The document discusses Approximate Bayesian Computation (ABC). It begins by introducing ABC as a likelihood-free method for Bayesian inference when the likelihood function is unavailable or computationally intractable. ABC works by simulating data under different parameter values and accepting simulations that are close to the observed data based on a distance measure.
The document then discusses advances in ABC, including modifying the proposal distribution to increase efficiency, viewing it as a conditional density estimation problem, and including measurement error in the framework. It also discusses the consistency of ABC as the number of simulations increases and sample size grows large. Finally, it discusses applications of ABC to model selection by treating the model index as an additional parameter.