.

                     Section 5.3
             Evaluating Definite Integrals

                        V63.0121.041, Calculus I

                             New York University


                            December 6, 2010


    Announcements

       Today: Section 5.3
       Wednesday: Section 5.4
       Monday, December 13: Section 5.5
       ”Monday,” December 15: Review and Movie Day!
       Monday, December 20, 12:00–1:50pm: Final Exam
                                          .    .   .   .   .   .
Announcements



         Today: Section 5.3
         Wednesday: Section 5.4
         Monday, December 13:
         Section 5.5
         ”Monday,” December 15:
         Review and Movie Day!
         Monday, December 20,
         12:00–1:50pm: Final Exam




                                                                          .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010       2 / 41
Objectives




         Use the Evaluation
         Theorem to evaluate
         definite integrals.
         Write antiderivatives as
         indefinite integrals.
         Interpret definite integrals
         as “net change” of a
         function over an interval.




                                                                          .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010       3 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010       4 / 41
The definite integral as a limit

Definition
If f is a function defined on [a, b], the definite integral of f from a to b
is the number           ∫ b                ∑n
                            f(x) dx = lim      f(ci ) ∆x
                                  a                    n→∞
                                                                 i=1

                    b−a
where ∆x =              , and for each i, xi = a + i∆x, and ci is a point in
                     n
[xi−1 , xi ].

Theorem
If f is continuous on [a, b] or if f has only finitely many jump
discontinuities, then f is integrable on [a, b]; that is, the definite integral
∫ b
      f(x) dx exists and is the same for any choice of ci .
 a
                                                                              .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals           December 6, 2010       5 / 41
Notation/Terminology


                                              ∫     b
                                                        f(x) dx
                                                a
      ∫
           — integral sign (swoopy S)
      f(x) — integrand
      a and b — limits of integration (a is the lower limit and b the
      upper limit)
      dx — ??? (a parenthesis? an infinitesimal? a variable?)
      The process of computing an integral is called integration



                                                                          .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010       6 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2




                                                                           .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals           December 6, 2010       7 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2

Solution
Dividing up [0, 1] into 4 pieces gives

                                          1       2      3       4
                         x0 = 0, x1 =       , x2 = , x3 = , x4 =
                                          4       4      4       4
So the midpoint rule gives
           (                                           )
         1        4        4          4          4
   M4 =                  +      +          +
         4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2




                                                                           .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals           December 6, 2010       7 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2

Solution
Dividing up [0, 1] into 4 pieces gives

                                          1       2      3       4
                         x0 = 0, x1 =       , x2 = , x3 = , x4 =
                                          4       4      4       4
So the midpoint rule gives
           (                                           )
         1        4           4       4          4
   M4 =                  +        +        +
         4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
           (                             )
         1      4         4     4    4
       =             +      +     +
         4 65/64 73/64 89/64 113/64


                                                                           .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals           December 6, 2010       7 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2

Solution
Dividing up [0, 1] into 4 pieces gives

                                          1       2      3       4
                         x0 = 0, x1 =       , x2 = , x3 = , x4 =
                                          4       4      4       4
So the midpoint rule gives
           (                                           )
         1        4            4      4          4
   M4 =                  +         +       +
         4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
           (                             )
         1      4         4      4   4
       =             +       +     +
         4 65/64 73/64 89/64 113/64
         150, 166, 784
       =                ≈ 3.1468
          47, 720, 465
                                                                           .   .   .         .      .     .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals           December 6, 2010       7 / 41
Properties of the integral


Theorem (Additive Properties of the Integral)
Let f and g be integrable functions on [a, b] and c a constant. Then
     ∫ b
 1.      c dx = c(b − a)
        a
      ∫     b                                ∫     b                ∫      b
 2.             [f(x) + g(x)] dx =                     f(x) dx +               g(x) dx.
        a                                      a                       a
      ∫     b                     ∫   b
 3.             cf(x) dx = c              f(x) dx.
        a                         a
      ∫     b                                ∫     b                ∫      b
 4.             [f(x) − g(x)] dx =                     f(x) dx −               g(x) dx.
        a                                      a                       a




                                                                                   .      .   .         .      .     .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals               December 6, 2010       8 / 41
More Properties of the Integral


Conventions:                           ∫                              ∫
                                             a                              b
                                                 f(x) dx = −                    f(x) dx
                                         b                              a
                                                  ∫     a
                                                            f(x) dx = 0
                                                    a
This allows us to have
Theorem
    ∫ c           ∫               b                   ∫       c
 5.     f(x) dx =                     f(x) dx +                   f(x) dx for all a, b, and c.
        a                    a                            b




                                                                                     .    .   .         .      .     .

 V63.0121.041, Calculus I (NYU)            Section 5.3 Evaluating Definite Integrals              December 6, 2010       9 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                 ∫      c
 5.     f(x) dx =                         f(x) dx +                f(x) dx for all a, b, and c.
         a                        a                        b



                             y




                                  .
                                              a                      b                  c x
                                                                                    .    .    .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals         December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                    ∫     c
 5.     f(x) dx =                         f(x) dx +                  f(x) dx for all a, b, and c.
         a                        a                          b



                             y



                                                  ∫    b
                                                           f(x) dx
                                                   a




                                  .
                                              a                        b                c x
                                                                                    .    .    .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals         December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                    ∫     c
 5.     f(x) dx =                         f(x) dx +                  f(x) dx for all a, b, and c.
         a                        a                          b



                             y



                                                  ∫    b                   ∫   c
                                                           f(x) dx                 f(x) dx
                                                   a                       b




                                  .
                                              a                        b                     c x
                                                                                       .      .    .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals              December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                    ∫     c
 5.     f(x) dx =                         f(x) dx +                  f(x) dx for all a, b, and c.
         a                        a                          b



                             y



                                                  ∫    b      ∫ c ∫ c
                                                           f(x) dxf(x) dxf(x) dx
                                                   a             a         b




                                  .
                                              a                        b                c x
                                                                                    .    .    .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals         December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                 ∫       c
 5.     f(x) dx =                         f(x) dx +                 f(x) dx for all a, b, and c.
         a                        a                         b



                             y




                                  .
                                  a                     c                                       x
                                                                                        b
                                                                                    .       .       .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals               December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                   ∫       c
 5.     f(x) dx =                         f(x) dx +                   f(x) dx for all a, b, and c.
         a                        a                           b



                             y



                                                      ∫     b
                                                                  f(x) dx
                                                        a




                                  .
                                  a                       c                                     x
                                                                                        b
                                                                                    .       .       .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals               December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                 ∫       c
 5.     f(x) dx =                         f(x) dx +                 f(x) dx for all a, b, and c.
         a                        a                         b



                             y


                                                                    ∫   c
                                                                            f(x) dx =
                                                                     b∫
                                                                                b
                                                                    −               f(x) dx
                                                                            c
                                  .
                                  a                     c                                             x
                                                                                              b
                                                                                          .       .       .      .      .    .

 V63.0121.041, Calculus I (NYU)             Section 5.3 Evaluating Definite Integrals                     December 6, 2010   10 / 41
Illustrating Property 5
Theorem
    ∫ c           ∫                   b                       ∫       c
 5.     f(x) dx =                         f(x) dx +                       f(x) dx for all a, b, and c.
         a                        a                               b



                             y


                                      ∫       c                           ∫   c
                                                  f(x) dx                         f(x) dx =
                                          a                                b∫
                                                                                      b
                                                                          −               f(x) dx
                                                                                  c
                                  .
                                  a                           c                                             x
                                                                                                    b
                                                                                                .       .       .      .      .    .

 V63.0121.041, Calculus I (NYU)                   Section 5.3 Evaluating Definite Integrals                     December 6, 2010   10 / 41
Definite Integrals We Know So Far


       If the integral computes an
       area and we know the
       area, we can use that. For
       instance,
                                                                              y
            ∫ 1√
                              π
                  1 − x2 dx =
             0                4

       By brute force we
                                                                                  .
       computed                                                                                      x
       ∫     1                    ∫   1
                           1                          1
                 x2 dx =                  x3 dx =
         0                 3      0                   4


                                                                              .       .   .      .       .   .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals           December 6, 2010   11 / 41
Comparison Properties of the Integral

Theorem
Let f and g be integrable functions on [a, b].
                                          ∫ b
 6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                                          a




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   12 / 41
Comparison Properties of the Integral

Theorem
Let f and g be integrable functions on [a, b].
                                          ∫ b
 6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                                          a
 7. If f(x) ≥ g(x) for all x in [a, b], then
                                     ∫     b                  ∫    b
                                               f(x) dx ≥               g(x) dx
                                       a                       a




                                                                           .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals          December 6, 2010   12 / 41
Comparison Properties of the Integral

Theorem
Let f and g be integrable functions on [a, b].
                                          ∫ b
 6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                                               a
 7. If f(x) ≥ g(x) for all x in [a, b], then
                                        ∫     b                    ∫   b
                                                  f(x) dx ≥                g(x) dx
                                          a                        a


 8. If m ≤ f(x) ≤ M for all x in [a, b], then
                                                     ∫    b
                                  m(b − a) ≤                  f(x) dx ≤ M(b − a)
                                                      a


                                                                               .     .   .      .      .    .

 V63.0121.041, Calculus I (NYU)      Section 5.3 Evaluating Definite Integrals           December 6, 2010   12 / 41
Estimating an integral with inequalities

Example
              ∫     2
                        1
Estimate                  dx using Property 8.
                1       x




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   13 / 41
Estimating an integral with inequalities

Example
              ∫     2
                        1
Estimate                  dx using Property 8.
                1       x

Solution
Since
                                                              1  1  1
                                  1 ≤ x ≤ 2 =⇒                  ≤ ≤
                                                              2  x  1
we have                                         ∫       2
                             1                              1
                               · (2 − 1) ≤                    dx ≤ 1 · (2 − 1)
                             2                      1       x
or                                              ∫       2
                                        1                   1
                                          ≤                   dx ≤ 1
                                        2           1       x

                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   13 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   14 / 41
Socratic proof


       The definite integral of
       velocity measures
       displacement (net
       distance)
       The derivative of
       displacement is velocity
       So we can compute
       displacement with the
       definite integral or the
       antiderivative of velocity
       But any function can be a
       velocity function, so . . .

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   15 / 41
Theorem of the Day


Theorem (The Second Fundamental Theorem of Calculus)
Suppose f is integrable on [a, b] and f = F′ for another function F, then
                                  ∫    b
                                           f(x) dx = F(b) − F(a).
                                  a




                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   16 / 41
Theorem of the Day


Theorem (The Second Fundamental Theorem of Calculus)
Suppose f is integrable on [a, b] and f = F′ for another function F, then
                                  ∫    b
                                           f(x) dx = F(b) − F(a).
                                  a



Note
In Section 5.3, this theorem is called “The Evaluation Theorem”.
Nobody else in the world calls it that.



                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   16 / 41
Proving the Second FTC


                                                                                  b−a
      Divide up [a, b] into n pieces of equal width ∆x =                              as usual.
                                                                                   n




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   17 / 41
Proving the Second FTC


                                                                b−a
      Divide up [a, b] into n pieces of equal width ∆x =            as usual.
                                                                 n
      For each i, F is continuous on [xi−1 , xi ] and differentiable on
      (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with

                                  F(xi ) − F(xi−1 )
                                                    = F′ (ci ) = f(ci )
                                     xi − xi−1




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   17 / 41
Proving the Second FTC


                                                                b−a
      Divide up [a, b] into n pieces of equal width ∆x =            as usual.
                                                                 n
      For each i, F is continuous on [xi−1 , xi ] and differentiable on
      (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with

                                  F(xi ) − F(xi−1 )
                                                    = F′ (ci ) = f(ci )
                                     xi − xi−1

      Or
                                     f(ci )∆x = F(xi ) − F(xi−1 )




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   17 / 41
Proof continued


      We have for each i

                                    f(ci )∆x = F(xi ) − F(xi−1 )




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                    f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof continued


      We have for each i

                                      f(ci )∆x = F(xi ) − F(xi−1 )

      Form the Riemann Sum:
                  ∑
                  n                   ∑
                                      n
         Sn =            f(ci )∆x =         (F(xi ) − F(xi−1 ))
                   i=1                i=1
              = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
                     · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
              = F(xn ) − F(x0 ) = F(b) − F(a)



                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   18 / 41
Proof Completed



      We have shown for each n,

                                          Sn = F(b) − F(a)

      Which does not depend on n.




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   19 / 41
Proof Completed



      We have shown for each n,

                                           Sn = F(b) − F(a)

      Which does not depend on n.
      So in the limit
           ∫ b
               f(x) dx = lim Sn = lim (F(b) − F(a)) = F(b) − F(a)
                a                 n→∞              n→∞




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   19 / 41
Computing area with the Second FTC


Example
Find the area between y = x3 and the x-axis, between x = 0 and x = 1.




                                                                              .




                                                                          .       .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals           December 6, 2010   20 / 41
Computing area with the Second FTC


Example
Find the area between y = x3 and the x-axis, between x = 0 and x = 1.

Solution


           ∫      1                    1
                                  x4            1
    A=                x3 dx =               =
              0                   4    0        4                                      .




                                                                                   .       .   .      .      .    .

 V63.0121.041, Calculus I (NYU)            Section 5.3 Evaluating Definite Integrals           December 6, 2010   20 / 41
Computing area with the Second FTC


Example
Find the area between y = x3 and the x-axis, between x = 0 and x = 1.

Solution


           ∫      1                    1
                                  x4            1
    A=                x3 dx =               =
              0                   4    0        4                                      .

Here we use the notation F(x)|b or [F(x)]b to mean F(b) − F(a).
                              a          a




                                                                                   .       .   .      .      .    .

 V63.0121.041, Calculus I (NYU)            Section 5.3 Evaluating Definite Integrals           December 6, 2010   20 / 41
Computing area with the Second FTC
Example
Find the area enclosed by the parabola y = x2 and the line y = 1.




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   21 / 41
Computing area with the Second FTC
Example
Find the area enclosed by the parabola y = x2 and the line y = 1.



                                                  1


                                                       .
                                  −1                                       1




                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   21 / 41
Computing area with the Second FTC
Example
Find the area enclosed by the parabola y = x2 and the line y = 1.



                                                       1


                                                           .
                                      −1                                       1

Solution

                        ∫   1                      [       ]1              (  [ )]
                            x3                                          1     1      4
         A=2−    x dx = 2 −       2
                                                                    =2−   − −      =
              −1            3                                  −1       3     3      3
                                                                               .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)        Section 5.3 Evaluating Definite Integrals       December 6, 2010   21 / 41
Computing an integral we estimated before

Example
                                  ∫   1
                                            4
Evaluate the integral                            dx.
                                  0       1 + x2




                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   22 / 41
Example
              ∫     1
                          4
Estimate                       dx using the midpoint rule and four divisions.
                0       1 + x2

Solution
Dividing up [0, 1] into 4 pieces gives

                                          1       2      3       4
                         x0 = 0, x1 =       , x2 = , x3 = , x4 =
                                          4       4      4       4
So the midpoint rule gives
           (                                           )
         1        4            4      4          4
   M4 =                  +         +       +
         4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
           (                             )
         1      4         4      4   4
       =             +       +     +
         4 65/64 73/64 89/64 113/64
         150, 166, 784
       =                ≈ 3.1468
          47, 720, 465
                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   23 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2




                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2
                                                    = 4 arctan(x)|1
                                                                  0




                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2
                                                    = 4 arctan(x)|1
                                                                  0
                                                    = 4 (arctan 1 − arctan 0)




                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2
                                                    = 4 arctan(x)|1
                                                                  0
                                                    = 4 (arctan 1 − arctan 0)
                                                        (π     )
                                                    =4      −0
                                                          4

                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before

Example
                                     ∫    1
                                                4
Evaluate the integral                                dx.
                                      0       1 + x2

Solution

                          ∫     1                           ∫     1
                                      4                                 1
                                           dx = 4                            dx
                            0       1 + x2                    0       1 + x2
                                                    = 4 arctan(x)|1
                                                                  0
                                                    = 4 (arctan 1 − arctan 0)
                                                        (π     )
                                                    =4      −0 =π
                                                          4

                                                                                  .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals       December 6, 2010   24 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   25 / 41
Estimating an integral with inequalities

Example
              ∫     2
                        1
Estimate                  dx using Property 8.
                1       x

Solution
Since
                                                              1  1  1
                                  1 ≤ x ≤ 2 =⇒                  ≤ ≤
                                                              2  x  1
we have                                         ∫       2
                             1                              1
                               · (2 − 1) ≤                    dx ≤ 1 · (2 − 1)
                             2                      1       x
or                                              ∫       2
                                        1                   1
                                          ≤                   dx ≤ 1
                                        2           1       x

                                                                           .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)    Section 5.3 Evaluating Definite Integrals       December 6, 2010   26 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x

Solution

                                   ∫     2
                                             1
                                               dx
                                     1       x




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   27 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x

Solution

                                   ∫     2
                                             1
                                               dx = ln x|2
                                                         1
                                     1       x




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   27 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x

Solution

                                   ∫     2
                                             1
                                               dx = ln x|2
                                                         1
                                     1       x
                                                  = ln 2 − ln 1




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   27 / 41
Computing an integral we estimated before


Example
              ∫     2
                        1
Evaluate                  dx.
                1       x

Solution

                                   ∫     2
                                             1
                                               dx = ln x|2
                                                         1
                                     1       x
                                                  = ln 2 − ln 1
                                                   = ln 2



                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   27 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   28 / 41
The Integral as Total Change


Another way to state this theorem is:
                                  ∫   b
                                          F′ (x) dx = F(b) − F(a),
                                  a

or the integral of a derivative along an interval is the total change
between the sides of that interval. This has many ramifications:




                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   29 / 41
The Integral as Total Change


Another way to state this theorem is:
                                  ∫   b
                                           F′ (x) dx = F(b) − F(a),
                                  a

or the integral of a derivative along an interval is the total change
between the sides of that interval. This has many ramifications:

Theorem
If v(t) represents the velocity of a particle moving rectilinearly, then
                                  ∫    t1
                                            v(t) dt = s(t1 ) − s(t0 ).
                                      t0


                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   29 / 41
The Integral as Total Change


Another way to state this theorem is:
                                  ∫     b
                                            F′ (x) dx = F(b) − F(a),
                                    a

or the integral of a derivative along an interval is the total change
between the sides of that interval. This has many ramifications:

Theorem
If MC(x) represents the marginal cost of making x units of a product,
then                               ∫ x
                                  C(x) = C(0) +                   MC(q) dq.
                                                              0


                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   29 / 41
The Integral as Total Change


Another way to state this theorem is:
                                  ∫   b
                                          F′ (x) dx = F(b) − F(a),
                                  a

or the integral of a derivative along an interval is the total change
between the sides of that interval. This has many ramifications:

Theorem
If ρ(x) represents the density of a thin rod at a distance of x from its
end, then the mass of the rod up to x is
                                    ∫ x
                          m(x) =        ρ(s) ds.
                                                         0
                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   29 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   30 / 41
A new notation for antiderivatives



To emphasize the relationship between antidifferentiation and
integration, we use the indefinite integral notation
                                 ∫
                                    f(x) dx

for any function whose derivative is f(x).




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   31 / 41
A new notation for antiderivatives



To emphasize the relationship between antidifferentiation and
integration, we use the indefinite integral notation
                                 ∫
                                    f(x) dx

for any function whose derivative is f(x). Thus
                         ∫
                            x2 dx = 1 x3 + C.
                                      3




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   31 / 41
My first table of integrals
.

       ∫                        ∫           ∫
           [f(x) + g(x)] dx = f(x) dx + g(x) dx
            ∫                                      ∫                ∫
                           xn+1
                 n
                x dx =          + C (n ̸= −1)         cf(x) dx = c f(x) dx
                          n+1                        ∫
                     ∫
                                                          1
                        ex dx = ex + C                      dx = ln |x| + C
                                                          x
                ∫                                     ∫
                                                                   ax
                    sin x dx = − cos x + C                ax dx =       +C
                                                                  ln a
                  ∫                               ∫
                     cos x dx = sin x + C            csc2 x dx = − cot x + C
                 ∫                              ∫
                    sec2 x dx = tan x + C         csc x cot x dx = − csc x + C
              ∫                                 ∫
                                                        1
                 sec x tan x dx = sec x + C        √          dx = arcsin x + C
              ∫                                      1 − x2
                     1
                           dx = arctan x + C
                  1 + x2


                                                                             .   .   .      .      .    .

    V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   32 / 41
Outline

Last time: The Definite Integral
   The definite integral as a limit
   Properties of the integral
   Comparison Properties of the Integral

Evaluating Definite Integrals
  Examples

The Integral as Total Change

Indefinite Integrals
   My first table of integrals

Computing Area with integrals

                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   33 / 41
Computing Area with integrals



Example
Find the area of the region bounded by the lines x = 1, x = 4, the
x-axis, and the curve y = ex .




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   34 / 41
Computing Area with integrals



Example
Find the area of the region bounded by the lines x = 1, x = 4, the
x-axis, and the curve y = ex .

Solution
The answer is                     ∫    4
                                                             4
                                           ex dx = ex |1 = e4 − e.
                                  1




                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   34 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   35 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.

Solution
                                  ∫   1
       The answer is                      arcsin x dx, but we                             y
                                  0
       do not know an antiderivative for                                              π/2
       arcsin.



                                                                                                .
                                                                                                                  x
                                                                                                              1
                                                                                  .   .     .       .     .           .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals         December 6, 2010      35 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.

Solution
                                  ∫   1
       The answer is                      arcsin x dx, but we                             y
                                  0
       do not know an antiderivative for                                              π/2
       arcsin.
       Instead compute the area as
          ∫ π/2
       π
         −      sin y dy                                                                        .
       2 0
                                                                                                                  x
                                                                                                              1
                                                                                  .   .     .       .     .           .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals         December 6, 2010      35 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.

Solution
                                  ∫   1
       The answer is                      arcsin x dx, but we                             y
                                  0
       do not know an antiderivative for                                              π/2
       arcsin.
       Instead compute the area as
          ∫ π/2
       π                  π          π/2
         −      sin y dy = −[− cos x]0                                                          .
       2 0                2
                                                                                                                  x
                                                                                                              1
                                                                                  .   .     .       .     .           .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals         December 6, 2010      35 / 41
Computing Area with integrals

Example
Find the area of the region bounded by the curve y = arcsin x, the
x-axis, and the line x = 1.

Solution
                                  ∫   1
       The answer is                      arcsin x dx, but we                             y
                                  0
       do not know an antiderivative for                                              π/2
       arcsin.
       Instead compute the area as
          ∫ π/2
       π                  π          π/2 π
         −      sin y dy = −[− cos x]0 = −1                                                     .
       2 0                2              2
                                                                                                                  x
                                                                                                              1
                                                                                  .   .     .       .     .           .

 V63.0121.041, Calculus I (NYU)           Section 5.3 Evaluating Definite Integrals         December 6, 2010      35 / 41
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and
the vertical lines x = 0 and x = 3.




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   36 / 41
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and
the vertical lines x = 0 and x = 3.

Solution
               ∫     3
Consider                 (x − 1)(x − 2) dx.
                 0




                                                                            .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)     Section 5.3 Evaluating Definite Integrals       December 6, 2010   36 / 41
Graph

                 y




                  .                                                                           x
                                     1                          2                     3

                                                                          .   .   .       .       .   .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010    37 / 41
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and
the vertical lines x = 0 and x = 3.

Solution
               ∫     3
Consider                 (x − 1)(x − 2) dx. Notice the integrand is positive on [0, 1)
                 0
and (2, 3], and negative on (1, 2).




                                                                            .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)     Section 5.3 Evaluating Definite Integrals       December 6, 2010   38 / 41
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and
the vertical lines x = 0 and x = 3.

Solution
                 ∫   3
Consider                 (x − 1)(x − 2) dx. Notice the integrand is positive on [0, 1)
                 0
and (2, 3], and negative on (1, 2). If we want the area of the region, we
have to do
     ∫ 1                     ∫ 2                     ∫ 3
A=       (x − 1)(x − 2) dx −     (x − 1)(x − 2) dx +     (x − 1)(x − 2) dx
           0                                1                                       2
       [                        ]1 [               ]2 [               ]3
   =   −   1 3
           3x
                     3 2
                     2x     + 2x − 1 x3 − 3 x2 + 2x + 1 x3 − 3 x2 + 2x
                                     3    2             3    2
      (    )    0                                                     1                                   2
    5    1    5   11
   = − −     + =     .
    6    6    6    6

                                                                            .   .       .      .      .       .

 V63.0121.041, Calculus I (NYU)     Section 5.3 Evaluating Definite Integrals           December 6, 2010      38 / 41
Interpretation of “negative area" in motion




There is an analog in rectlinear motion:
    ∫ t1
         v(t) dt is net distance traveled.
        t0
      ∫   t1
               |v(t)| dt is total distance traveled.
        t0




                                                                          .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   39 / 41
What about the constant?


      It seems we forgot about the +C when we say for instance
                                  ∫    1                       1
                                                  x4                   1     1
                                            3
                                           x dx =                  =     −0=
                                  0               4            0       4     4

      But notice
             [ 4   ]1 (      )
               x        1                1          1
                 +C =     + C − (0 + C) = + C − C =
               4    0   4                4          4

      no matter what C is.
      So in antidifferentiation for definite integrals, the constant is
      immaterial.


                                                                              .   .   .      .      .    .

 V63.0121.041, Calculus I (NYU)       Section 5.3 Evaluating Definite Integrals       December 6, 2010   40 / 41
Summary



     The second Fundamental Theorem of Calculus:
                      ∫ b
                          f(x) dx = F(b) − F(a)
                                     a

     where F′ = f.
     Definite integrals represent net change of a function over an
     interval.                                        ∫
     We write antiderivatives as indefinite integrals                            f(x) dx




                                                                         .   .   .      .      .    .

V63.0121.041, Calculus I (NYU)   Section 5.3 Evaluating Definite Integrals       December 6, 2010   41 / 41

More Related Content

PDF
Lesson 25: Evaluating Definite Integrals (Section 041 handout)
PDF
Lesson 26: Evaluating Definite Integrals
PDF
Lesson 25: Evaluating Definite Integrals (Section 021 handout)
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 041 handout)
PPT
Chapter 04
PDF
Lesson 27: Integration by Substitution (Section 041 handout)
PDF
Solution of second order nonlinear singular value problems
Lesson 25: Evaluating Definite Integrals (Section 041 handout)
Lesson 26: Evaluating Definite Integrals
Lesson 25: Evaluating Definite Integrals (Section 021 handout)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 slides)
Lesson 26: The Fundamental Theorem of Calculus (Section 041 handout)
Chapter 04
Lesson 27: Integration by Substitution (Section 041 handout)
Solution of second order nonlinear singular value problems

What's hot (16)

PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 021 handout)
PDF
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
PDF
Lesson 27: Integration by Substitution (Section 021 handout)
PDF
Dealing with Constraints in Estimation of Distribution Algorithms
PDF
Principal Component Analysis for Tensor Analysis and EEG classification
PDF
Lesson 25: The Fundamental Theorem of Calculus
PDF
Similarity Measure Using Interval Valued Vague Sets in Multiple Criteria Deci...
PDF
Discrete-Chapter 02 Functions and Sequences
PDF
Mixed Spectra for Stable Signals from Discrete Observations
PPTX
Linked CP Tensor Decomposition (presented by ICONIP2012)
PDF
05210401 P R O B A B I L I T Y T H E O R Y A N D S T O C H A S T I C P R...
PDF
Lesson 23: Antiderivatives (Section 021 slides)
PDF
Introduction to Common Spatial Pattern Filters for EEG Motor Imagery Classifi...
PDF
9 pd es
PPTX
Introduction to Neural Netwoks
PPT
Introductory maths analysis chapter 11 official
Lesson 26: The Fundamental Theorem of Calculus (Section 021 handout)
Lesson 26: The Fundamental Theorem of Calculus (Section 021 slides)
Lesson 27: Integration by Substitution (Section 021 handout)
Dealing with Constraints in Estimation of Distribution Algorithms
Principal Component Analysis for Tensor Analysis and EEG classification
Lesson 25: The Fundamental Theorem of Calculus
Similarity Measure Using Interval Valued Vague Sets in Multiple Criteria Deci...
Discrete-Chapter 02 Functions and Sequences
Mixed Spectra for Stable Signals from Discrete Observations
Linked CP Tensor Decomposition (presented by ICONIP2012)
05210401 P R O B A B I L I T Y T H E O R Y A N D S T O C H A S T I C P R...
Lesson 23: Antiderivatives (Section 021 slides)
Introduction to Common Spatial Pattern Filters for EEG Motor Imagery Classifi...
9 pd es
Introduction to Neural Netwoks
Introductory maths analysis chapter 11 official
Ad

Viewers also liked (19)

PDF
Cuestionario
PDF
Comportamento do Consumidor Web
PPT
Edmodo
PDF
Calendário Mundial
PPT
Rahma Beldi - Douz Doc Days 2014
PDF
Fusão a frio, Tesla, Onda escala, Campo de torção, "Energia livre" = Todos Ps...
PDF
Personalni a manazerske poradenstvi - Oldrich Navratil
PDF
2010 BCU Google
PPTX
Имидж банка в социальных сетях
DOC
Av recuperação-8ºano-2ºbi
PDF
至尊旅行 - China Sales Mission 2015
PDF
April 2013 web
PDF
Ajax learning tutorial
PPT
12 materiais cerâmicos
PDF
World Smart Energy Week 2014
PPTX
Apresentação Programa All Star club 3.0
PDF
Iuvenis
PDF
Pianoposte (elenco uffici postali in chiusura)
PDF
Ching arquitetura, forma, espaço e ordem
Cuestionario
Comportamento do Consumidor Web
Edmodo
Calendário Mundial
Rahma Beldi - Douz Doc Days 2014
Fusão a frio, Tesla, Onda escala, Campo de torção, "Energia livre" = Todos Ps...
Personalni a manazerske poradenstvi - Oldrich Navratil
2010 BCU Google
Имидж банка в социальных сетях
Av recuperação-8ºano-2ºbi
至尊旅行 - China Sales Mission 2015
April 2013 web
Ajax learning tutorial
12 materiais cerâmicos
World Smart Energy Week 2014
Apresentação Programa All Star club 3.0
Iuvenis
Pianoposte (elenco uffici postali in chiusura)
Ching arquitetura, forma, espaço e ordem
Ad

Similar to Lesson 25: Evaluating Definite Integrals (Section 041 slides) (20)

PDF
Lesson 26: Evaluating Definite Integrals
PDF
Lesson 25: Evaluating Definite Integrals (handout)
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 27: Evaluating Definite Integrals
PDF
Lesson 30: The Definite Integral
PDF
Lesson 25: Evaluating Definite Integrals (slides
PDF
Lesson 25: Evaluating Definite Integrals (slides)
PDF
Final Exam Review (Integration)
PDF
Lesson 23: The Definite Integral (handout)
PDF
Lesson 25: The Definite Integral
PDF
Lesson 25: The Definite Integral
PDF
Lesson 23: The Definite Integral (slides)
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Lesson 28: The Fundamental Theorem of Calculus
PDF
Lesson 26: Integration by Substitution (slides)
PPTX
technical-mathematics-integration-17-feb_2018.pptx
PPTX
5 4 Notes
PDF
Lesson 27: Integration by Substitution (handout)
PDF
Business math
PDF
Switkes01200543268
Lesson 26: Evaluating Definite Integrals
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
Lesson 30: The Definite Integral
Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slides)
Final Exam Review (Integration)
Lesson 23: The Definite Integral (handout)
Lesson 25: The Definite Integral
Lesson 25: The Definite Integral
Lesson 23: The Definite Integral (slides)
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
Lesson 26: Integration by Substitution (slides)
technical-mathematics-integration-17-feb_2018.pptx
5 4 Notes
Lesson 27: Integration by Substitution (handout)
Business math
Switkes01200543268

More from Mel Anthony Pepito (20)

PDF
Lesson 16: Inverse Trigonometric Functions
PDF
Lesson 11: Implicit Differentiation
PDF
Lesson 12: Linear Approximation
PDF
Lesson 13: Related Rates Problems
PDF
Lesson 14: Derivatives of Logarithmic and Exponential Functions
PDF
Lesson 15: Exponential Growth and Decay
PDF
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
PDF
Lesson 21: Curve Sketching
PDF
Lesson18 -maximum_and_minimum_values_slides
PDF
Lesson 19: The Mean Value Theorem
PDF
Lesson22 -optimization_problems_slides
PDF
Lesson 24: Area and Distances
PDF
Lesson 23: Antiderivatives
PDF
Lesson 27: The Fundamental Theorem of Calculus
PDF
Introduction
PDF
Lesson 28: Integration by Subsitution
PDF
Introduction
PDF
Lesson 3: Limits (Section 21 slides)
PDF
Lesson 3: Limits
PDF
Lesson 1: Functions
Lesson 16: Inverse Trigonometric Functions
Lesson 11: Implicit Differentiation
Lesson 12: Linear Approximation
Lesson 13: Related Rates Problems
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 15: Exponential Growth and Decay
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 21: Curve Sketching
Lesson18 -maximum_and_minimum_values_slides
Lesson 19: The Mean Value Theorem
Lesson22 -optimization_problems_slides
Lesson 24: Area and Distances
Lesson 23: Antiderivatives
Lesson 27: The Fundamental Theorem of Calculus
Introduction
Lesson 28: Integration by Subsitution
Introduction
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits
Lesson 1: Functions

Recently uploaded (20)

PPTX
Benefits of Physical activity for teenagers.pptx
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PDF
Getting started with AI Agents and Multi-Agent Systems
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PPTX
The various Industrial Revolutions .pptx
PDF
UiPath Agentic Automation session 1: RPA to Agents
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
Consumable AI The What, Why & How for Small Teams.pdf
PDF
Five Habits of High-Impact Board Members
PDF
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
PDF
Flame analysis and combustion estimation using large language and vision assi...
PPTX
Custom Battery Pack Design Considerations for Performance and Safety
PDF
A contest of sentiment analysis: k-nearest neighbor versus neural network
PPTX
Microsoft Excel 365/2024 Beginner's training
PDF
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
Configure Apache Mutual Authentication
PDF
sustainability-14-14877-v2.pddhzftheheeeee
Benefits of Physical activity for teenagers.pptx
Final SEM Unit 1 for mit wpu at pune .pptx
Getting started with AI Agents and Multi-Agent Systems
Taming the Chaos: How to Turn Unstructured Data into Decisions
The various Industrial Revolutions .pptx
UiPath Agentic Automation session 1: RPA to Agents
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
Consumable AI The What, Why & How for Small Teams.pdf
Five Habits of High-Impact Board Members
TrustArc Webinar - Click, Consent, Trust: Winning the Privacy Game
Flame analysis and combustion estimation using large language and vision assi...
Custom Battery Pack Design Considerations for Performance and Safety
A contest of sentiment analysis: k-nearest neighbor versus neural network
Microsoft Excel 365/2024 Beginner's training
Produktkatalog für HOBO Datenlogger, Wetterstationen, Sensoren, Software und ...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
Enhancing emotion recognition model for a student engagement use case through...
1 - Historical Antecedents, Social Consideration.pdf
Configure Apache Mutual Authentication
sustainability-14-14877-v2.pddhzftheheeeee

Lesson 25: Evaluating Definite Integrals (Section 041 slides)

  • 1. . Section 5.3 Evaluating Definite Integrals V63.0121.041, Calculus I New York University December 6, 2010 Announcements Today: Section 5.3 Wednesday: Section 5.4 Monday, December 13: Section 5.5 ”Monday,” December 15: Review and Movie Day! Monday, December 20, 12:00–1:50pm: Final Exam . . . . . .
  • 2. Announcements Today: Section 5.3 Wednesday: Section 5.4 Monday, December 13: Section 5.5 ”Monday,” December 15: Review and Movie Day! Monday, December 20, 12:00–1:50pm: Final Exam . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 2 / 41
  • 3. Objectives Use the Evaluation Theorem to evaluate definite integrals. Write antiderivatives as indefinite integrals. Interpret definite integrals as “net change” of a function over an interval. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 3 / 41
  • 4. Outline Last time: The Definite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 4 / 41
  • 5. The definite integral as a limit Definition If f is a function defined on [a, b], the definite integral of f from a to b is the number ∫ b ∑n f(x) dx = lim f(ci ) ∆x a n→∞ i=1 b−a where ∆x = , and for each i, xi = a + i∆x, and ci is a point in n [xi−1 , xi ]. Theorem If f is continuous on [a, b] or if f has only finitely many jump discontinuities, then f is integrable on [a, b]; that is, the definite integral ∫ b f(x) dx exists and is the same for any choice of ci . a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 5 / 41
  • 6. Notation/Terminology ∫ b f(x) dx a ∫ — integral sign (swoopy S) f(x) — integrand a and b — limits of integration (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?) The process of computing an integral is called integration . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 6 / 41
  • 7. Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 7 / 41
  • 8. Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 Solution Dividing up [0, 1] into 4 pieces gives 1 2 3 4 x0 = 0, x1 = , x2 = , x3 = , x4 = 4 4 4 4 So the midpoint rule gives ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 7 / 41
  • 9. Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 Solution Dividing up [0, 1] into 4 pieces gives 1 2 3 4 x0 = 0, x1 = , x2 = , x3 = , x4 = 4 4 4 4 So the midpoint rule gives ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 7 / 41
  • 10. Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 Solution Dividing up [0, 1] into 4 pieces gives 1 2 3 4 x0 = 0, x1 = , x2 = , x3 = , x4 = 4 4 4 4 So the midpoint rule gives ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 150, 166, 784 = ≈ 3.1468 47, 720, 465 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 7 / 41
  • 11. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then ∫ b 1. c dx = c(b − a) a ∫ b ∫ b ∫ b 2. [f(x) + g(x)] dx = f(x) dx + g(x) dx. a a a ∫ b ∫ b 3. cf(x) dx = c f(x) dx. a a ∫ b ∫ b ∫ b 4. [f(x) − g(x)] dx = f(x) dx − g(x) dx. a a a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 8 / 41
  • 12. More Properties of the Integral Conventions: ∫ ∫ a b f(x) dx = − f(x) dx b a ∫ a f(x) dx = 0 a This allows us to have Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 9 / 41
  • 13. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y . a b c x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 14. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b f(x) dx a . a b c x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 15. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b ∫ c f(x) dx f(x) dx a b . a b c x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 16. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b ∫ c ∫ c f(x) dxf(x) dxf(x) dx a a b . a b c x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 17. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y . a c x b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 18. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b f(x) dx a . a c x b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 19. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ c f(x) dx = b∫ b − f(x) dx c . a c x b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 20. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ c ∫ c f(x) dx f(x) dx = a b∫ b − f(x) dx c . a c x b . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 10 / 41
  • 21. Definite Integrals We Know So Far If the integral computes an area and we know the area, we can use that. For instance, y ∫ 1√ π 1 − x2 dx = 0 4 By brute force we . computed x ∫ 1 ∫ 1 1 1 x2 dx = x3 dx = 0 3 0 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 11 / 41
  • 22. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 12 / 41
  • 23. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a 7. If f(x) ≥ g(x) for all x in [a, b], then ∫ b ∫ b f(x) dx ≥ g(x) dx a a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 12 / 41
  • 24. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a 7. If f(x) ≥ g(x) for all x in [a, b], then ∫ b ∫ b f(x) dx ≥ g(x) dx a a 8. If m ≤ f(x) ≤ M for all x in [a, b], then ∫ b m(b − a) ≤ f(x) dx ≤ M(b − a) a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 12 / 41
  • 25. Estimating an integral with inequalities Example ∫ 2 1 Estimate dx using Property 8. 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 13 / 41
  • 26. Estimating an integral with inequalities Example ∫ 2 1 Estimate dx using Property 8. 1 x Solution Since 1 1 1 1 ≤ x ≤ 2 =⇒ ≤ ≤ 2 x 1 we have ∫ 2 1 1 · (2 − 1) ≤ dx ≤ 1 · (2 − 1) 2 1 x or ∫ 2 1 1 ≤ dx ≤ 1 2 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 13 / 41
  • 27. Outline Last time: The Definite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 14 / 41
  • 28. Socratic proof The definite integral of velocity measures displacement (net distance) The derivative of displacement is velocity So we can compute displacement with the definite integral or the antiderivative of velocity But any function can be a velocity function, so . . . . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 15 / 41
  • 29. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another function F, then ∫ b f(x) dx = F(b) − F(a). a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 16 / 41
  • 30. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another function F, then ∫ b f(x) dx = F(b) − F(a). a Note In Section 5.3, this theorem is called “The Evaluation Theorem”. Nobody else in the world calls it that. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 16 / 41
  • 31. Proving the Second FTC b−a Divide up [a, b] into n pieces of equal width ∆x = as usual. n . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 17 / 41
  • 32. Proving the Second FTC b−a Divide up [a, b] into n pieces of equal width ∆x = as usual. n For each i, F is continuous on [xi−1 , xi ] and differentiable on (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with F(xi ) − F(xi−1 ) = F′ (ci ) = f(ci ) xi − xi−1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 17 / 41
  • 33. Proving the Second FTC b−a Divide up [a, b] into n pieces of equal width ∆x = as usual. n For each i, F is continuous on [xi−1 , xi ] and differentiable on (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with F(xi ) − F(xi−1 ) = F′ (ci ) = f(ci ) xi − xi−1 Or f(ci )∆x = F(xi ) − F(xi−1 ) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 17 / 41
  • 34. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 35. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 36. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 37. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 38. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 39. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 40. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 41. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 42. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 43. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 44. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 45. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 46. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 47. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 48. Proof continued We have for each i f(ci )∆x = F(xi ) − F(xi−1 ) Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) = F(xn ) − F(x0 ) = F(b) − F(a) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 18 / 41
  • 49. Proof Completed We have shown for each n, Sn = F(b) − F(a) Which does not depend on n. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 19 / 41
  • 50. Proof Completed We have shown for each n, Sn = F(b) − F(a) Which does not depend on n. So in the limit ∫ b f(x) dx = lim Sn = lim (F(b) − F(a)) = F(b) − F(a) a n→∞ n→∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 19 / 41
  • 51. Computing area with the Second FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. . . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 20 / 41
  • 52. Computing area with the Second FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solution ∫ 1 1 x4 1 A= x3 dx = = 0 4 0 4 . . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 20 / 41
  • 53. Computing area with the Second FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solution ∫ 1 1 x4 1 A= x3 dx = = 0 4 0 4 . Here we use the notation F(x)|b or [F(x)]b to mean F(b) − F(a). a a . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 20 / 41
  • 54. Computing area with the Second FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 21 / 41
  • 55. Computing area with the Second FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. 1 . −1 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 21 / 41
  • 56. Computing area with the Second FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. 1 . −1 1 Solution ∫ 1 [ ]1 ( [ )] x3 1 1 4 A=2− x dx = 2 − 2 =2− − − = −1 3 −1 3 3 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 21 / 41
  • 57. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 22 / 41
  • 58. Example ∫ 1 4 Estimate dx using the midpoint rule and four divisions. 0 1 + x2 Solution Dividing up [0, 1] into 4 pieces gives 1 2 3 4 x0 = 0, x1 = , x2 = , x3 = , x4 = 4 4 4 4 So the midpoint rule gives ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 150, 166, 784 = ≈ 3.1468 47, 720, 465 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 23 / 41
  • 59. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 60. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 = 4 arctan(x)|1 0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 61. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 62. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) (π ) =4 −0 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 63. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solution ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2 = 4 arctan(x)|1 0 = 4 (arctan 1 − arctan 0) (π ) =4 −0 =π 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 24 / 41
  • 64. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 25 / 41
  • 65. Estimating an integral with inequalities Example ∫ 2 1 Estimate dx using Property 8. 1 x Solution Since 1 1 1 1 ≤ x ≤ 2 =⇒ ≤ ≤ 2 x 1 we have ∫ 2 1 1 · (2 − 1) ≤ dx ≤ 1 · (2 − 1) 2 1 x or ∫ 2 1 1 ≤ dx ≤ 1 2 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 26 / 41
  • 66. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solution ∫ 2 1 dx 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 27 / 41
  • 67. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solution ∫ 2 1 dx = ln x|2 1 1 x . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 27 / 41
  • 68. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solution ∫ 2 1 dx = ln x|2 1 1 x = ln 2 − ln 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 27 / 41
  • 69. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solution ∫ 2 1 dx = ln x|2 1 1 x = ln 2 − ln 1 = ln 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 27 / 41
  • 70. Outline Last time: The Definite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 28 / 41
  • 71. The Integral as Total Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 29 / 41
  • 72. The Integral as Total Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If v(t) represents the velocity of a particle moving rectilinearly, then ∫ t1 v(t) dt = s(t1 ) − s(t0 ). t0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 29 / 41
  • 73. The Integral as Total Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If MC(x) represents the marginal cost of making x units of a product, then ∫ x C(x) = C(0) + MC(q) dq. 0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 29 / 41
  • 74. The Integral as Total Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a derivative along an interval is the total change between the sides of that interval. This has many ramifications: Theorem If ρ(x) represents the density of a thin rod at a distance of x from its end, then the mass of the rod up to x is ∫ x m(x) = ρ(s) ds. 0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 29 / 41
  • 75. Outline Last time: The Definite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 30 / 41
  • 76. A new notation for antiderivatives To emphasize the relationship between antidifferentiation and integration, we use the indefinite integral notation ∫ f(x) dx for any function whose derivative is f(x). . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 31 / 41
  • 77. A new notation for antiderivatives To emphasize the relationship between antidifferentiation and integration, we use the indefinite integral notation ∫ f(x) dx for any function whose derivative is f(x). Thus ∫ x2 dx = 1 x3 + C. 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 31 / 41
  • 78. My first table of integrals . ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx ∫ ∫ ∫ xn+1 n x dx = + C (n ̸= −1) cf(x) dx = c f(x) dx n+1 ∫ ∫ 1 ex dx = ex + C dx = ln |x| + C x ∫ ∫ ax sin x dx = − cos x + C ax dx = +C ln a ∫ ∫ cos x dx = sin x + C csc2 x dx = − cot x + C ∫ ∫ sec2 x dx = tan x + C csc x cot x dx = − csc x + C ∫ ∫ 1 sec x tan x dx = sec x + C √ dx = arcsin x + C ∫ 1 − x2 1 dx = arctan x + C 1 + x2 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 32 / 41
  • 79. Outline Last time: The Definite Integral The definite integral as a limit Properties of the integral Comparison Properties of the Integral Evaluating Definite Integrals Examples The Integral as Total Change Indefinite Integrals My first table of integrals Computing Area with integrals . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 33 / 41
  • 80. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex . . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 34 / 41
  • 81. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex . Solution The answer is ∫ 4 4 ex dx = ex |1 = e4 − e. 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 34 / 41
  • 82. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 83. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solution ∫ 1 The answer is arcsin x dx, but we y 0 do not know an antiderivative for π/2 arcsin. . x 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 84. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solution ∫ 1 The answer is arcsin x dx, but we y 0 do not know an antiderivative for π/2 arcsin. Instead compute the area as ∫ π/2 π − sin y dy . 2 0 x 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 85. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solution ∫ 1 The answer is arcsin x dx, but we y 0 do not know an antiderivative for π/2 arcsin. Instead compute the area as ∫ π/2 π π π/2 − sin y dy = −[− cos x]0 . 2 0 2 x 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 86. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solution ∫ 1 The answer is arcsin x dx, but we y 0 do not know an antiderivative for π/2 arcsin. Instead compute the area as ∫ π/2 π π π/2 π − sin y dy = −[− cos x]0 = −1 . 2 0 2 2 x 1 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 35 / 41
  • 87. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 36 / 41
  • 88. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. Solution ∫ 3 Consider (x − 1)(x − 2) dx. 0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 36 / 41
  • 89. Graph y . x 1 2 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 37 / 41
  • 90. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. Solution ∫ 3 Consider (x − 1)(x − 2) dx. Notice the integrand is positive on [0, 1) 0 and (2, 3], and negative on (1, 2). . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 38 / 41
  • 91. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the vertical lines x = 0 and x = 3. Solution ∫ 3 Consider (x − 1)(x − 2) dx. Notice the integrand is positive on [0, 1) 0 and (2, 3], and negative on (1, 2). If we want the area of the region, we have to do ∫ 1 ∫ 2 ∫ 3 A= (x − 1)(x − 2) dx − (x − 1)(x − 2) dx + (x − 1)(x − 2) dx 0 1 2 [ ]1 [ ]2 [ ]3 = − 1 3 3x 3 2 2x + 2x − 1 x3 − 3 x2 + 2x + 1 x3 − 3 x2 + 2x 3 2 3 2 ( ) 0 1 2 5 1 5 11 = − − + = . 6 6 6 6 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 38 / 41
  • 92. Interpretation of “negative area" in motion There is an analog in rectlinear motion: ∫ t1 v(t) dt is net distance traveled. t0 ∫ t1 |v(t)| dt is total distance traveled. t0 . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 39 / 41
  • 93. What about the constant? It seems we forgot about the +C when we say for instance ∫ 1 1 x4 1 1 3 x dx = = −0= 0 4 0 4 4 But notice [ 4 ]1 ( ) x 1 1 1 +C = + C − (0 + C) = + C − C = 4 0 4 4 4 no matter what C is. So in antidifferentiation for definite integrals, the constant is immaterial. . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 40 / 41
  • 94. Summary The second Fundamental Theorem of Calculus: ∫ b f(x) dx = F(b) − F(a) a where F′ = f. Definite integrals represent net change of a function over an interval. ∫ We write antiderivatives as indefinite integrals f(x) dx . . . . . . V63.0121.041, Calculus I (NYU) Section 5.3 Evaluating Definite Integrals December 6, 2010 41 / 41