SlideShare a Scribd company logo
Section 4.7
Antiderivatives
V63.0121.021, Calculus I
New York University
November 30, 2010
Announcements
Quiz 5 in recitation this week on §§4.1–4.4
Final Exam: Monday, December 20, 12:00–1:50pm
. . . . . .
. . . . . .
Announcements
Quiz 5 in recitation this
week on §§4.1–4.4
Final Exam: Monday,
December 20,
12:00–1:50pm
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 2 / 37
. . . . . .
Objectives
Given a ”simple“
elementary function, find a
function whose derivative
is that function.
Remember that a function
whose derivative is zero
along an interval must be
zero along that interval.
Solve problems involving
rectilinear motion.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 3 / 37
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 4 / 37
. . . . . .
What is an antiderivative?
Definition
Let f be a function. An antiderivative for f is a function F such that
F′
= f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 5 / 37
. . . . . .
Who cares?
Question
Why would we want the antiderivative of a function?
Answers
For the challenge of it
For applications when the derivative of a function is known but the
original function is not
Biggest application will be after the Fundamental Theorem of
Calculus (Chapter 5)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 6 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1 = ln x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Hard problem, easy check
Example
Find an antiderivative for f(x) = ln x.
Solution
???
Example
is F(x) = x ln x − x an antiderivative for f(x) = ln x?
Solution
d
dx
(x ln x − x) = 1 · ln x + x ·
1
x
− 1 = ln x 
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
. . . . . .
Why the MVT is the MITC
Most Important Theorem In Calculus!
Theorem
Let f′
= 0 on an interval (a, b). Then f is constant on (a, b).
Proof.
Pick any points x and y in (a, b) with x  y. Then f is continuous on
[x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y)
such that
f(y) − f(x)
y − x
= f′
(z) =⇒ f(y) = f(x) + f′
(z)(y − x)
But f′
(z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b),
then f is constant.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 8 / 37
. . . . . .
When two functions have the same derivative
Theorem
Suppose f and g are two differentiable functions on (a, b) with f′
= g′
.
Then f and g differ by a constant. That is, there exists a constant C
such that f(x) = g(x) + C.
Proof.
Let h(x) = f(x) − g(x)
Then h′
(x) = f′
(x) − g′
(x) = 0 on (a, b)
So h(x) = C, a constant
This means f(x) − g(x) = C on (a, b)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 9 / 37
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 10 / 37
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
.
F(x) = ?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
. . . . . .
Antiderivatives of power functions
Recall that the derivative of a
power function is a power
function.
Fact (The Power Rule)
If f(x) = xr
, then f′
(x) = rxr−1
.
So in looking for antiderivatives
of power functions, try power
functions!
..
x
.
y
.
f(x) = x2
.
f′
(x) = 2x
.
F(x) = ?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

Any others?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Example
Find an antiderivative for the function f(x) = x3
.
Solution
Try a power function F(x) = axr
Then F′
(x) = arxr−1
, so we want arxr−1
= x3
.
r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a =
1
4
.
So F(x) =
1
4
x4
is an antiderivative.
Check:
d
dx
(
1
4
x4
)
= 4 ·
1
4
x4−1
= x3

Any others? Yes, F(x) =
1
4
x4
+ C is the most general form.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f…
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f as long as r ̸= −1.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
. . . . . .
Extrapolating to general power functions
Fact (The Power Rule for antiderivatives)
If f(x) = xr
, then
F(x) =
1
r + 1
xr+1
is an antiderivative for f as long as r ̸= −1.
Fact
If f(x) = x−1
=
1
x
, then
F(x) = ln |x| + C
is an antiderivative for f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x|
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x|
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x

V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
What's with the absolute value?
F(x) = ln |x| =
{
ln(x) if x  0;
ln(−x) if x  0.
The domain of F is all nonzero numbers, while ln x is only defined
on positive numbers.
If x  0,
d
dx
ln |x| =
d
dx
ln(x) =
1
x

If x  0,
d
dx
ln |x| =
d
dx
ln(−x) =
1
−x
· (−1) =
1
x

We prefer the antiderivative with the larger domain.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x.
F(x) = ln(x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
. . . . . .
Graph of ln |x|
.. x.
y
. f(x) = 1/x.
F(x) = ln |x|
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
. . . . . .
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)
If F is an antiderivative of f and G is an antiderivative of g, then
F + G is an antiderivative of f + g.
If F is an antiderivative of f and c is a constant, then cF is an
antiderivative of cf.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 16 / 37
. . . . . .
Combinations of antiderivatives
Fact (Sum and Constant Multiple Rule for Antiderivatives)
If F is an antiderivative of f and G is an antiderivative of g, then
F + G is an antiderivative of f + g.
If F is an antiderivative of f and c is a constant, then cF is an
antiderivative of cf.
Proof.
These follow from the sum and constant multiple rule for derivatives:
If F′
= f and G′
= g, then
(F + G)′
= F′
+ G′
= f + g
Or, if F′
= f,
(cF)′
= cF′
= cf
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 16 / 37
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
Question
Do we need two C’s or just one?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
. . . . . .
Antiderivatives of Polynomials
..
Example
Find an antiderivative for f(x) = 16x + 5.
Solution
The expression
1
2
x2
is an antiderivative for x, and x is an antiderivative for 1.
So
F(x) = 16 ·
(
1
2
x2
)
+ 5 · x + C = 8x2
+ 5x + C
is the antiderivative of f.
Question
Do we need two C’s or just one?
Answer
Just one. A combination of two arbitrary constants is still an arbitrary constant.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
Proof.
Check it yourself.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
. . . . . .
Exponential Functions
Fact
If f(x) = ax
, f′
(x) = (ln a)ax
.
Accordingly,
Fact
If f(x) = ax
, then F(x) =
1
ln a
ax
+ C is the antiderivative of f.
Proof.
Check it yourself.
In particular,
Fact
If f(x) = ex
, then F(x) = ex
+ C is the antiderivative of f.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
This is not obvious. See Calc II for the full story.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
. . . . . .
Logarithmic functions?
Remember we found
F(x) = x ln x − x
is an antiderivative of f(x) = ln x.
This is not obvious. See Calc II for the full story.
However, using the fact that loga x =
ln x
ln a
, we get:
Fact
If f(x) = loga(x)
F(x) =
1
ln a
(x ln x − x) + C = x loga x −
1
ln a
x + C
is the antiderivative of f(x).
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
So to turn these around,
Fact
The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
. . . . . .
Trigonometric functions
Fact
d
dx
sin x = cos x
d
dx
cos x = − sin x
So to turn these around,
Fact
The function F(x) = − cos x + C is the antiderivative of f(x) = sin x.
The function F(x) = sin x + C is the antiderivative of f(x) = cos x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x 
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
More Trig
Example
Find an antiderivative of f(x) = tan x.
Solution
???
Answer
F(x) = ln | sec x|.
Check
d
dx
=
1
sec x
·
d
dx
sec x =
1
sec x
· sec x tan x = tan x 
More about this later.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
. . . . . .
Antiderivatives of piecewise functions
Example
Let
f(x) =
{
x if 0 ≤ x ≤ 1;
1 − x2
if 1  x.
Find the antiderivative of f with F(0) = 1.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 22 / 37
. . . . . .
Antiderivatives of piecewise functions
Example
Let
f(x) =
{
x if 0 ≤ x ≤ 1;
1 − x2
if 1  x.
Find the antiderivative of f with F(0) = 1.
Solution
We can antidifferentiate each piece:
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
The constants need to be chosen so that F(0) = 1 and F is continuous
(at 1).
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 22 / 37
. . . . . .
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
Note F(0) =
1
2
02
+ C1 = C1, so if F(0) is to be 1, C1 = 1.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
. . . . . .
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
Note F(0) =
1
2
02
+ C1 = C1, so if F(0) is to be 1, C1 = 1.
This means lim
x→1−
F(x) =
1
2
12
+ 1 =
3
2
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
. . . . . .
F(x) =



1
2
x2
+ C1 if 0 ≤ x ≤ 1;
x −
1
3
x3
+ C2 if 1  x.
Note F(0) =
1
2
02
+ C1 = C1, so if F(0) is to be 1, C1 = 1.
This means lim
x→1−
F(x) =
1
2
12
+ 1 =
3
2
.
On the other hand,
lim
x→1+
F(x) = 1 −
1
3
+ C2 =
2
3
+ C2
So for F to be continuous we need
3
2
=
2
3
+ C2. Solving, C2 =
5
6
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 24 / 37
. . . . . .
Finding Antiderivatives Graphically
Problem
Below is the graph of a function f. Draw the graph of an antiderivative
for f.
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
y = f(x)
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 25 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
..
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
...
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
.....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Using f to make a sign chart for F
Assuming F′
= f, we can make a sign chart for f and f′
to find the
intervals of monotonicity and concavity for F:
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
......
.. f = F′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
. +. +. −. −. +.
↗
.
↗
.
↘
.
↘
.
↗
.
max
.
min
.
f′
= F′′
.
F
..
1
..
2
..
3
..
4
..
5
..
6
.
++
.
−−
.
−−
.
++
.
++
.
⌣
.
⌢
.
⌢
.
⌣
.
⌣
.
IP
.
IP
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
?
.
?
.
?
.
?
.
?
.
?
The only question left is: What are the function values?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0. ..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
..
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
..
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
...
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
...
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
.....
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
......
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Could you repeat the question?
Problem
Below is the graph of a function f. Draw the graph of the antiderivative
for f with F(1) = 0.
Solution
We start with F(1) = 0.
Using the sign chart, we
draw arcs with the
specified monotonicity and
concavity
It’s harder to tell if/when F
crosses the axis; more
about that later.
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.
F
.
shape
..
1
..
2
..
3
..
4
..
5
..
6
......
IP
.
max
.
IP
.
min
......
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
. . . . . .
Outline
What is an antiderivative?
Tabulating Antiderivatives
Power functions
Combinations
Exponential functions
Trigonometric functions
Antiderivatives of piecewise functions
Finding Antiderivatives Graphically
Rectilinear motion
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 28 / 37
. . . . . .
Say what?
“Rectilinear motion” just means motion along a line.
Often we are given information about the velocity or acceleration
of a moving particle and we want to know the equations of motion.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 29 / 37
. . . . . .
Application: Dead Reckoning
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 30 / 37
. . . . . .
Application: Dead Reckoning
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 30 / 37
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
Since v′
(t) = a(t), v(t) must be an antiderivative of the constant
function a. So
v(t) = at + C = at + v0
where v0 is the initial velocity.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
. . . . . .
Problem
Suppose a particle of mass m is acted upon by a constant force F.
Find the position function s(t), the velocity function v(t), and the
acceleration function a(t).
Solution
By Newton’s Second Law (F = ma) a constant force induces a
constant acceleration. So a(t) = a =
F
m
.
Since v′
(t) = a(t), v(t) must be an antiderivative of the constant
function a. So
v(t) = at + C = at + v0
where v0 is the initial velocity.
Since s′
(t) = v(t), s(t) must be an antiderivative of v(t), meaning
s(t) =
1
2
at2
+ v0t + C =
1
2
at2
+ v0t + s0
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
. . . . . .
An earlier Hatsumon
Example
Drop a ball off the roof of the Silver Center. What is its velocity when it
hits the ground?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 32 / 37
. . . . . .
An earlier Hatsumon
Example
Drop a ball off the roof of the Silver Center. What is its velocity when it
hits the ground?
Solution
Assume s0 = 100 m, and v0 = 0. Approximate a = g ≈ −10. Then
s(t) = 100 − 5t2
So s(t) = 0 when t =
√
20 = 2
√
5. Then
v(t) = −10t,
so the velocity at impact is v(2
√
5) = −20
√
5 m/s.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 32 / 37
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
Measure time 0 and position 0 when the car starts braking. So
s(0) = 0.
The car stops at time some t1, when v(t1) = 0.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
. . . . . .
Finding initial velocity from stopping distance
Example
The skid marks made by an automobile indicate that its brakes were
fully applied for a distance of 160 ft before it came to a stop. Suppose
that the car in question has a constant deceleration of 20 ft/s2 under the
conditions of the skid. How fast was the car traveling when its brakes
were first applied?
Solution (Setup)
While braking, the car has acceleration a(t) = −20
Measure time 0 and position 0 when the car starts braking. So
s(0) = 0.
The car stops at time some t1, when v(t1) = 0.
We know that when s(t1) = 160.
We want to know v(0), or v0.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
. . . . . .
Implementing the Solution
In general,
s(t) = s0 + v0t +
1
2
at2
Since s0 = 0 and a = −20, we have
s(t) = v0t − 10t2
v(t) = v0 − 20t
for all t.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 34 / 37
. . . . . .
Implementing the Solution
In general,
s(t) = s0 + v0t +
1
2
at2
Since s0 = 0 and a = −20, we have
s(t) = v0t − 10t2
v(t) = v0 − 20t
for all t. Plugging in t = t1,
160 = v0t1 − 10t2
1
0 = v0 − 20t1
We need to solve these two equations.
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 34 / 37
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
The second gives t1 = v0/20, so substitute into the first:
v0 ·
v0
20
− 10
( v0
20
)2
= 160
Solve:
v2
0
20
−
10v2
0
400
= 160
2v2
0 − v2
0 = 160 · 40 = 6400
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
. . . . . .
Solving
We have
v0t1 − 10t2
1 = 160 v0 − 20t1 = 0
The second gives t1 = v0/20, so substitute into the first:
v0 ·
v0
20
− 10
( v0
20
)2
= 160
Solve:
v2
0
20
−
10v2
0
400
= 160
2v2
0 − v2
0 = 160 · 40 = 6400
So v0 = 80 ft/s ≈ 55 mi/hr
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
. . . . . .
Summary of Antiderivatives so far
f(x) F(x)
xr
, r ̸= 1
1
r + 1
xr+1
+ C
1
x
= x−1
ln |x| + C
ex
ex
+ C
ax 1
ln a
ax
+ C
ln x x ln x − x + C
loga x
x ln x − x
ln a
+ C
sin x − cos x + C
cos x sin x + C
tan x ln | tan x| + C
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 36 / 37
. . . . . .
Final Thoughts
Antiderivatives are a useful
concept, especially in
motion
We can graph an
antiderivative from the
graph of a function
We can compute
antiderivatives, but not
always
..
x
.
y
..
1
..
2
..
3
..
4
..
5
..
6
.......
f
.......
F
f(x) = e−x2
f′
(x) = ???
V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 37 / 37

More Related Content

PDF
Lesson 23: Antiderivatives (Section 041 slides)
PDF
Lesson 23: Antiderivatives (Section 021 handout)
PDF
Lesson 23: Antiderivatives (Section 041 handout)
PDF
Lesson 23: Antiderivatives
PDF
Newtons Divided Difference Formulation
PDF
Langrange Interpolation Polynomials
PDF
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
PPTX
Lagrange’s interpolation formula
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 23: Antiderivatives (Section 021 handout)
Lesson 23: Antiderivatives (Section 041 handout)
Lesson 23: Antiderivatives
Newtons Divided Difference Formulation
Langrange Interpolation Polynomials
Slides: On the Chi Square and Higher-Order Chi Distances for Approximating f-...
Lagrange’s interpolation formula

What's hot (18)

PDF
"reflections on the probability space induced by moment conditions with impli...
PDF
IVR - Chapter 1 - Introduction
PDF
Lecture6.handout
PPS
Unit iv
PDF
asymptotics of ABC
PDF
Imprecision in learning: an overview
PDF
ABC with data cloning for MLE in state space models
PDF
Model Selection with Piecewise Regular Gauges
PPT
Introductory maths analysis chapter 11 official
PDF
Finite difference & interpolation
PPTX
Interpolation
PDF
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
PDF
Propensity albert
PDF
Inference for stochastic differential equations via approximate Bayesian comp...
PDF
ABC-Gibbs
PDF
Lausanne 2019 #2
PDF
accurate ABC Oliver Ratmann
PDF
Laplace's Demon: seminar #1
"reflections on the probability space induced by moment conditions with impli...
IVR - Chapter 1 - Introduction
Lecture6.handout
Unit iv
asymptotics of ABC
Imprecision in learning: an overview
ABC with data cloning for MLE in state space models
Model Selection with Piecewise Regular Gauges
Introductory maths analysis chapter 11 official
Finite difference & interpolation
Interpolation
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Propensity albert
Inference for stochastic differential equations via approximate Bayesian comp...
ABC-Gibbs
Lausanne 2019 #2
accurate ABC Oliver Ratmann
Laplace's Demon: seminar #1
Ad

Similar to Lesson 23: Antiderivatives (Section 021 slides) (20)

PDF
Lesson 23: Antiderivatives (Section 021 slides)
PDF
Lesson 23: Antiderivatives (Section 041 slides)
PDF
Lesson 21: Antiderivatives (slides)
PDF
Lesson 23: Antiderivatives
PDF
Lesson 23: Antiderivatives
PDF
Lesson 23: Antiderivatives
PDF
Lesson 21: Antiderivatives (notes)
PDF
Lesson 23: Antiderivatives (slides)
PDF
Lesson 23: Antiderivatives (slides)
DOCX
Chapter 1
PPT
Lecture 18 antiderivatives - section 4.8
PPT
2301Antiderivatives_and_Indefinite_Integrals.ppt
PDF
Section 4.9
PPTX
Basic-Calculus-integration -FINALLY.pptx
PPTX
9-Antiderivatives-of-Algebraic-Functions.pptx
PPTX
01 - ANTIDEFFIRENTIATION.pptx
PPT
Antidifferentiation.ppt
PPT
Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...
PPT
antidifferentiation.ppt
Lesson 23: Antiderivatives (Section 021 slides)
Lesson 23: Antiderivatives (Section 041 slides)
Lesson 21: Antiderivatives (slides)
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 23: Antiderivatives
Lesson 21: Antiderivatives (notes)
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
Chapter 1
Lecture 18 antiderivatives - section 4.8
2301Antiderivatives_and_Indefinite_Integrals.ppt
Section 4.9
Basic-Calculus-integration -FINALLY.pptx
9-Antiderivatives-of-Algebraic-Functions.pptx
01 - ANTIDEFFIRENTIATION.pptx
Antidifferentiation.ppt
Antidifferentiation.pptAntidifferentiation.pptAntidifferentiation.pptAntidiff...
antidifferentiation.ppt
Ad

More from Matthew Leingang (20)

PPT
Making Lesson Plans
PPT
Streamlining assessment, feedback, and archival with auto-multiple-choice
PDF
Electronic Grading of Paper Assessments
PDF
Lesson 27: Integration by Substitution (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 26: The Fundamental Theorem of Calculus (slides)
PDF
Lesson 27: Integration by Substitution (handout)
PDF
Lesson 26: The Fundamental Theorem of Calculus (handout)
PDF
Lesson 25: Evaluating Definite Integrals (slides)
PDF
Lesson 25: Evaluating Definite Integrals (handout)
PDF
Lesson 24: Areas and Distances, The Definite Integral (handout)
PDF
Lesson 24: Areas and Distances, The Definite Integral (slides)
PDF
Lesson 23: Antiderivatives (slides)
PDF
Lesson 22: Optimization Problems (slides)
PDF
Lesson 22: Optimization Problems (handout)
PDF
Lesson 21: Curve Sketching (slides)
PDF
Lesson 21: Curve Sketching (handout)
PDF
Lesson 20: Derivatives and the Shapes of Curves (slides)
PDF
Lesson 20: Derivatives and the Shapes of Curves (handout)
PDF
Lesson 19: The Mean Value Theorem (slides)
Making Lesson Plans
Streamlining assessment, feedback, and archival with auto-multiple-choice
Electronic Grading of Paper Assessments
Lesson 27: Integration by Substitution (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 27: Integration by Substitution (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 25: Evaluating Definite Integrals (slides)
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 23: Antiderivatives (slides)
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (handout)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (handout)
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 19: The Mean Value Theorem (slides)

Lesson 23: Antiderivatives (Section 021 slides)

  • 1. Section 4.7 Antiderivatives V63.0121.021, Calculus I New York University November 30, 2010 Announcements Quiz 5 in recitation this week on §§4.1–4.4 Final Exam: Monday, December 20, 12:00–1:50pm . . . . . .
  • 2. . . . . . . Announcements Quiz 5 in recitation this week on §§4.1–4.4 Final Exam: Monday, December 20, 12:00–1:50pm V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 2 / 37
  • 3. . . . . . . Objectives Given a ”simple“ elementary function, find a function whose derivative is that function. Remember that a function whose derivative is zero along an interval must be zero along that interval. Solve problems involving rectilinear motion. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 3 / 37
  • 4. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 4 / 37
  • 5. . . . . . . What is an antiderivative? Definition Let f be a function. An antiderivative for f is a function F such that F′ = f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 5 / 37
  • 6. . . . . . . Who cares? Question Why would we want the antiderivative of a function? Answers For the challenge of it For applications when the derivative of a function is known but the original function is not Biggest application will be after the Fundamental Theorem of Calculus (Chapter 5) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 6 / 37
  • 7. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 8. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 9. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 10. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 11. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 12. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 = ln x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 13. . . . . . . Hard problem, easy check Example Find an antiderivative for f(x) = ln x. Solution ??? Example is F(x) = x ln x − x an antiderivative for f(x) = ln x? Solution d dx (x ln x − x) = 1 · ln x + x · 1 x − 1 = ln x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 7 / 37
  • 14. . . . . . . Why the MVT is the MITC Most Important Theorem In Calculus! Theorem Let f′ = 0 on an interval (a, b). Then f is constant on (a, b). Proof. Pick any points x and y in (a, b) with x y. Then f is continuous on [x, y] and differentiable on (x, y). By MVT there exists a point z in (x, y) such that f(y) − f(x) y − x = f′ (z) =⇒ f(y) = f(x) + f′ (z)(y − x) But f′ (z) = 0, so f(y) = f(x). Since this is true for all x and y in (a, b), then f is constant. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 8 / 37
  • 15. . . . . . . When two functions have the same derivative Theorem Suppose f and g are two differentiable functions on (a, b) with f′ = g′ . Then f and g differ by a constant. That is, there exists a constant C such that f(x) = g(x) + C. Proof. Let h(x) = f(x) − g(x) Then h′ (x) = f′ (x) − g′ (x) = 0 on (a, b) So h(x) = C, a constant This means f(x) − g(x) = C on (a, b) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 9 / 37
  • 16. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 10 / 37
  • 17. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
  • 18. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 . f′ (x) = 2x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
  • 19. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . .. x . y . f(x) = x2 . f′ (x) = 2x . F(x) = ? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
  • 20. . . . . . . Antiderivatives of power functions Recall that the derivative of a power function is a power function. Fact (The Power Rule) If f(x) = xr , then f′ (x) = rxr−1 . So in looking for antiderivatives of power functions, try power functions! .. x . y . f(x) = x2 . f′ (x) = 2x . F(x) = ? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 11 / 37
  • 21. . . . . . . Example Find an antiderivative for the function f(x) = x3 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 22. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 23. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 24. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 25. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 26. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 27. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 28. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 29. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 Any others? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 30. . . . . . . Example Find an antiderivative for the function f(x) = x3 . Solution Try a power function F(x) = axr Then F′ (x) = arxr−1 , so we want arxr−1 = x3 . r − 1 = 3 =⇒ r = 4, and ar = 1 =⇒ a = 1 4 . So F(x) = 1 4 x4 is an antiderivative. Check: d dx ( 1 4 x4 ) = 4 · 1 4 x4−1 = x3 Any others? Yes, F(x) = 1 4 x4 + C is the most general form. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 12 / 37
  • 31. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f… V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
  • 32. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f as long as r ̸= −1. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
  • 33. . . . . . . Extrapolating to general power functions Fact (The Power Rule for antiderivatives) If f(x) = xr , then F(x) = 1 r + 1 xr+1 is an antiderivative for f as long as r ̸= −1. Fact If f(x) = x−1 = 1 x , then F(x) = ln |x| + C is an antiderivative for f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 13 / 37
  • 34. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 35. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 36. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 37. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 38. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 39. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 40. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 41. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 42. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 43. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 44. . . . . . . What's with the absolute value? F(x) = ln |x| = { ln(x) if x 0; ln(−x) if x 0. The domain of F is all nonzero numbers, while ln x is only defined on positive numbers. If x 0, d dx ln |x| = d dx ln(x) = 1 x If x 0, d dx ln |x| = d dx ln(−x) = 1 −x · (−1) = 1 x We prefer the antiderivative with the larger domain. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 14 / 37
  • 45. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
  • 46. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x. F(x) = ln(x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
  • 47. . . . . . . Graph of ln |x| .. x. y . f(x) = 1/x. F(x) = ln |x| V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 15 / 37
  • 48. . . . . . . Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 16 / 37
  • 49. . . . . . . Combinations of antiderivatives Fact (Sum and Constant Multiple Rule for Antiderivatives) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of f + g. If F is an antiderivative of f and c is a constant, then cF is an antiderivative of cf. Proof. These follow from the sum and constant multiple rule for derivatives: If F′ = f and G′ = g, then (F + G)′ = F′ + G′ = f + g Or, if F′ = f, (cF)′ = cF′ = cf V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 16 / 37
  • 50. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
  • 51. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
  • 52. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. Question Do we need two C’s or just one? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
  • 53. . . . . . . Antiderivatives of Polynomials .. Example Find an antiderivative for f(x) = 16x + 5. Solution The expression 1 2 x2 is an antiderivative for x, and x is an antiderivative for 1. So F(x) = 16 · ( 1 2 x2 ) + 5 · x + C = 8x2 + 5x + C is the antiderivative of f. Question Do we need two C’s or just one? Answer Just one. A combination of two arbitrary constants is still an arbitrary constant. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 17 / 37
  • 54. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
  • 55. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
  • 56. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. Proof. Check it yourself. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
  • 57. . . . . . . Exponential Functions Fact If f(x) = ax , f′ (x) = (ln a)ax . Accordingly, Fact If f(x) = ax , then F(x) = 1 ln a ax + C is the antiderivative of f. Proof. Check it yourself. In particular, Fact If f(x) = ex , then F(x) = ex + C is the antiderivative of f. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 18 / 37
  • 58. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
  • 59. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
  • 60. . . . . . . Logarithmic functions? Remember we found F(x) = x ln x − x is an antiderivative of f(x) = ln x. This is not obvious. See Calc II for the full story. However, using the fact that loga x = ln x ln a , we get: Fact If f(x) = loga(x) F(x) = 1 ln a (x ln x − x) + C = x loga x − 1 ln a x + C is the antiderivative of f(x). V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 19 / 37
  • 61. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
  • 62. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
  • 63. . . . . . . Trigonometric functions Fact d dx sin x = cos x d dx cos x = − sin x So to turn these around, Fact The function F(x) = − cos x + C is the antiderivative of f(x) = sin x. The function F(x) = sin x + C is the antiderivative of f(x) = cos x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 20 / 37
  • 64. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 65. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 66. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 67. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 68. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 69. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 70. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 71. . . . . . . More Trig Example Find an antiderivative of f(x) = tan x. Solution ??? Answer F(x) = ln | sec x|. Check d dx = 1 sec x · d dx sec x = 1 sec x · sec x tan x = tan x More about this later. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 21 / 37
  • 72. . . . . . . Antiderivatives of piecewise functions Example Let f(x) = { x if 0 ≤ x ≤ 1; 1 − x2 if 1 x. Find the antiderivative of f with F(0) = 1. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 22 / 37
  • 73. . . . . . . Antiderivatives of piecewise functions Example Let f(x) = { x if 0 ≤ x ≤ 1; 1 − x2 if 1 x. Find the antiderivative of f with F(0) = 1. Solution We can antidifferentiate each piece: F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. The constants need to be chosen so that F(0) = 1 and F is continuous (at 1). V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 22 / 37
  • 74. . . . . . . F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. Note F(0) = 1 2 02 + C1 = C1, so if F(0) is to be 1, C1 = 1. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
  • 75. . . . . . . F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. Note F(0) = 1 2 02 + C1 = C1, so if F(0) is to be 1, C1 = 1. This means lim x→1− F(x) = 1 2 12 + 1 = 3 2 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
  • 76. . . . . . . F(x) =    1 2 x2 + C1 if 0 ≤ x ≤ 1; x − 1 3 x3 + C2 if 1 x. Note F(0) = 1 2 02 + C1 = C1, so if F(0) is to be 1, C1 = 1. This means lim x→1− F(x) = 1 2 12 + 1 = 3 2 . On the other hand, lim x→1+ F(x) = 1 − 1 3 + C2 = 2 3 + C2 So for F to be continuous we need 3 2 = 2 3 + C2. Solving, C2 = 5 6 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 23 / 37
  • 77. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 24 / 37
  • 78. . . . . . . Finding Antiderivatives Graphically Problem Below is the graph of a function f. Draw the graph of an antiderivative for f. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... y = f(x) V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 25 / 37
  • 79. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 80. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 81. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 82. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 83. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 84. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 85. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 86. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 87. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 88. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 89. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 90. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 91. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 92. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 93. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 94. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 95. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 96. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 97. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 98. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 99. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 100. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 101. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 102. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 103. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 104. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 105. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 106. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 107. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 .... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 108. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ..... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 109. . . . . . . Using f to make a sign chart for F Assuming F′ = f, we can make a sign chart for f and f′ to find the intervals of monotonicity and concavity for F: .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... .. f = F′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . +. +. −. −. +. ↗ . ↗ . ↘ . ↘ . ↗ . max . min . f′ = F′′ . F .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 . ++ . −− . −− . ++ . ++ . ⌣ . ⌢ . ⌢ . ⌣ . ⌣ . IP . IP . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... ? . ? . ? . ? . ? . ? The only question left is: What are the function values? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 26 / 37
  • 110. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 111. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 112. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 113. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 114. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 115. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 116. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 117. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 118. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min .... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 119. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ..... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 120. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ...... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 121. . . . . . . Could you repeat the question? Problem Below is the graph of a function f. Draw the graph of the antiderivative for f with F(1) = 0. Solution We start with F(1) = 0. Using the sign chart, we draw arcs with the specified monotonicity and concavity It’s harder to tell if/when F crosses the axis; more about that later. .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f . F . shape .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ...... IP . max . IP . min ...... V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 27 / 37
  • 122. . . . . . . Outline What is an antiderivative? Tabulating Antiderivatives Power functions Combinations Exponential functions Trigonometric functions Antiderivatives of piecewise functions Finding Antiderivatives Graphically Rectilinear motion V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 28 / 37
  • 123. . . . . . . Say what? “Rectilinear motion” just means motion along a line. Often we are given information about the velocity or acceleration of a moving particle and we want to know the equations of motion. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 29 / 37
  • 124. . . . . . . Application: Dead Reckoning V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 30 / 37
  • 125. . . . . . . Application: Dead Reckoning V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 30 / 37
  • 126. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
  • 127. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
  • 128. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . Since v′ (t) = a(t), v(t) must be an antiderivative of the constant function a. So v(t) = at + C = at + v0 where v0 is the initial velocity. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
  • 129. . . . . . . Problem Suppose a particle of mass m is acted upon by a constant force F. Find the position function s(t), the velocity function v(t), and the acceleration function a(t). Solution By Newton’s Second Law (F = ma) a constant force induces a constant acceleration. So a(t) = a = F m . Since v′ (t) = a(t), v(t) must be an antiderivative of the constant function a. So v(t) = at + C = at + v0 where v0 is the initial velocity. Since s′ (t) = v(t), s(t) must be an antiderivative of v(t), meaning s(t) = 1 2 at2 + v0t + C = 1 2 at2 + v0t + s0 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 31 / 37
  • 130. . . . . . . An earlier Hatsumon Example Drop a ball off the roof of the Silver Center. What is its velocity when it hits the ground? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 32 / 37
  • 131. . . . . . . An earlier Hatsumon Example Drop a ball off the roof of the Silver Center. What is its velocity when it hits the ground? Solution Assume s0 = 100 m, and v0 = 0. Approximate a = g ≈ −10. Then s(t) = 100 − 5t2 So s(t) = 0 when t = √ 20 = 2 √ 5. Then v(t) = −10t, so the velocity at impact is v(2 √ 5) = −20 √ 5 m/s. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 32 / 37
  • 132. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
  • 133. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
  • 134. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 Measure time 0 and position 0 when the car starts braking. So s(0) = 0. The car stops at time some t1, when v(t1) = 0. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
  • 135. . . . . . . Finding initial velocity from stopping distance Example The skid marks made by an automobile indicate that its brakes were fully applied for a distance of 160 ft before it came to a stop. Suppose that the car in question has a constant deceleration of 20 ft/s2 under the conditions of the skid. How fast was the car traveling when its brakes were first applied? Solution (Setup) While braking, the car has acceleration a(t) = −20 Measure time 0 and position 0 when the car starts braking. So s(0) = 0. The car stops at time some t1, when v(t1) = 0. We know that when s(t1) = 160. We want to know v(0), or v0. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 33 / 37
  • 136. . . . . . . Implementing the Solution In general, s(t) = s0 + v0t + 1 2 at2 Since s0 = 0 and a = −20, we have s(t) = v0t − 10t2 v(t) = v0 − 20t for all t. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 34 / 37
  • 137. . . . . . . Implementing the Solution In general, s(t) = s0 + v0t + 1 2 at2 Since s0 = 0 and a = −20, we have s(t) = v0t − 10t2 v(t) = v0 − 20t for all t. Plugging in t = t1, 160 = v0t1 − 10t2 1 0 = v0 − 20t1 We need to solve these two equations. V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 34 / 37
  • 138. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
  • 139. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 The second gives t1 = v0/20, so substitute into the first: v0 · v0 20 − 10 ( v0 20 )2 = 160 Solve: v2 0 20 − 10v2 0 400 = 160 2v2 0 − v2 0 = 160 · 40 = 6400 V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
  • 140. . . . . . . Solving We have v0t1 − 10t2 1 = 160 v0 − 20t1 = 0 The second gives t1 = v0/20, so substitute into the first: v0 · v0 20 − 10 ( v0 20 )2 = 160 Solve: v2 0 20 − 10v2 0 400 = 160 2v2 0 − v2 0 = 160 · 40 = 6400 So v0 = 80 ft/s ≈ 55 mi/hr V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 35 / 37
  • 141. . . . . . . Summary of Antiderivatives so far f(x) F(x) xr , r ̸= 1 1 r + 1 xr+1 + C 1 x = x−1 ln |x| + C ex ex + C ax 1 ln a ax + C ln x x ln x − x + C loga x x ln x − x ln a + C sin x − cos x + C cos x sin x + C tan x ln | tan x| + C V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 36 / 37
  • 142. . . . . . . Final Thoughts Antiderivatives are a useful concept, especially in motion We can graph an antiderivative from the graph of a function We can compute antiderivatives, but not always .. x . y .. 1 .. 2 .. 3 .. 4 .. 5 .. 6 ....... f ....... F f(x) = e−x2 f′ (x) = ??? V63.0121.021, Calculus I (NYU) Section 4.7 Antiderivatives November 30, 2010 37 / 37