ABC stands for approximate Bayesian computation. It is a method for performing Bayesian inference when the likelihood function is intractable or impossible to evaluate directly. ABC produces samples from an approximate posterior distribution by simulating parameter and summary statistic values that match the observed summary statistics within a tolerance level. The choice of summary statistics is important but difficult, as there is typically no sufficient statistic. Several strategies have been developed for selecting good summary statistics, including using random forests or the Lasso to evaluate and select from a large set of potential summaries.