: Cell Read and Leakage

H. Pilo, IEDM 200611

SRAM Cell/Array
Hold stability

WL
VDD

Read stability

M2

Write stability

M5

Read current (access time)
Access Transistor

Pull down

M1
BL

Pull up

Q

M4
Q

M6

M3
BL

12

6
SRAM Design – Hold (Retention) Stability
Load

WL
VDD
PL

AXL

PR

‘1’

‘0’

AXR

Access
NL

NR

NPD
BL

BL

Data Retention
Leakage

Scaling trend:
Increased gate leakage + degraded ION/IOFF ratio
Lower VDD during standby

PMOS load devices must compensate for leakage

13

SRAM Cell Mismatch

ΔVTh ∝

K. Zhang, Intel

1
Cox WL

Due to RDF

14

7
The Data-Retention Voltage (DRV) of SRAM
VDD
0
M5

V1

Leakage
current

M2

M4

DRV Condition:

0

M3
V2

M6

VDD

Leakage
current

∂V1
∂V2

=
Left inverter

∂V1
∂V2

When Vdd scales down to DRV, the
voltage transfer curves (VTC) of the
internal inverters degrade to such a
level that retention static noise margin
(SNM) of the SRAM cell reduces to
zero.

, when VDD = DRV
Right inverter

VTC of SRAM cell inverters

0.4

VDD=0.4V

2

0.3

0.2 V =0.18V
DD
0.1

VTC1
VTC2

0

Qin, ISQED’04

0

0.1

0.2
V1 (V)

0.3

0.4

15

Monte-Carlo Simulation of DRV Distribution
300
250

Histogram of cell #

VDD

M1

200
150
100
50
0
0

50

100

150

200

250

Simulated DRV of 1500 SRAM cells (mV)

300
16

8
H. Pilo, IEDM 200617

Read Stability – Static Noise Margin (SNM)
VDD

1

PR
VL

VR

Read SNM[1]
AXR

VR (V)

NR

0.5

90nm simulation
0
0

0.5

1

VL (V)

• Read SNM is typically the most stringent constraint

[1] E. Seevinck, JSSC 1987

18

9
SRAM Design – Read Stability
Load

WL
VDD
PL

AXL

PR
AXR

‘1’

V>0

Access NL

NR

NPD
BL

Retention fluctuations
BL

Read margin and
retention margin
[Bhavnagarwala, IEDM’05]

19

Read Stability – N-Curve
•

A, B, and C correspond to the two
stable points A and C and the metap
stable point B of the SNM curve

•

When points A and B coincide, the
cell is at the edge of stability and a
destructive read can easily occur

20

10
H. Pilo, IEDM 200621

Write Stability – Write Noise Margin (WNM)
VDD

1

90nm simulation

PR
VL

VR

AXR

VR (V)

NR

0.5

WNM[1]

0
0

0.5

1

VL (V)

• Write stability is becoming more stringent with scaling
• Optimizing read and write stability at the same time is difficult
[1] A. Bhavnagarwala, IEDM 2005

22

11
Write Stability – BL/WL Write Margins
1.2

1.2
1

0.8
0.6

Voltage (V)
(

V o ltag e (V )

1

BL

0.4
0.2

WM

0
0.00E+00

-0.2

2.00E-08

0.8
0.6
0.4

WM
WL

0.2
0

4.00E-08

6.00E-08

Time (s)

8.00E-08

1.00E-07

0.00E+00

-0.2

2.00E-08

4.00E-08

6.00E-08

8.00E-08

1.00E-07

Time (s)

Highest BL voltage under which write is possible when BLC is kept
precharged (left)
Difference between VDD and lowest WL voltage under which write is
possible when both bit-lines are kept precharged (right)
Can be directly measured in large memory arrays via BL currents

23

Write Stability – Write Current (N-Curve)

[1] C. Wann et al, IEEE VLSI-TSA 2005

24

12
H. Pilo, IEDM 200625

SRAM Design – Read/Write Stability
Load

WL

Cell Stability

VDD
PL

AXL

Cell Trip
Voltage

PR
AXR

‘1’

V>0

Access NL

Read U
R d Upset
t
Occurs

Cell Read
Voltage

NR

NPD
BL

BL

Technology Scaling
H. Pilo, ISSCC’2005

Read margin is typically the most stringent constraint
Cell read voltage must stay below cell trip voltage
Harder to achieve with process induced variations
Noise margin degraded with technology scaling

26

13
6-T SRAM Static/Dynamic Stability

Read Margin
SNM: pessimistic

Write Margin
WNM: optimistic

[1] E. Seevinck, JSSC 1987; [2] A. Bhavnagarwala, IEDM 2005

27

H. Pilo, IEDM 200628

14
Next Lecture
SRAM design techniques
Alternatives to planar 6T SRAM

29

15

More Related Content

PDF
Nexans 400PB-XSA Surge Arresters for High Voltage Cable Systems 33kV-36kV
PDF
POLY_300-310_ENG_v.1.6_EU
PDF
Cd4069 ubc
PDF
Cg vsr solar-drive-catalogue.pdf english(1)
PDF
FusionIO iodrive2 vs LSI nytro vs VIRI Flashmax II
PDF
Kikusui Kes7000 Transient Immunity Tester / Voltage Variation Simulator denkei
PDF
Kyn28 metal clad switchgear
Nexans 400PB-XSA Surge Arresters for High Voltage Cable Systems 33kV-36kV
POLY_300-310_ENG_v.1.6_EU
Cd4069 ubc
Cg vsr solar-drive-catalogue.pdf english(1)
FusionIO iodrive2 vs LSI nytro vs VIRI Flashmax II
Kikusui Kes7000 Transient Immunity Tester / Voltage Variation Simulator denkei
Kyn28 metal clad switchgear

Viewers also liked (18)

PDF
Mapa otwartych zasobów edukacyjnych
PDF
Córdoba: Movilidad Sostenible. Plan de Metas 2016 - 2019 - Ing. Adrián Delfed...
PPTX
Practicing Good Circulatory and Respiratory System's Health
PPTX
computer memory
PPT
Ensayo
PDF
Basında Bugün Göztepe
PPTX
University of New York in Prague
PPT
Successful Property Procurement: Another Amazing SJREI Event
PDF
Prez google
PPTX
Com ppt shubham
PDF
Basında Bugün Göztepe
PPT
PPTX
Conventions of form and genre
PPTX
Plain2013 What is Easy-to-Read? Carina Fronden
PDF
Basında Bugün Göztepe
PPT
нуклемновые кислоты
PPTX
Nova Marketing. Presentation.
PPT
หลักสูตรและแผน
Mapa otwartych zasobów edukacyjnych
Córdoba: Movilidad Sostenible. Plan de Metas 2016 - 2019 - Ing. Adrián Delfed...
Practicing Good Circulatory and Respiratory System's Health
computer memory
Ensayo
Basında Bugün Göztepe
University of New York in Prague
Successful Property Procurement: Another Amazing SJREI Event
Prez google
Com ppt shubham
Basında Bugün Göztepe
Conventions of form and genre
Plain2013 What is Easy-to-Read? Carina Fronden
Basında Bugün Göztepe
нуклемновые кислоты
Nova Marketing. Presentation.
หลักสูตรและแผน
Ad

Similar to Lecture10 sram2 (20)

PDF
CELL STABILITY ANALYSIS OF CONVENTIONAL 6T DYNAMIC 8T SRAM CELL IN 45NM TECHN...
PDF
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
PDF
Static-Noise-Margin Analysis of Modified 6T SRAM Cell during Read Operation
PDF
Design and Simulation Low power SRAM Circuits
PDF
Lecture14
PDF
Fj3110731078
PDF
IRJET- Comparative Analysis of High Speed SRAM Cell for 90nm CMOS Technology
PDF
MID_TERM_PPT[1].pdf128228282828828282828282
PDF
International Journal of Engineering Research and Development (IJERD)
PDF
Cx4301574577
PDF
PERFORMANCE EVALUATION OF DIFFERENT SRAM CELL STRUCTURES AT DIFFERENT TECHNOL...
DOCX
sram bit cell ssram bit cellssram bit cellssram bit cell
PDF
A Comparitive Analysis of Improved 6t Sram Cell With Different Sram Cell
PDF
Implementation of an Efficient SRAM for Ultra-Low Voltage Application Based o...
PDF
Implementation of an Efficient SRAM for Ultra-Low Voltage Application Based o...
PDF
Design & Implementation of Subthreshold Memory Cell design based on the prima...
PPTX
SRAM- Ultra low voltage operation
PDF
Implementation of High Reliable 6T SRAM Cell Design
PDF
IRJET- Design of Energy Efficient 8T SRAM Cell at 90nm Technology
PDF
IRJET- Low Voltage High Speed 8T SRAM Cell for Ultra-Low Power Applications
CELL STABILITY ANALYSIS OF CONVENTIONAL 6T DYNAMIC 8T SRAM CELL IN 45NM TECHN...
IJERD (www.ijerd.com) International Journal of Engineering Research and Devel...
Static-Noise-Margin Analysis of Modified 6T SRAM Cell during Read Operation
Design and Simulation Low power SRAM Circuits
Lecture14
Fj3110731078
IRJET- Comparative Analysis of High Speed SRAM Cell for 90nm CMOS Technology
MID_TERM_PPT[1].pdf128228282828828282828282
International Journal of Engineering Research and Development (IJERD)
Cx4301574577
PERFORMANCE EVALUATION OF DIFFERENT SRAM CELL STRUCTURES AT DIFFERENT TECHNOL...
sram bit cell ssram bit cellssram bit cellssram bit cell
A Comparitive Analysis of Improved 6t Sram Cell With Different Sram Cell
Implementation of an Efficient SRAM for Ultra-Low Voltage Application Based o...
Implementation of an Efficient SRAM for Ultra-Low Voltage Application Based o...
Design & Implementation of Subthreshold Memory Cell design based on the prima...
SRAM- Ultra low voltage operation
Implementation of High Reliable 6T SRAM Cell Design
IRJET- Design of Energy Efficient 8T SRAM Cell at 90nm Technology
IRJET- Low Voltage High Speed 8T SRAM Cell for Ultra-Low Power Applications
Ad

More from nadsav (20)

PPT
папоротникообразные
PPT
опорно двигательная система
PPT
лишайники
PPT
кровь!
PPT
корень
PPT
класс млекопитающие
PPT
внешнее строение птиц
PPT
Значение денег
PPT
Как помочь своему ребенку учиться
PPT
Илья муромец былинный герой или реальная историческая личность
PPTX
пироговн.и. ученый или военный
PPTX
моллюски
PPTX
кровь
PPT
Строение зрительного анализатора
PPT
Тип круглые черви
PPT
Семейство Сложноцветные
PPTX
класс земноводные
PPT
кишечнополостные
PPT
изменчивость
PPT
вирусы
папоротникообразные
опорно двигательная система
лишайники
кровь!
корень
класс млекопитающие
внешнее строение птиц
Значение денег
Как помочь своему ребенку учиться
Илья муромец былинный герой или реальная историческая личность
пироговн.и. ученый или военный
моллюски
кровь
Строение зрительного анализатора
Тип круглые черви
Семейство Сложноцветные
класс земноводные
кишечнополостные
изменчивость
вирусы

Recently uploaded (20)

PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Machine Learning_overview_presentation.pptx
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Getting Started with Data Integration: FME Form 101
PPTX
A Presentation on Artificial Intelligence
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
Big Data Technologies - Introduction.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
Spectroscopy.pptx food analysis technology
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
1. Introduction to Computer Programming.pptx
PDF
A comparative analysis of optical character recognition models for extracting...
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
Accuracy of neural networks in brain wave diagnosis of schizophrenia
Advanced methodologies resolving dimensionality complications for autism neur...
Unlocking AI with Model Context Protocol (MCP)
Machine learning based COVID-19 study performance prediction
Machine Learning_overview_presentation.pptx
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
Getting Started with Data Integration: FME Form 101
A Presentation on Artificial Intelligence
Per capita expenditure prediction using model stacking based on satellite ima...
Big Data Technologies - Introduction.pptx
20250228 LYD VKU AI Blended-Learning.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
Spectroscopy.pptx food analysis technology
MYSQL Presentation for SQL database connectivity
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Spectral efficient network and resource selection model in 5G networks
1. Introduction to Computer Programming.pptx
A comparative analysis of optical character recognition models for extracting...
SOPHOS-XG Firewall Administrator PPT.pptx

Lecture10 sram2

  • 1. EE241 - Spring 2008 Advanced Digital Integrated Circuits Lecture 10: SRAM Announcements Homework 1 Due February 26 Homework 2 Next week 2 1
  • 2. Agenda SRAM stability metrics Retention Read Write Dynamic Options for scaling Column assist techniques Migration away from 6T Technology options Departure from SRAM (eDRAM) 3 SRAM Read/Write/Retention Margins 2
  • 3. SRAM Scaling Trends ITRS Effective Cell Reported Effective Cell 2 SRAM Cell Size (um ) 2 SRAM Cell Size (um ) 100 ITRS Single Cell Reported Individual Cell Reported Cell in Array 10 1 0.1 10 1 0.5x effective cell area scaling difficult 0.1 700 600 500 400 300 200 100 80 70 60 10090 50 40 30 300 Technology N d ( ) T h l Node (nm) 200 100 90 80 70 60 50 40 30 Technology N d ( ) T h l Node (nm) Individual SRAM cell area able to track ITRS guideline Array area deviates from ITRS guideline at 90nm Memory design no longer sits on the 0.5x area scaling trend! 5 On-Die L3 Cache siz (MB) ze Memory Scaling Server processors 10 Itanium® It i ® Processors Xeon® Processors 1 180 160 140 120 100 80 60 Technology Node ( ) gy (nm) • • • • Memory latency demands larger last level cache (LLC) Memory is more energy-efficient than logic LLC approaches 50% chip area for desktop and mobile processors LLC approaches 80% chip area for server processors Vivek De, Intel 2006 6 3
  • 4. 6-T SRAM Cell • Improve CD control by unidirectional poly • Relax critical layer patterning requirements • Optimizing design rules is key 7 SRAM cell design trends BL BLB IEDM 02 0.46x1.24μm V DD ’ GND WL Cell in 90nm (1μm2) • • • • • Cell in 65nm (0.57μm2) Improve CD control by unidirectional poly Relax critical layer patterning requirements Optimizing design rules is key Shorter bitline enables better cycle time and/or array efficiency Full metal wordline with wider pitch achieves better RC 8 4
  • 5. SRAM Cell Trends 0.242μm2 cell in 45nm from TSMC (IEDM’07) 0.346μm2 cell in 45nm from Intel (IEDM’07) 9 More SRAM Trends 0.15μm2 cell in 32nm from TSMC (IEDM’07) 10 5
  • 6. Ion/Ioff: Cell Read and Leakage H. Pilo, IEDM 200611 SRAM Cell/Array Hold stability WL VDD Read stability M2 Write stability M5 Read current (access time) Access Transistor Pull down M1 BL Pull up Q M4 Q M6 M3 BL 12 6
  • 7. SRAM Design – Hold (Retention) Stability Load WL VDD PL AXL PR ‘1’ ‘0’ AXR Access NL NR NPD BL BL Data Retention Leakage Scaling trend: Increased gate leakage + degraded ION/IOFF ratio Lower VDD during standby PMOS load devices must compensate for leakage 13 SRAM Cell Mismatch ΔVTh ∝ K. Zhang, Intel 1 Cox WL Due to RDF 14 7
  • 8. The Data-Retention Voltage (DRV) of SRAM VDD 0 M5 V1 Leakage current M2 M4 DRV Condition: 0 M3 V2 M6 VDD Leakage current ∂V1 ∂V2 = Left inverter ∂V1 ∂V2 When Vdd scales down to DRV, the voltage transfer curves (VTC) of the internal inverters degrade to such a level that retention static noise margin (SNM) of the SRAM cell reduces to zero. , when VDD = DRV Right inverter VTC of SRAM cell inverters 0.4 VDD=0.4V 2 0.3 0.2 V =0.18V DD 0.1 VTC1 VTC2 0 Qin, ISQED’04 0 0.1 0.2 V1 (V) 0.3 0.4 15 Monte-Carlo Simulation of DRV Distribution 300 250 Histogram of cell # VDD M1 200 150 100 50 0 0 50 100 150 200 250 Simulated DRV of 1500 SRAM cells (mV) 300 16 8
  • 9. H. Pilo, IEDM 200617 Read Stability – Static Noise Margin (SNM) VDD 1 PR VL VR Read SNM[1] AXR VR (V) NR 0.5 90nm simulation 0 0 0.5 1 VL (V) • Read SNM is typically the most stringent constraint [1] E. Seevinck, JSSC 1987 18 9
  • 10. SRAM Design – Read Stability Load WL VDD PL AXL PR AXR ‘1’ V>0 Access NL NR NPD BL Retention fluctuations BL Read margin and retention margin [Bhavnagarwala, IEDM’05] 19 Read Stability – N-Curve • A, B, and C correspond to the two stable points A and C and the metap stable point B of the SNM curve • When points A and B coincide, the cell is at the edge of stability and a destructive read can easily occur 20 10
  • 11. H. Pilo, IEDM 200621 Write Stability – Write Noise Margin (WNM) VDD 1 90nm simulation PR VL VR AXR VR (V) NR 0.5 WNM[1] 0 0 0.5 1 VL (V) • Write stability is becoming more stringent with scaling • Optimizing read and write stability at the same time is difficult [1] A. Bhavnagarwala, IEDM 2005 22 11
  • 12. Write Stability – BL/WL Write Margins 1.2 1.2 1 0.8 0.6 Voltage (V) ( V o ltag e (V ) 1 BL 0.4 0.2 WM 0 0.00E+00 -0.2 2.00E-08 0.8 0.6 0.4 WM WL 0.2 0 4.00E-08 6.00E-08 Time (s) 8.00E-08 1.00E-07 0.00E+00 -0.2 2.00E-08 4.00E-08 6.00E-08 8.00E-08 1.00E-07 Time (s) Highest BL voltage under which write is possible when BLC is kept precharged (left) Difference between VDD and lowest WL voltage under which write is possible when both bit-lines are kept precharged (right) Can be directly measured in large memory arrays via BL currents 23 Write Stability – Write Current (N-Curve) [1] C. Wann et al, IEEE VLSI-TSA 2005 24 12
  • 13. H. Pilo, IEDM 200625 SRAM Design – Read/Write Stability Load WL Cell Stability VDD PL AXL Cell Trip Voltage PR AXR ‘1’ V>0 Access NL Read U R d Upset t Occurs Cell Read Voltage NR NPD BL BL Technology Scaling H. Pilo, ISSCC’2005 Read margin is typically the most stringent constraint Cell read voltage must stay below cell trip voltage Harder to achieve with process induced variations Noise margin degraded with technology scaling 26 13
  • 14. 6-T SRAM Static/Dynamic Stability Read Margin SNM: pessimistic Write Margin WNM: optimistic [1] E. Seevinck, JSSC 1987; [2] A. Bhavnagarwala, IEDM 2005 27 H. Pilo, IEDM 200628 14
  • 15. Next Lecture SRAM design techniques Alternatives to planar 6T SRAM 29 15