This document summarizes Frank Nielsen's talk on divergence-based center clustering and their applications. Some key points:
- Center-based clustering aims to minimize an objective function that assigns data points to their closest cluster centers. This is an NP-hard problem when the number of dimensions and data points are greater than 1.
- Mixed divergences use dual centroids per cluster to define cluster assignments. Total Jensen divergences are proposed as a way to make divergences more robust by incorporating a conformal factor.
- For clustering when centroids do not have closed-form solutions, initialization methods like k-means++ can be used which randomly select initial seeds without computing centroids. Total Jensen k-means++