This document discusses mixture models and approximations to computing model evidence. It contains:
1) An overview of mixtures of distributions and common priors used for mixtures.
2) Approximations to computing marginal likelihoods or model evidence using Chib's representation and Rao-Blackwellization. Permutations are used to address label switching issues.
3) Methods for more efficient sampling for computing model evidence, including iterative bridge sampling and dual importance sampling with approximations to reduce the number of permutations considered.
Sequential Monte Carlo is also briefly mentioned as an alternative approach.