SlideShare a Scribd company logo
How many mixture components?
Christian P. Robert
U. Paris Dauphine & Warwick U.
Joint work with A. Hairault and J. Rousseau
Festschrift for Sylvia, Cambridge, May 12, 2023
An early meet[ing]
ESF HSSS, CIRM, 1995
Early meet[ing]s
Outline
1 Mixtures of distributions
2 Approximations to evidence
3 Distributed evidence evaluation
4 Dirichlet process mixtures
The reference
Mixtures of distributions
Convex combination of densities
x ∼ fj with probability pj,
for j = 1, 2, . . . , k, with overall density
p1f1(x) + · · · + pkfk(x) .
Usual case: parameterised components
k
X
i=1
pif(x|ϑi) with
n
X
i=1
pi = 1
where weights pi’s are distinguished from
other parameters
Jeffreys priors for mixtures
True Jeffreys prior for mixtures of distributions defined as
Eϑ

∇
∇ log f(X|ϑ)
 1/2
I O(k) matrix
I unavailable in closed form except special cases
I unidimensional integrals approximated by Monte Carlo
tools
[Grazian  X, 2015]
Difficulties
I complexity grows in O(k2)
I significant computing requirement (reduced by delayed
acceptance)
[Banterle et al., 2014]
I differ from component-wise Jeffreys
[Diebolt  X, 1990; Stoneking, 2014]
I when is the posterior proper?
I how to check properness via MCMC outputs?
Further reference priors
Reparameterisation of a location-scale mixture in terms of its
global mean µ and global variance σ2 as
µi = µ + σαi and σi = στi 1 ≤ i ≤ k
where τi  0 and αi ∈ R
Induces compact space on other parameters:
k
X
i=1
piαi = 0 and
k
X
i=1
piτ2
i +
k
X
i=1
piα2
i = 1
© Posterior associated with prior π(µ, σ) = 1/σ proper with
Gaussian components if there are at least two observations in
the sample
[Kamary, Lee  X, 2018]
Label switching paradox
I Under exchangeability, should observe exchangeability of
the components [label switching] to conclude about
convergence of the Gibbs sampler
I If observed, how should we estimate parameters?
I If unobserved, uncertainty about convergence
[Celeux, Hurn  X, 2000; Frühwirth-Schnatter, 2001, 2004; Jasra  al., 2005]
[Unless adopting a point process perspective]
[Green, 2019]
The [s]Witcher
The [s]Witcher
Loss functions for mixture estimation
Global loss function that considers
distance between predictives
L(ξ, ^
ξ) =
Z
X
fξ(x) log

fξ(x)/f^
ξ(x) dx
eliminates the labelling effect
Similar solution for estimating
clusters through allocation variables
L(z, ^
z) =
X
ij
h
I[zi=zj](1 − I[^
zi=^
zj]) + I[^
zi=^
zj](1 − I[zi=zj])
i
.
[Celeux, Hurn  X, 2000]
Bayesian model comparison
Bayes Factor consistent for selecting number of components
[Ishwaran et al., 2001; Casella  Moreno, 2009; Chib and Kuffner, 2016]
Bayes Factor consistent for testing parametric versus
nonparametric alternatives
[Verdinelli  Wasserman, 1997; Dass  Lee, 2004; McVinish et al., 2009]
Consistent evidence for location DPM
Consistency of Bayes factor comparing finite mixtures against
(location) Dirichlet Process Mixture
H0 : f0 ∈ MK vs. H1 : f0 /
∈ MK
0 250 500 750 1000 1250 1500 1750 2000
n
4
3
2
1
0
1
2
log(BF)
0 200 400 600 800 1000
n
0
1
2
3
4
5
6
7
8
log(BF)
(left) finite mixture; (right) not a finite mixture
Consistent evidence for location DPM
Under generic assumptions, when x1, · · · , xn iid fP0
with
P0 =
k0
X
j=1
p0
j δϑ0
j
and Dirichlet DP(M, G0) prior on P, there exists t  0 such
that for all ε  0
Pf0

mDP(x)  n−(k0−1+dk0+t)/2

= o(1)
Moreover there exists q ≥ 0 such that
ΠDP

kf0 − fpk1 ≤
(log n)q
√
n
x

= 1 + oPf0
(1)
[Hairault, X  Rousseau, 2022]
Consistent evidence for location DPM
Assumption A1 [Regularity]
Assumption A2 [Strong identifiability]
Assumption A3 [Compactness ]
Assumption A4 [Existence of DP random mean]
Assumption A5 [Truncated support of M, e.g. trunc’d Ga]
If fP0
∈ Mk0
satisfies Assumptions A1–A3, then
mk0
(y)/mDP(y) → ∞ under fP0
Moreover for all k ≥ k0, if Dirichlet parameter α = η/k and
η  kd/2, then
mk(y)/mDP(y) → ∞ under fP0
Outline
1 Mixtures of distributions
2 Approximations to evidence
3 Distributed evidence evaluation
4 Dirichlet process mixtures
Chib’s or candidate’s representation
Direct application of Bayes’ theorem: given x ∼ fk(x|ϑk) and
ϑk ∼ πk(ϑk),
Zk = mk(x) =
fk(x|ϑk) πk(ϑk)
πk(ϑk|x)
Replace with an approximation to the posterior
b
Zk = d
mk(x) =
fk(x|ϑ∗
k) πk(ϑ∗
k)
^
πk(ϑ∗
k|x)
.
[Besag, 1989; Chib, 1995]
Natural Rao-Blackwellisation
For missing variable z as in mixture models, natural
Rao-Blackwell (unbiased) estimate
c
πk(ϑ∗
k|x) =
1
T
T
X
t=1
πk(ϑ∗
k|x, z
(t)
k ) ,
where the z
(t)
k ’s are Gibbs sampled latent variables
[Diebolt  X, 1990; Chib, 1995]
Compensation for label switching
For mixture models, z
(t)
k usually fails to visit all configurations,
despite symmetry predicted by theory
Consequences on numerical approximation, biased by an order
k!
Compensation for label switching
For mixture models, z
(t)
k usually fails to visit all configurations,
despite symmetry predicted by theory
Force predicted theoretical symmetry by using
f
πk(ϑ∗
k|x) =
1
T k!
X
σ∈Sk
T
X
t=1
πk(σ(ϑ∗
k)|x, z
(t)
k ) .
for all σ’s in Sk, set of all permutations of {1, . . . , k}
[Neal, 1999; Berkhof, Mechelen,  Gelman, 2003; Lee  X, 2018]
Astronomical illustration
Benchmark galaxies for radial velocities of 82 galaxies
[Postman et al., 1986; Roader, 1992; Raftery, 1996]
Conjugate priors
σ2
k ∼ Γ−1
(a0, b0)
µk|σ2
k ∼ N(µ0, σ2
k/λ0)
Galaxy dataset (k)
Using Chib’s estimate, with ϑ∗
k as MAP estimator,
log(^
Zk(x)) = −105.1396
for k = 3, while introducing permutations leads to
log(^
Zk(x)) = −103.3479
Note that
−105.1396 + log(3!) = −103.3479
k 2 3 4 5 6 7 8
Zk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44
Estimations of the marginal likelihoods by the symmetrised Chib’s
approximation (based on 105
Gibbs iterations and, for k  5, 100
permutations selected at random in Sk).
[Lee et al., 2008]
RJMCMC outcome
Rethinking Chib’s solution
Alternate Rao–Blackwellisation by marginalising into partitions
Apply candidate’s/Chib’s formula to a chosen partition:
mk(x) =
fk(x|C0)πk(C0)
πk(C0|x)
with
πk(C(z)) =
k!
(k − k+)!
Γ
Pk
j=1 αj

Γ
Pk
j=1 αj + n

k
Y
j=1
Γ(nj + αj)
Γ(αj)
C(z) partition of {1, . . . , n} induced by cluster membership z
nj =
Pn
i=1 I{zi=j} # observations assigned to cluster j
k+ =
Pk
j=1 I{nj0} # non-empty clusters
Rethinking Chib’s solution
Under conjugate prior G0 on ϑ,
fk(x|C(z)) =
k
Y
j=1
Z
Θ
Y
i:zi=k
f(xi|ϑ)G0(dϑ)
| {z }
m(Ck(z))
and
^
πk(C0
|x) =
1
T
T
X
t=1
IC0≡C(z(t))
I considerably lower computational demand
I no label switching issue
I further Rao-Blackwellisation?
More efficient sampling
Iterative bridge sampling:
b
e(t)
(k) = b
e(t−1)
(k) M−1
1
M1
X
l=1
^
π(ϑ̃l|x)
M1q(ϑ̃l) + M2 ^
π(ϑ̃l|x)
.
M−1
2
M2
X
m=1
q(^
ϑm)
M1q(^
ϑm) + M2 ^
π(^
ϑm|x)
[Frühwirth-Schnatter, 2004]
where
ϑ̃l
∼ q(ϑ) and ^
ϑm
∼ π(ϑ)
More efficient sampling
Iterative bridge sampling:
b
e(t)
(k) = b
e(t−1)
(k) M−1
1
M1
X
l=1
^
π(ϑ̃l|x)
M1q(ϑ̃l) + M2 ^
π(ϑ̃l|x)
.
M−1
2
M2
X
m=1
q(^
ϑm)
M1q(^
ϑm) + M2 ^
π(^
ϑm|x)
[Frühwirth-Schnatter, 2004]
where
q(ϑ) =
1
J1
J1
X
j=1
p(λ|z(j)
)
k
Y
i=1
p(ξi|ξ
(j)
ij, ξ
(j−1)
ij , z(j)
, x)
More efficient sampling
Iterative bridge sampling:
b
e(t)
(k) = b
e(t−1)
(k) M−1
1
M1
X
l=1
^
π(ϑ̃l|x)
M1q(ϑ̃l) + M2 ^
π(ϑ̃l|x)
.
M−1
2
M2
X
m=1
q(^
ϑm)
M1q(^
ϑm) + M2 ^
π(^
ϑm|x)
[Frühwirth-Schnatter, 2004]
where
q(ϑ) =
1
k!
X
σ∈S(k)
p(λ|σ(zo
))
k
Y
i=1
p(ξi|σ(ξo
ij), σ(ξo
ij), σ(zo
), x)
Sparsity for permutations
Contribution of each term relative to q(ϑ)
ησ(ϑ) =
hσ(ϑ)
k!q(ϑ)
=
hσi
(ϑ)
P
σ∈Sk
hσ(ϑ)
and importance of permutation σ evaluated by
b
Ehσc
[ησi
(ϑ)] =
1
M
M
X
l=1
ησi
(ϑ(l)
) , ϑ(l)
∼ hσc (ϑ)
Approximate set A(k) ⊆ S(k) consist of [σ1, · · · , σn] for the
smallest n that satisfies the condition
^
ϕn =
1
M
M
X
l=1
q̃n(ϑ(l)
) − q(ϑ(l)
)  τ
dual importance sampling with approximation
DIS2A
1 Randomly select {z(j)
, ϑ(j)
}J
j=1 from Gibbs sample and
un-switch
Construct q(ϑ)
2 Choose hσc (ϑ) and generate particles {ϑ(t)
}T
t=1 ∼ hσc (ϑ)
3 Construction of approximation q̃(ϑ) using first M-sample
3.1 Compute b
Ehσc
[ησ1
(ϑ)], · · · ,b
Ehσc
[ησk!
(ϑ)]
3.2 Reorder the σ’s such that
b
Ehσc
[ησ1
(ϑ)] ≥ · · · ≥ b
Ehσc
[ησk!
(ϑ)].
3.3 Initially set n = 1 and compute q̃n(ϑ(t)
)’s and b
ϕn. If
b
ϕn=1  τ, go to Step 4. Otherwise increase n = n + 1
4 Replace q(ϑ(1)
), . . . , q(ϑ(T)
) with q̃(ϑ(1)
), . . . , q̃(ϑ(T)
) to
estimate b
E
[Lee  X, 2014]
illustrations
k k! |A(k)| ∆(A)
3 6 1.0000 0.1675
4 24 2.7333 0.1148
Fishery data
k k! |A(k)| ∆(A)
3 6 1.000 0.1675
4 24 15.7000 0.6545
6 720 298.1200 0.4146
Galaxy data
Table: Mean estimates of approximate set sizes, |A(k)|, and the
reduction rate of a number of evaluated h-terms ∆(A) for (a) fishery
and (b) galaxy datasets
Sequential Monte Carlo
Tempered sequence of targets (t = 1, . . . , T)
πkt(ϑk) ∝ pkt(ϑk) = πk(ϑk)fk(x|ϑk)λt
λ1 = 0  · · ·  λT = 1
particles (simulations) (i = 1, . . . , Nt)
ϑi
t
i.i.d.
∼ πkt(ϑk)
usually obtained by MCMC step
ϑi
t ∼ Kt(ϑi
t−1, ϑ)
with importance weights (i = 1, . . . , Nt)
ωt
i = fk(x|ϑk)λt−λt−1
[Del Moral et al., 2006; Buchholz et al., 2021]
Sequential Monte Carlo
Tempered sequence of targets (t = 1, . . . , T)
πkt(ϑk) ∝ pkt(ϑk) = πk(ϑk)fk(x|ϑk)λt
λ1 = 0  · · ·  λT = 1
Produces approximation of evidence
^
Zk =
Y
t
1
Nt
Nt
X
i=1
ωt
i
[Del Moral et al., 2006; Buchholz et al., 2021]
Sequential2
imputation
For conjugate priors, (marginal) particle filter representation of
a proposal:
π∗
(z|x) = π(z1|x1)
n
Y
i=2
π(zi|x1:i, z1:i−1)
with importance weight
π(z|x)
π∗(z|x)
=
π(x, z)
m(x)
m(x1)
π(z1, x1)
m(z1, x1, x2)
π(z1, x1, z2, x2)
· · ·
π(z1:n−1, x)
π(z, x)
=
w(z, x)
m(x)
leading to unbiased estimator of evidence
^
Zk(x) =
1
T
T
X
i=1
w(z(t)
, x)
[Long, Liu  Wong, 1994; Carvalho et al., 2010]
Galactic illustration
C
h
i
b
C
h
i
b
P
e
r
m
B
r
i
d
g
e
S
a
m
p
l
i
n
g
a
d
a
p
t
i
v
e
S
M
C
S
I
S
C
h
i
b
P
a
r
t
i
t
i
o
n
s
a
r
i
t
h
m
e
t
i
c
M
e
a
n
229
228
227
226
m(y)
K=3
C
h
i
b
C
h
i
b
P
e
r
m
B
r
i
d
g
e
S
a
m
p
l
i
n
g
a
d
a
p
t
i
v
e
S
M
C
S
I
S
C
h
i
b
P
a
r
t
i
t
i
o
n
s
a
r
i
t
h
m
e
t
i
c
M
e
a
n
232
230
228
226
K=5
C
h
i
b
C
h
i
b
R
a
n
d
P
e
r
m
a
d
a
p
t
i
v
e
S
M
C
S
I
S
C
h
i
b
P
a
r
t
i
t
i
o
n
s
a
r
i
t
h
m
e
t
i
c
M
e
a
n
235.0
232.5
230.0
227.5
m(y)
K=6
C
h
i
b
C
h
i
b
R
a
n
d
P
e
r
m
a
d
a
p
t
i
v
e
S
M
C
S
I
S
C
h
i
b
P
a
r
t
i
t
i
o
n
s
a
r
i
t
h
m
e
t
i
c
M
e
a
n
240
235
230
225
K=8
Common illustration
5.0 5.5 6.0 6.5 7.0 7.5 8.0
log(time)
10
8
6
4
2
0
2
log(MSE)
ChibPartitions
Bridge Sampling
ChibPerm
SIS
SMC
Empirical conclusions
I Bridge sampling, arithmetic mean and original Chib’s
method fail to scale with n, sample size
I Partition Chib’s increasingly variable with k, number of
components
I Adaptive SMC ultimately fails
I SIS remains most reliable method
1 Mixtures of distributions
2 Approximations to evidence
3 Distributed evidence evaluation
4 Dirichlet process mixtures
Distributed computation
[Buchholz et al., 2022]
Divide  Conquer
1. data y divided into S batches y1, . . . , yS with
π(ϑ|y) ∝ p(y|ϑ)π(ϑ) =
S
Y
s=1
p(ys|ϑ)π(ϑ)1/S
=
S
Y
s=1
p(ys|ϑ)π̃(ϑ) ∝
S
Y
s=1
π̃(ϑ|ys)
2. infer with π̃(ϑ|ys), sub-posterior distributions, in parallel
by MCMC
3. recombine all sub-posterior samples
[Buchholz et al., 2022]
Connecting bits
While
m(y) =
Z S
Y
s=1
p(ys|ϑ)π̃(ϑ)dϑ 6=
S
Y
s=1
Z
p(ys|ϑ)π̃(ϑ)dϑ =
S
Y
s=1
m̃(ys)
they can be connected as
m(y) = ZS
S
Y
s=1
m̃(ys)
Z S
Y
s=1
π̃(ϑ|ys)dϑ
[Buchholz et al., 2022]
Connecting bits
m(y) = ZS
S
Y
s=1
m̃(ys)
Z S
Y
s=1
π̃(ϑ|ys)dϑ
where
π̃(ϑ|ys) ∝ p(ys|ϑ)π̃(ϑ),
m̃(ys) =
Z
p(ys|ϑ)π̃(ϑ)dϑ,
Z =
Z
π(ϑ)1/S
dϑ
[Buchholz et al., 2022]
Label unswitching worries
While Z usually closed-form,
I =
Z S
Y
s=1
π̃(ϑ|ys)dϑ
is not and need be evaluated as
^
I =
1
T
T
X
t=1
Z S
Y
s=1
π̃(ϑ|z
(t)
s , ys)dϑ
when
π̃(ϑ|ys) =
Z
π̃(ϑ|zs, ys)π̃(zs|ys)dzs
Label unswitching worries
π̃(ϑ|ys) =
Z
π̃(ϑ|zs, ys)π̃(zs|ys)dzs
Issue: with distributed computing, shards zs are unrelated and
corresponding clusters disconnected.
Label unswitching worries
π̃(ϑ|ys) =
Z
π̃(ϑ|zs, ys)π̃(zs|ys)dzs
Issue: with distributed computing, shards zs are unrelated and
corresponding clusters disconnected.
4500
4400
4300
4200
4100
4000
3900
3800
logm(y)
K=1 K=2 K=3 K=4 K=5
Label switching imposition
Returning to averaging across permutations, identity
^
Iperm =
1
TK!S−1
T
X
t=1
X
σ2,...,σS∈SK
Z
π̃(ϑ|z
(t)
1 , y1)
S
Y
s=2
π̃(ϑ|σs(z
(t)
s ), ys)dϑ
Label switching imposition
Returning to averaging across permutations, identity
^
Iperm =
1
TK!S−1
T
X
t=1
X
σ2,...,σS∈SK
Z
π̃(ϑ|z
(t)
1 , y1)
S
Y
s=2
π̃(ϑ|σs(z
(t)
s ), ys)dϑ
I Iperm
4500
4400
4300
4200
4100
4000
3900
3800
logm(y)
K=1
I Iperm
K=2
I Iperm
K=3
Label switching imposition
Returning to averaging across permutations, identity
^
Iperm =
1
TK!S−1
T
X
t=1
X
σ2,...,σS∈SK
Z
π̃(ϑ|z
(t)
1 , y1)
S
Y
s=2
π̃(ϑ|σs(z
(t)
s ), ys)dϑ
Obtained at heavy computational cost: O(T) for ^
I versus
O(TK!S−1) for ^
Iperm
Importance sampling version
Obtained at heavy computational cost: O(T) for ^
I versus
O(TK!S−1) for ^
Iperm
Avoid enumeration of permutations by using simulated values of
parameter for the reference sub-posterior as anchors towards
coherent labeling of clusters
[Celeux, 1998; Stephens, 2000]
Importance sampling version
For each batch s = 2, . . . , S, define matching matrix
Ps =



ps11 · · · ps1K
.
.
.
.
.
.
.
.
.
psK1 · · · psKK



where
pslk =
Y
i:zsi=l
p(ysi|ϑk)
used in creating proposals
qs(σ) ∝
K
Y
k=1
pskσ(k)
that reflect probabilities that each cluster k of batch s is
well-matched with cluster σ(k) of batch 1
Importance sampling version
Considerably reduced computational cost compared to
^
m^
Iperm
(y)
I At each iteration t, total cost of O(Kn/S) for evaluating Ps
I computing K! weights of discrete importance distribution
qσs requires K! operations
I sampling from the global discrete importance distribution
requires M(t) basic operations
Global cost of
O(T(Kn/S + K! + M̄))
for M̄ maximum number of importance simulations
Importance sampling version
Resulting estimator
^
IIS =
1
TK!S−1
T
X
t=1
1
M(t)
M(t)
X
m=1
χ(z(t); σ
(t,m)
2 , . . . , σ
(t,m)
S )
πσ(σ
(t,m)
2 , . . . , σ
(t,m)
S )
where
χ(z(t)
; σ2, . . . , σS) :=
Z
π̃(ϑ|z
(t)
1 , y1)
S
Y
s=2
π̃(ϑ|σs(z
(t)
s ), ys)dϑ
Importance sampling version
Resulting estimator
^
IIS =
1
TK!S−1
T
X
t=1
1
M(t)
M(t)
X
m=1
χ(z(t); σ
(t,m)
2 , . . . , σ
(t,m)
S )
πσ(σ
(t,m)
2 , . . . , σ
(t,m)
S )
I Iperm IIS
1520
1500
1480
1460
1440
1420
logm(y)
K=1
I Iperm IIS
K=2
I Iperm IIS
K=3
I Iperm IIS
K=4
Sequential importance sampling
Define
π̃s(ϑ) =
Qs
l=1 π̃(ϑ|yl)
Zs
where
Zs =
Z s
Y
l=1
π̃(ϑ|yl)
then
m(y) = ZS
× m(y1) ×
S
Y
s=2
Z
πs−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ
Sequential importance sampling
Calls for standard sequential importance sampling strategy
making use of the successive distributions πs(ϑ) as importance
distributions
Sequential importance sampling
Calls for standard sequential importance sampling strategy
making use of the successive distributions πs(ϑ) as importance
distributions
I Iperm IIS SMC
1575
1550
1525
1500
1475
1450
1425
logm(y)
K=1
I Iperm IIS SMC
K=2
I Iperm IIS SMC
K=3
I Iperm IIS SMC
K=4
I Iperm IIS SMC
K=5
1 Mixtures of distributions
2 Approximations to evidence
3 Distributed evidence evaluation
4 Dirichlet process mixtures
Dirichlet process mixture (DPM)
Extension to the k = ∞ (non-parametric) case
xi|zi, ϑ
i.i.d
∼ f(xi|ϑxi
), i = 1, . . . , n (1)
P(Zi = k) = πk, k = 1, 2, . . .
π1, π2, . . . ∼ GEM(M) M ∼ π(M)
ϑ1, ϑ2, . . .
i.i.d
∼ G0
with GEM (Griffith-Engen-McCloskey) defined by the
stick-breaking representation
πk = vk
k−1
Y
i=1
(1 − vi) vi ∼ Beta(1, M)
[Sethuraman, 1994]
Dirichlet process mixture (DPM)
Resulting in an infinite mixture
x ∼
n
Y
i=1
∞
X
i=1
πif(xi|ϑi)
with (prior) cluster allocation
π(z|M) =
Γ(M)
Γ(M + n)
MK+
K+
Y
j=1
Γ(nj)
and conditional likelihood
p(x|z, M) =
K+
Y
j=1
Z Y
i:zi=j
f(xi|ϑj)dG0(ϑj)
available in closed form when G0 conjugate
Approximating the evidence
Extension of Chib’s formula by marginalising over z and ϑ
mDP(x) =
p(x|M∗, G0)π(M∗)
π(M∗|x)
and using estimate
^
π(M∗
|x) =
1
T
T
X
t=1
π(M∗
|x, η(t)
, K
(t)
+ )
provided prior on M a Γ(a, b) distribution since
M|x, η, K+ ∼ ωΓ(a+K+, b−log(η))+(1−ω)Γ(a+K+−1, b−log(η))
with ω = (a + K+ − 1)/{n(b − log(η)) + a + K+ − 1} and
η|x, M ∼ Beta(M + 1, n)
[Basu  Chib, 2003]
Approximating the likelihood
Intractable likelihood p(x|M∗, G0) approximated by sequential
inputation importance sampling
Generating z from the proposal
π∗
(z|x, M) =
n
Y
i=1
π(zi|x1:i, z1:i−1, M)
and using the approximation
^
L(x|M∗
, G0) =
1
T
T
X
t=1
^
p(x1|z
(t)
1 , G0)
n
Y
i=2
p(yi|x1:i−1z
(t)
1:i−1, G0)
[Kong, Lu  Wong, 1994; Basu  Chib, 2003]
Approximating the evidence (bis)
Reverse logistic regression applies to DPM:
Importance function
π1(z, M) := π∗
(z|x, M)π(M) and π2(z, M) =
π(z, M|x)
m(y)
{z(1,j), M(1,j)}T
j=1 and {z(2,j), M(2,j)}T
j=1 samples from π1 and π2
Marginal likelihood m(y) estimated as intercept of logistic
regression with covariate
log{π1(z, M)/π̃2(z, M)}
on merged sample
[Geyer, 1994; Chen  Shao, 1997]
Galactic illustration
a
r
i
t
h
m
e
t
i
c
h
a
r
m
o
n
i
c
C
h
i
b
R
L
R
-
S
I
S
R
L
R
-
P
r
i
o
r
23.296
23.288
23.280
23.272
23.264
23.256
23.248
23.240
23.232
23.224
m(x)
n=6
a
r
i
t
h
m
e
t
i
c
h
a
r
m
o
n
i
c
C
h
i
b
R
L
R
-
S
I
S
R
L
R
-
P
r
i
o
r
111
110
109
108
107
106
105
104
n=36
a
r
i
t
h
m
e
t
i
c
h
a
r
m
o
n
i
c
C
h
i
b
R
L
R
-
S
I
S
R
L
R
-
P
r
i
o
r
240
236
232
228
224
220
216
212
n=82
Galactic illustration
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6
log(time)
3
2
1
0
1
log(MSE)
Chib
RLR-SIS
RLR-Prior
Towards new adventures
Exumas, Bahamas, 10 August 2011

More Related Content

PDF
Inferring the number of components: dream or reality?
PDF
変分推論法(変分ベイズ法)(PRML第10章)
PDF
PRML輪読#6
PDF
行列計算アルゴリズム
PDF
パターン認識02 k平均法ver2.0
PDF
能動学習セミナー
PDF
セミパラメトリック推論の基礎
PDF
文字列カーネルによる辞書なしツイート分類 〜文字列カーネル入門〜
Inferring the number of components: dream or reality?
変分推論法(変分ベイズ法)(PRML第10章)
PRML輪読#6
行列計算アルゴリズム
パターン認識02 k平均法ver2.0
能動学習セミナー
セミパラメトリック推論の基礎
文字列カーネルによる辞書なしツイート分類 〜文字列カーネル入門〜

What's hot (20)

PDF
確率的主成分分析
PDF
PDF
ベータ分布の謎に迫る
PDF
はじパタ8章 svm
PDF
Word2vecの理論背景
PDF
凸最適化 〜 双対定理とソルバーCVXPYの紹介 〜
PPTX
劣モジュラ最適化と機械学習1章
PDF
OpenOpt の線形計画で圧縮センシング
PDF
2値分類・多クラス分類
PDF
情報幾何の基礎とEMアルゴリズムの解釈
PDF
PRML輪読#11
PPTX
Chokudai search
PDF
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
PPTX
fastTextの実装を見てみた
PDF
PRMLの線形回帰モデル(線形基底関数モデル)
PDF
双対性
PDF
Stan で欠測データの相関係数を推定してみた
PDF
GAN(と強化学習との関係)
PDF
PRML輪読#4
PDF
グラフネットワーク〜フロー&カット〜
確率的主成分分析
ベータ分布の謎に迫る
はじパタ8章 svm
Word2vecの理論背景
凸最適化 〜 双対定理とソルバーCVXPYの紹介 〜
劣モジュラ最適化と機械学習1章
OpenOpt の線形計画で圧縮センシング
2値分類・多クラス分類
情報幾何の基礎とEMアルゴリズムの解釈
PRML輪読#11
Chokudai search
基礎からのベイズ統計学 輪読会資料 第4章 メトロポリス・ヘイスティングス法
fastTextの実装を見てみた
PRMLの線形回帰モデル(線形基底関数モデル)
双対性
Stan で欠測データの相関係数を推定してみた
GAN(と強化学習との関係)
PRML輪読#4
グラフネットワーク〜フロー&カット〜
Ad

Similar to How many components in a mixture? (20)

PDF
Testing for mixtures at BNP 13
PDF
Testing for mixtures by seeking components
PDF
prior selection for mixture estimation
PDF
Workshop in honour of Don Poskitt and Gael Martin
PDF
CDT 22 slides.pdf
PDF
Vancouver18
PDF
Convergence of ABC methods
PDF
the ABC of ABC
PDF
Divergence center-based clustering and their applications
PDF
Divergence clustering
PDF
NCE, GANs & VAEs (and maybe BAC)
PDF
BAYSM'14, Wien, Austria
PDF
On learning statistical mixtures maximizing the complete likelihood
PDF
Bayesian inference on mixtures
PDF
Patch Matching with Polynomial Exponential Families and Projective Divergences
PDF
ABC-Gibbs
PDF
Insufficient Gibbs sampling (A. Luciano, C.P. Robert and R. Ryder)
PDF
asymptotics of ABC
PDF
ABC workshop: 17w5025
PDF
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
Testing for mixtures at BNP 13
Testing for mixtures by seeking components
prior selection for mixture estimation
Workshop in honour of Don Poskitt and Gael Martin
CDT 22 slides.pdf
Vancouver18
Convergence of ABC methods
the ABC of ABC
Divergence center-based clustering and their applications
Divergence clustering
NCE, GANs & VAEs (and maybe BAC)
BAYSM'14, Wien, Austria
On learning statistical mixtures maximizing the complete likelihood
Bayesian inference on mixtures
Patch Matching with Polynomial Exponential Families and Projective Divergences
ABC-Gibbs
Insufficient Gibbs sampling (A. Luciano, C.P. Robert and R. Ryder)
asymptotics of ABC
ABC workshop: 17w5025
CVPR2010: Advanced ITinCVPR in a Nutshell: part 6: Mixtures
Ad

More from Christian Robert (19)

PDF
The future of conferences towards sustainability and inclusivity
PDF
Adaptive Restore algorithm & importance Monte Carlo
PDF
Asymptotics of ABC, lecture, Collège de France
PDF
discussion of ICML23.pdf
PDF
restore.pdf
PDF
discussion on Bayesian restricted likelihood
PDF
ABC-Gibbs
PDF
Coordinate sampler : A non-reversible Gibbs-like sampler
PDF
eugenics and statistics
PDF
Laplace's Demon: seminar #1
PDF
ABC-Gibbs
PDF
Likelihood-free Design: a discussion
PDF
CISEA 2019: ABC consistency and convergence
PDF
a discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment models
PDF
ABC based on Wasserstein distances
PDF
Poster for Bayesian Statistics in the Big Data Era conference
PDF
short course at CIRM, Bayesian Masterclass, October 2018
PDF
ABC with Wasserstein distances
PDF
Coordinate sampler: A non-reversible Gibbs-like sampler
The future of conferences towards sustainability and inclusivity
Adaptive Restore algorithm & importance Monte Carlo
Asymptotics of ABC, lecture, Collège de France
discussion of ICML23.pdf
restore.pdf
discussion on Bayesian restricted likelihood
ABC-Gibbs
Coordinate sampler : A non-reversible Gibbs-like sampler
eugenics and statistics
Laplace's Demon: seminar #1
ABC-Gibbs
Likelihood-free Design: a discussion
CISEA 2019: ABC consistency and convergence
a discussion of Chib, Shin, and Simoni (2017-8) Bayesian moment models
ABC based on Wasserstein distances
Poster for Bayesian Statistics in the Big Data Era conference
short course at CIRM, Bayesian Masterclass, October 2018
ABC with Wasserstein distances
Coordinate sampler: A non-reversible Gibbs-like sampler

Recently uploaded (20)

PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
BIOMOLECULES PPT........................
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PPTX
2. Earth - The Living Planet earth and life
PDF
An interstellar mission to test astrophysical black holes
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
neck nodes and dissection types and lymph nodes levels
PDF
Placing the Near-Earth Object Impact Probability in Context
PDF
Sciences of Europe No 170 (2025)
PDF
The scientific heritage No 166 (166) (2025)
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
INTRODUCTION TO EVS | Concept of sustainability
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Phytochemical Investigation of Miliusa longipes.pdf
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
bbec55_b34400a7914c42429908233dbd381773.pdf
POSITIONING IN OPERATION THEATRE ROOM.ppt
Introduction to Cardiovascular system_structure and functions-1
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
BIOMOLECULES PPT........................
7. General Toxicologyfor clinical phrmacy.pptx
2. Earth - The Living Planet earth and life
An interstellar mission to test astrophysical black holes
2Systematics of Living Organisms t-.pptx
Classification Systems_TAXONOMY_SCIENCE8.pptx
HPLC-PPT.docx high performance liquid chromatography
neck nodes and dissection types and lymph nodes levels
Placing the Near-Earth Object Impact Probability in Context
Sciences of Europe No 170 (2025)
The scientific heritage No 166 (166) (2025)
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
INTRODUCTION TO EVS | Concept of sustainability

How many components in a mixture?

  • 1. How many mixture components? Christian P. Robert U. Paris Dauphine & Warwick U. Joint work with A. Hairault and J. Rousseau Festschrift for Sylvia, Cambridge, May 12, 2023
  • 2. An early meet[ing] ESF HSSS, CIRM, 1995
  • 4. Outline 1 Mixtures of distributions 2 Approximations to evidence 3 Distributed evidence evaluation 4 Dirichlet process mixtures
  • 6. Mixtures of distributions Convex combination of densities x ∼ fj with probability pj, for j = 1, 2, . . . , k, with overall density p1f1(x) + · · · + pkfk(x) . Usual case: parameterised components k X i=1 pif(x|ϑi) with n X i=1 pi = 1 where weights pi’s are distinguished from other parameters
  • 7. Jeffreys priors for mixtures True Jeffreys prior for mixtures of distributions defined as Eϑ ∇ ∇ log f(X|ϑ) 1/2 I O(k) matrix I unavailable in closed form except special cases I unidimensional integrals approximated by Monte Carlo tools [Grazian X, 2015]
  • 8. Difficulties I complexity grows in O(k2) I significant computing requirement (reduced by delayed acceptance) [Banterle et al., 2014] I differ from component-wise Jeffreys [Diebolt X, 1990; Stoneking, 2014] I when is the posterior proper? I how to check properness via MCMC outputs?
  • 9. Further reference priors Reparameterisation of a location-scale mixture in terms of its global mean µ and global variance σ2 as µi = µ + σαi and σi = στi 1 ≤ i ≤ k where τi 0 and αi ∈ R Induces compact space on other parameters: k X i=1 piαi = 0 and k X i=1 piτ2 i + k X i=1 piα2 i = 1 © Posterior associated with prior π(µ, σ) = 1/σ proper with Gaussian components if there are at least two observations in the sample [Kamary, Lee X, 2018]
  • 10. Label switching paradox I Under exchangeability, should observe exchangeability of the components [label switching] to conclude about convergence of the Gibbs sampler I If observed, how should we estimate parameters? I If unobserved, uncertainty about convergence [Celeux, Hurn X, 2000; Frühwirth-Schnatter, 2001, 2004; Jasra al., 2005] [Unless adopting a point process perspective] [Green, 2019]
  • 13. Loss functions for mixture estimation Global loss function that considers distance between predictives L(ξ, ^ ξ) = Z X fξ(x) log fξ(x)/f^ ξ(x) dx eliminates the labelling effect Similar solution for estimating clusters through allocation variables L(z, ^ z) = X ij h I[zi=zj](1 − I[^ zi=^ zj]) + I[^ zi=^ zj](1 − I[zi=zj]) i . [Celeux, Hurn X, 2000]
  • 14. Bayesian model comparison Bayes Factor consistent for selecting number of components [Ishwaran et al., 2001; Casella Moreno, 2009; Chib and Kuffner, 2016] Bayes Factor consistent for testing parametric versus nonparametric alternatives [Verdinelli Wasserman, 1997; Dass Lee, 2004; McVinish et al., 2009]
  • 15. Consistent evidence for location DPM Consistency of Bayes factor comparing finite mixtures against (location) Dirichlet Process Mixture H0 : f0 ∈ MK vs. H1 : f0 / ∈ MK 0 250 500 750 1000 1250 1500 1750 2000 n 4 3 2 1 0 1 2 log(BF) 0 200 400 600 800 1000 n 0 1 2 3 4 5 6 7 8 log(BF) (left) finite mixture; (right) not a finite mixture
  • 16. Consistent evidence for location DPM Under generic assumptions, when x1, · · · , xn iid fP0 with P0 = k0 X j=1 p0 j δϑ0 j and Dirichlet DP(M, G0) prior on P, there exists t 0 such that for all ε 0 Pf0 mDP(x) n−(k0−1+dk0+t)/2 = o(1) Moreover there exists q ≥ 0 such that ΠDP kf0 − fpk1 ≤ (log n)q √ n x = 1 + oPf0 (1) [Hairault, X Rousseau, 2022]
  • 17. Consistent evidence for location DPM Assumption A1 [Regularity] Assumption A2 [Strong identifiability] Assumption A3 [Compactness ] Assumption A4 [Existence of DP random mean] Assumption A5 [Truncated support of M, e.g. trunc’d Ga] If fP0 ∈ Mk0 satisfies Assumptions A1–A3, then mk0 (y)/mDP(y) → ∞ under fP0 Moreover for all k ≥ k0, if Dirichlet parameter α = η/k and η kd/2, then mk(y)/mDP(y) → ∞ under fP0
  • 18. Outline 1 Mixtures of distributions 2 Approximations to evidence 3 Distributed evidence evaluation 4 Dirichlet process mixtures
  • 19. Chib’s or candidate’s representation Direct application of Bayes’ theorem: given x ∼ fk(x|ϑk) and ϑk ∼ πk(ϑk), Zk = mk(x) = fk(x|ϑk) πk(ϑk) πk(ϑk|x) Replace with an approximation to the posterior b Zk = d mk(x) = fk(x|ϑ∗ k) πk(ϑ∗ k) ^ πk(ϑ∗ k|x) . [Besag, 1989; Chib, 1995]
  • 20. Natural Rao-Blackwellisation For missing variable z as in mixture models, natural Rao-Blackwell (unbiased) estimate c πk(ϑ∗ k|x) = 1 T T X t=1 πk(ϑ∗ k|x, z (t) k ) , where the z (t) k ’s are Gibbs sampled latent variables [Diebolt X, 1990; Chib, 1995]
  • 21. Compensation for label switching For mixture models, z (t) k usually fails to visit all configurations, despite symmetry predicted by theory Consequences on numerical approximation, biased by an order k!
  • 22. Compensation for label switching For mixture models, z (t) k usually fails to visit all configurations, despite symmetry predicted by theory Force predicted theoretical symmetry by using f πk(ϑ∗ k|x) = 1 T k! X σ∈Sk T X t=1 πk(σ(ϑ∗ k)|x, z (t) k ) . for all σ’s in Sk, set of all permutations of {1, . . . , k} [Neal, 1999; Berkhof, Mechelen, Gelman, 2003; Lee X, 2018]
  • 23. Astronomical illustration Benchmark galaxies for radial velocities of 82 galaxies [Postman et al., 1986; Roader, 1992; Raftery, 1996] Conjugate priors σ2 k ∼ Γ−1 (a0, b0) µk|σ2 k ∼ N(µ0, σ2 k/λ0)
  • 24. Galaxy dataset (k) Using Chib’s estimate, with ϑ∗ k as MAP estimator, log(^ Zk(x)) = −105.1396 for k = 3, while introducing permutations leads to log(^ Zk(x)) = −103.3479 Note that −105.1396 + log(3!) = −103.3479 k 2 3 4 5 6 7 8 Zk(x) -115.68 -103.35 -102.66 -101.93 -102.88 -105.48 -108.44 Estimations of the marginal likelihoods by the symmetrised Chib’s approximation (based on 105 Gibbs iterations and, for k 5, 100 permutations selected at random in Sk). [Lee et al., 2008]
  • 26. Rethinking Chib’s solution Alternate Rao–Blackwellisation by marginalising into partitions Apply candidate’s/Chib’s formula to a chosen partition: mk(x) = fk(x|C0)πk(C0) πk(C0|x) with πk(C(z)) = k! (k − k+)! Γ Pk j=1 αj Γ Pk j=1 αj + n k Y j=1 Γ(nj + αj) Γ(αj) C(z) partition of {1, . . . , n} induced by cluster membership z nj = Pn i=1 I{zi=j} # observations assigned to cluster j k+ = Pk j=1 I{nj0} # non-empty clusters
  • 27. Rethinking Chib’s solution Under conjugate prior G0 on ϑ, fk(x|C(z)) = k Y j=1 Z Θ Y i:zi=k f(xi|ϑ)G0(dϑ) | {z } m(Ck(z)) and ^ πk(C0 |x) = 1 T T X t=1 IC0≡C(z(t)) I considerably lower computational demand I no label switching issue I further Rao-Blackwellisation?
  • 28. More efficient sampling Iterative bridge sampling: b e(t) (k) = b e(t−1) (k) M−1 1 M1 X l=1 ^ π(ϑ̃l|x) M1q(ϑ̃l) + M2 ^ π(ϑ̃l|x) . M−1 2 M2 X m=1 q(^ ϑm) M1q(^ ϑm) + M2 ^ π(^ ϑm|x) [Frühwirth-Schnatter, 2004] where ϑ̃l ∼ q(ϑ) and ^ ϑm ∼ π(ϑ)
  • 29. More efficient sampling Iterative bridge sampling: b e(t) (k) = b e(t−1) (k) M−1 1 M1 X l=1 ^ π(ϑ̃l|x) M1q(ϑ̃l) + M2 ^ π(ϑ̃l|x) . M−1 2 M2 X m=1 q(^ ϑm) M1q(^ ϑm) + M2 ^ π(^ ϑm|x) [Frühwirth-Schnatter, 2004] where q(ϑ) = 1 J1 J1 X j=1 p(λ|z(j) ) k Y i=1 p(ξi|ξ (j) ij, ξ (j−1) ij , z(j) , x)
  • 30. More efficient sampling Iterative bridge sampling: b e(t) (k) = b e(t−1) (k) M−1 1 M1 X l=1 ^ π(ϑ̃l|x) M1q(ϑ̃l) + M2 ^ π(ϑ̃l|x) . M−1 2 M2 X m=1 q(^ ϑm) M1q(^ ϑm) + M2 ^ π(^ ϑm|x) [Frühwirth-Schnatter, 2004] where q(ϑ) = 1 k! X σ∈S(k) p(λ|σ(zo )) k Y i=1 p(ξi|σ(ξo ij), σ(ξo ij), σ(zo ), x)
  • 31. Sparsity for permutations Contribution of each term relative to q(ϑ) ησ(ϑ) = hσ(ϑ) k!q(ϑ) = hσi (ϑ) P σ∈Sk hσ(ϑ) and importance of permutation σ evaluated by b Ehσc [ησi (ϑ)] = 1 M M X l=1 ησi (ϑ(l) ) , ϑ(l) ∼ hσc (ϑ) Approximate set A(k) ⊆ S(k) consist of [σ1, · · · , σn] for the smallest n that satisfies the condition ^ ϕn = 1 M M X l=1 q̃n(ϑ(l) ) − q(ϑ(l) ) τ
  • 32. dual importance sampling with approximation DIS2A 1 Randomly select {z(j) , ϑ(j) }J j=1 from Gibbs sample and un-switch Construct q(ϑ) 2 Choose hσc (ϑ) and generate particles {ϑ(t) }T t=1 ∼ hσc (ϑ) 3 Construction of approximation q̃(ϑ) using first M-sample 3.1 Compute b Ehσc [ησ1 (ϑ)], · · · ,b Ehσc [ησk! (ϑ)] 3.2 Reorder the σ’s such that b Ehσc [ησ1 (ϑ)] ≥ · · · ≥ b Ehσc [ησk! (ϑ)]. 3.3 Initially set n = 1 and compute q̃n(ϑ(t) )’s and b ϕn. If b ϕn=1 τ, go to Step 4. Otherwise increase n = n + 1 4 Replace q(ϑ(1) ), . . . , q(ϑ(T) ) with q̃(ϑ(1) ), . . . , q̃(ϑ(T) ) to estimate b E [Lee X, 2014]
  • 33. illustrations k k! |A(k)| ∆(A) 3 6 1.0000 0.1675 4 24 2.7333 0.1148 Fishery data k k! |A(k)| ∆(A) 3 6 1.000 0.1675 4 24 15.7000 0.6545 6 720 298.1200 0.4146 Galaxy data Table: Mean estimates of approximate set sizes, |A(k)|, and the reduction rate of a number of evaluated h-terms ∆(A) for (a) fishery and (b) galaxy datasets
  • 34. Sequential Monte Carlo Tempered sequence of targets (t = 1, . . . , T) πkt(ϑk) ∝ pkt(ϑk) = πk(ϑk)fk(x|ϑk)λt λ1 = 0 · · · λT = 1 particles (simulations) (i = 1, . . . , Nt) ϑi t i.i.d. ∼ πkt(ϑk) usually obtained by MCMC step ϑi t ∼ Kt(ϑi t−1, ϑ) with importance weights (i = 1, . . . , Nt) ωt i = fk(x|ϑk)λt−λt−1 [Del Moral et al., 2006; Buchholz et al., 2021]
  • 35. Sequential Monte Carlo Tempered sequence of targets (t = 1, . . . , T) πkt(ϑk) ∝ pkt(ϑk) = πk(ϑk)fk(x|ϑk)λt λ1 = 0 · · · λT = 1 Produces approximation of evidence ^ Zk = Y t 1 Nt Nt X i=1 ωt i [Del Moral et al., 2006; Buchholz et al., 2021]
  • 36. Sequential2 imputation For conjugate priors, (marginal) particle filter representation of a proposal: π∗ (z|x) = π(z1|x1) n Y i=2 π(zi|x1:i, z1:i−1) with importance weight π(z|x) π∗(z|x) = π(x, z) m(x) m(x1) π(z1, x1) m(z1, x1, x2) π(z1, x1, z2, x2) · · · π(z1:n−1, x) π(z, x) = w(z, x) m(x) leading to unbiased estimator of evidence ^ Zk(x) = 1 T T X i=1 w(z(t) , x) [Long, Liu Wong, 1994; Carvalho et al., 2010]
  • 38. Common illustration 5.0 5.5 6.0 6.5 7.0 7.5 8.0 log(time) 10 8 6 4 2 0 2 log(MSE) ChibPartitions Bridge Sampling ChibPerm SIS SMC
  • 39. Empirical conclusions I Bridge sampling, arithmetic mean and original Chib’s method fail to scale with n, sample size I Partition Chib’s increasingly variable with k, number of components I Adaptive SMC ultimately fails I SIS remains most reliable method
  • 40. 1 Mixtures of distributions 2 Approximations to evidence 3 Distributed evidence evaluation 4 Dirichlet process mixtures
  • 42. Divide Conquer 1. data y divided into S batches y1, . . . , yS with π(ϑ|y) ∝ p(y|ϑ)π(ϑ) = S Y s=1 p(ys|ϑ)π(ϑ)1/S = S Y s=1 p(ys|ϑ)π̃(ϑ) ∝ S Y s=1 π̃(ϑ|ys) 2. infer with π̃(ϑ|ys), sub-posterior distributions, in parallel by MCMC 3. recombine all sub-posterior samples [Buchholz et al., 2022]
  • 43. Connecting bits While m(y) = Z S Y s=1 p(ys|ϑ)π̃(ϑ)dϑ 6= S Y s=1 Z p(ys|ϑ)π̃(ϑ)dϑ = S Y s=1 m̃(ys) they can be connected as m(y) = ZS S Y s=1 m̃(ys) Z S Y s=1 π̃(ϑ|ys)dϑ [Buchholz et al., 2022]
  • 44. Connecting bits m(y) = ZS S Y s=1 m̃(ys) Z S Y s=1 π̃(ϑ|ys)dϑ where π̃(ϑ|ys) ∝ p(ys|ϑ)π̃(ϑ), m̃(ys) = Z p(ys|ϑ)π̃(ϑ)dϑ, Z = Z π(ϑ)1/S dϑ [Buchholz et al., 2022]
  • 45. Label unswitching worries While Z usually closed-form, I = Z S Y s=1 π̃(ϑ|ys)dϑ is not and need be evaluated as ^ I = 1 T T X t=1 Z S Y s=1 π̃(ϑ|z (t) s , ys)dϑ when π̃(ϑ|ys) = Z π̃(ϑ|zs, ys)π̃(zs|ys)dzs
  • 46. Label unswitching worries π̃(ϑ|ys) = Z π̃(ϑ|zs, ys)π̃(zs|ys)dzs Issue: with distributed computing, shards zs are unrelated and corresponding clusters disconnected.
  • 47. Label unswitching worries π̃(ϑ|ys) = Z π̃(ϑ|zs, ys)π̃(zs|ys)dzs Issue: with distributed computing, shards zs are unrelated and corresponding clusters disconnected. 4500 4400 4300 4200 4100 4000 3900 3800 logm(y) K=1 K=2 K=3 K=4 K=5
  • 48. Label switching imposition Returning to averaging across permutations, identity ^ Iperm = 1 TK!S−1 T X t=1 X σ2,...,σS∈SK Z π̃(ϑ|z (t) 1 , y1) S Y s=2 π̃(ϑ|σs(z (t) s ), ys)dϑ
  • 49. Label switching imposition Returning to averaging across permutations, identity ^ Iperm = 1 TK!S−1 T X t=1 X σ2,...,σS∈SK Z π̃(ϑ|z (t) 1 , y1) S Y s=2 π̃(ϑ|σs(z (t) s ), ys)dϑ I Iperm 4500 4400 4300 4200 4100 4000 3900 3800 logm(y) K=1 I Iperm K=2 I Iperm K=3
  • 50. Label switching imposition Returning to averaging across permutations, identity ^ Iperm = 1 TK!S−1 T X t=1 X σ2,...,σS∈SK Z π̃(ϑ|z (t) 1 , y1) S Y s=2 π̃(ϑ|σs(z (t) s ), ys)dϑ Obtained at heavy computational cost: O(T) for ^ I versus O(TK!S−1) for ^ Iperm
  • 51. Importance sampling version Obtained at heavy computational cost: O(T) for ^ I versus O(TK!S−1) for ^ Iperm Avoid enumeration of permutations by using simulated values of parameter for the reference sub-posterior as anchors towards coherent labeling of clusters [Celeux, 1998; Stephens, 2000]
  • 52. Importance sampling version For each batch s = 2, . . . , S, define matching matrix Ps =    ps11 · · · ps1K . . . . . . . . . psK1 · · · psKK    where pslk = Y i:zsi=l p(ysi|ϑk) used in creating proposals qs(σ) ∝ K Y k=1 pskσ(k) that reflect probabilities that each cluster k of batch s is well-matched with cluster σ(k) of batch 1
  • 53. Importance sampling version Considerably reduced computational cost compared to ^ m^ Iperm (y) I At each iteration t, total cost of O(Kn/S) for evaluating Ps I computing K! weights of discrete importance distribution qσs requires K! operations I sampling from the global discrete importance distribution requires M(t) basic operations Global cost of O(T(Kn/S + K! + M̄)) for M̄ maximum number of importance simulations
  • 54. Importance sampling version Resulting estimator ^ IIS = 1 TK!S−1 T X t=1 1 M(t) M(t) X m=1 χ(z(t); σ (t,m) 2 , . . . , σ (t,m) S ) πσ(σ (t,m) 2 , . . . , σ (t,m) S ) where χ(z(t) ; σ2, . . . , σS) := Z π̃(ϑ|z (t) 1 , y1) S Y s=2 π̃(ϑ|σs(z (t) s ), ys)dϑ
  • 55. Importance sampling version Resulting estimator ^ IIS = 1 TK!S−1 T X t=1 1 M(t) M(t) X m=1 χ(z(t); σ (t,m) 2 , . . . , σ (t,m) S ) πσ(σ (t,m) 2 , . . . , σ (t,m) S ) I Iperm IIS 1520 1500 1480 1460 1440 1420 logm(y) K=1 I Iperm IIS K=2 I Iperm IIS K=3 I Iperm IIS K=4
  • 56. Sequential importance sampling Define π̃s(ϑ) = Qs l=1 π̃(ϑ|yl) Zs where Zs = Z s Y l=1 π̃(ϑ|yl) then m(y) = ZS × m(y1) × S Y s=2 Z πs−1(ϑ)p(ys|ϑ)π̃(ϑ)dϑ
  • 57. Sequential importance sampling Calls for standard sequential importance sampling strategy making use of the successive distributions πs(ϑ) as importance distributions
  • 58. Sequential importance sampling Calls for standard sequential importance sampling strategy making use of the successive distributions πs(ϑ) as importance distributions I Iperm IIS SMC 1575 1550 1525 1500 1475 1450 1425 logm(y) K=1 I Iperm IIS SMC K=2 I Iperm IIS SMC K=3 I Iperm IIS SMC K=4 I Iperm IIS SMC K=5
  • 59. 1 Mixtures of distributions 2 Approximations to evidence 3 Distributed evidence evaluation 4 Dirichlet process mixtures
  • 60. Dirichlet process mixture (DPM) Extension to the k = ∞ (non-parametric) case xi|zi, ϑ i.i.d ∼ f(xi|ϑxi ), i = 1, . . . , n (1) P(Zi = k) = πk, k = 1, 2, . . . π1, π2, . . . ∼ GEM(M) M ∼ π(M) ϑ1, ϑ2, . . . i.i.d ∼ G0 with GEM (Griffith-Engen-McCloskey) defined by the stick-breaking representation πk = vk k−1 Y i=1 (1 − vi) vi ∼ Beta(1, M) [Sethuraman, 1994]
  • 61. Dirichlet process mixture (DPM) Resulting in an infinite mixture x ∼ n Y i=1 ∞ X i=1 πif(xi|ϑi) with (prior) cluster allocation π(z|M) = Γ(M) Γ(M + n) MK+ K+ Y j=1 Γ(nj) and conditional likelihood p(x|z, M) = K+ Y j=1 Z Y i:zi=j f(xi|ϑj)dG0(ϑj) available in closed form when G0 conjugate
  • 62. Approximating the evidence Extension of Chib’s formula by marginalising over z and ϑ mDP(x) = p(x|M∗, G0)π(M∗) π(M∗|x) and using estimate ^ π(M∗ |x) = 1 T T X t=1 π(M∗ |x, η(t) , K (t) + ) provided prior on M a Γ(a, b) distribution since M|x, η, K+ ∼ ωΓ(a+K+, b−log(η))+(1−ω)Γ(a+K+−1, b−log(η)) with ω = (a + K+ − 1)/{n(b − log(η)) + a + K+ − 1} and η|x, M ∼ Beta(M + 1, n) [Basu Chib, 2003]
  • 63. Approximating the likelihood Intractable likelihood p(x|M∗, G0) approximated by sequential inputation importance sampling Generating z from the proposal π∗ (z|x, M) = n Y i=1 π(zi|x1:i, z1:i−1, M) and using the approximation ^ L(x|M∗ , G0) = 1 T T X t=1 ^ p(x1|z (t) 1 , G0) n Y i=2 p(yi|x1:i−1z (t) 1:i−1, G0) [Kong, Lu Wong, 1994; Basu Chib, 2003]
  • 64. Approximating the evidence (bis) Reverse logistic regression applies to DPM: Importance function π1(z, M) := π∗ (z|x, M)π(M) and π2(z, M) = π(z, M|x) m(y) {z(1,j), M(1,j)}T j=1 and {z(2,j), M(2,j)}T j=1 samples from π1 and π2 Marginal likelihood m(y) estimated as intercept of logistic regression with covariate log{π1(z, M)/π̃2(z, M)} on merged sample [Geyer, 1994; Chen Shao, 1997]
  • 66. Galactic illustration 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 log(time) 3 2 1 0 1 log(MSE) Chib RLR-SIS RLR-Prior
  • 67. Towards new adventures Exumas, Bahamas, 10 August 2011