SlideShare a Scribd company logo
Quadratics
Parts of a Parabola and Vertex
Form
Section 2.1
Objective
Vertex and Standard Form of
Quadratic
Graphing and
Transformations of
Quadratic
Use GDC to find the
intercepts.
Relevance
Learn how to evaluate
data from real world
applications that fit into
a quadratic model.
Warm Up #1
 Find the equation in the form
Ax + By + C = 0 of the line that passes
through the given point and has the
indicated slope.
  undefined
is
slope
99
,
287

Warm Up #2
 Find the equation in the form y = mx + b
of the line that passes through the given
point and has the indicated slope.
  0
9821
,
3482 is
slope


Warm Up #3
 Find the equation in the form y = mx + b
of the line that passes through the given
point and has the indicated slope.
 
3
,
1
4
10
2 


 through
y
x
to
parallel
Warm Up #4
 Find the equation in the form y = mx + b
of the line that passes through the given
point and has the indicated slope.
 
4
,
1
2
3
2


 through
x
y
to
lar
perpendicu
Find the following.
      6
2
5
2
3
10 2






 x
x
x
h
x
x
g
x
x
f
 
x
f
Find 1

Find the following.
      6
2
5
2
3
10 2






 x
x
x
h
x
x
g
x
x
f
 
x
fg
Find
Find the following.
      6
2
5
2
3
10 2






 x
x
x
h
x
x
g
x
x
f
  
x
g
h
Find 
Quadratic Functions
 Function:
 Standard Form (Vertex Form):
 Graphs a parabola
 All are symmetric to a line called the axis of
symmetry or line of symmetry (los)
2
( )
f x ax bx c
  
2
( ) ( )
f x a x h k
  
Show that g represents a quadratic
function. Identify a, b, and c.
  
7
2
3
)
( 

 x
x
x
g
  
14
19
3
14
2
21
3
7
2
3
)
(
2
2










x
x
x
x
x
x
x
x
g
14
19
3





c
b
a
Show that g represents a quadratic
function. Identify a, b, and c.
  
2
5
8
2
)
( 


 x
x
x
g
  
  
32
76
10
32
80
4
10
2
5
16
2
2
5
8
2
)
(
2
2

















x
x
x
x
x
x
x
x
x
x
g
32
76
10




c
b
a
Show that g represents a quadratic
function. Identify a, b, and c.
  4
6
)
(
2


 x
x
g
 
  
32
12
4
36
6
6
4
6
6
4
6
)
(
2
2
2















x
x
x
x
x
x
x
x
x
g
32
12
1



c
b
a
Parts of a Parabola
 Axis of Symmetry (Line of
Symmetry) LOS:
The line that divides the parabola into two
parts that are mirror images of each other.
 Vertex:
Either the lowest or highest point.
Let’s look at a transformation
2
)
( x
x
f 
Up
Concave
Parent
  2
3
)
(
2


 x
x
f
Up
Concave
Form
Vertex
3
.
Rt
2
Up
What is the vertex, max or min, and los?
  2
3
)
(
2


 x
x
f
 Vertex Form:
)
2
,
3
(
:
V ertex
2
:
min 
y
3
: 
x
los
Let’s look at a transformation
2
)
( x
x
f 
Up
Concave
Parent
 2
4
)
( 
 x
x
f
Up
Concave
Form
Vertex
4
Left
What is the vertex, max or min, and los?
 2
4
)
( 
 x
x
f
 Vertex Form:
)
0
,
4
(
: 
V ertex
0
:
min 
y
4
: 

x
los
Let’s look at a transformation
2
)
( x
x
f 
Up
Concave
Parent
2
)
0
(
)
( 2



 x
x
f
Down
Concave
Form
Vertex
Flips
2
Down
What is the vertex, max or min, and los?
2
)
( 2


 x
x
f
 Vertex Form:
)
2
,
0
(
: 
V ertex
2
:
min 
y
0
: 
x
los
Finding the Vertex and los on the
GDC
 Put equation into y1.
 Press Zoom 6 – fix if necessary by changing
the window.
 Press 2nd Trace (Calc).
 Press max/min.
 Left of it; Then right of it; Then ENTER.
Let’s Try It….
Find the vertex, min, and los.
4
7
3
)
( 2


 x
x
x
f
 
17
.
1
:
08
.
8
:
min
08
.
8
,
17
.
1
:






x
los
y
Vertex
Use your GDC to find the zeros
(x-intercepts)….
 Press 2nd Trace (Calc)
 Press zero.
 Again, to the left, to the right, ENTER.
Find the zeros for the last
example.
4
7
3
)
( 2


 x
x
x
f
47
.
0
8
.
2



x
x
Example:
 Find the vertex, los, max/min, zeros, and tell
whether concave up or concave down.
8
3
2
)
( 2



 x
x
x
f
 
Down
Concave
x
x
zeros
y
x
los
Vertex
89
.
2
,
39
.
1
:
13
.
9
:
max
75
.
0
:
13
.
9
,
75
.
0
:





Example:
 Find the vertex, los, max/min, zeros, and tell
whether concave up or concave down.
5
2
3
)
( 2


 x
x
x
f
 
Up
Concave
x
x
zeros
y
x
los
Vertex
1
,
70
.
1
:
3
.
5
:
min
3
.
0
:
3
.
5
,
3
.
0
:









These are the solutions.
What are the x-intercepts?
Example:
 Find the vertex, los, max/min, zeros, and tell
whether concave up or concave down.
7
6
2
)
( 2



 x
x
x
f
 
Down
Concave
Solutions
REAL
No
Solutions
NONE
x
y
x
los
Vertex
:
:
int
5
.
2
:
max
5
.
1
:
5
.
2
,
5
.
1
:





These are the solutions.
What are the x-intercepts?
Example
 Find the vertex, los, max/min, zeros, and tell
whether concave up or concave down.
2
3
5
)
( 2


 x
x
x
f
 
Up
Concave
None
zeros
y
x
los
Vertex
:
55
.
1
:
min
30
.
0
:
55
.
1
,
30
.
0
:


Example:
 Find the vertex, los, max/min, zeros, and tell
whether concave up or concave down.
x
x
x
f 7
)
( 2



 
Down
Concave
x
x
zeros
y
x
los
Vertex
7
,
0
:
25
.
12
:
max
5
.
3
:
25
.
12
,
5
.
3
:




Example:
 Find the vertex, los, max/min, zeros, and tell
whether concave up or concave down.
20
2
3
)
( 2


 x
x
x
f
 
Up
Concave
x
x
zeros
y
x
los
Vertex
3
.
2
,
9
.
2
:
3
.
20
:
min
3
.
0
:
3
.
20
,
3
.
0
:









How do I know if it is concave up or down just
by looking at the function?
 In the following examples, state
whether the parabola is concave
up or down and whether the
vertex is a max or a min by just
looking at the function.
m ax
,
D o w n
C o n ca v e
1
7
8
)
( 2


 x
x
x
f
1
4
7
)
( 2



 x
x
x
f
x
x
x
f 

 2
3
8
)
(
2
6
2
)
( x
x
x
f 


m in
,
U p
C o n ca v e
m ax
,
D o w n
C o n ca v e
min
,
U p
C on ca v e
Write the equation in standard form of the
parabola whose vertex is (1, 2) and passes
through the point (3, -6).
k
h
x
a
y 

 2
)
(
(h, k)
(x, y)
 
2
4
8
2
1
3
6
2








a
a
a
  2
1
2
:
2



 x
y
FORM
STANDARD
Write the equation in standard form of the
parabola whose vertex is (-2, -1) and
passes through the point (0, 3).
k
h
x
a
y 

 2
)
(
(h, k)
(x, y)
 
1
4
4
1
2
0
3
2





a
a
a
  1
2
:
2


 x
y
FORM
STANDARD
Write the equation in standard form of the
parabola whose vertex is (4, -1) and passes
through the point (2, 3).
k
h
x
a
y 

 2
)
(
(h, k)
(x, y)
 
1
4
4
1
4
2
3
2





a
a
a
  1
4
:
2


 x
y
FORM
STANDARD
A golf ball is hit from the ground. Its height in feet above the
ground is modeled by the function
where t represents the time in seconds after the ball is hit.
How long is the ball in the air?
What is the maximum height of the ball?
  ,
180
16 2
t
t
t
h 


Graph on GDC.
Find the zeros. Answer: 11.25 seconds
Graph on GDC.
Find the maximum y-value.
Answer: 506.25 feet
 A. What is the maximum height of the ball?
B. At what time does the ball reach its maximum height?
C. At what time(s) is the ball 16 feet high in the air?
Graph and find the
maximum y-value.
Answer: 21 feet
Set equation = to 21
and find the zeros. Answer: 1 second
Set equation = to 16
and find the zeros. Answer: 1.56 seconds and
0.44 seconds.
 .
A. What ticket price gives the maximum profit?
B. What is the maximum profit?
C. What ticket price would generate a profit of $5424?
Graph and find the maximum x-value.
Hint: Press Zoom 0 and change x-max to 50
and y max to 8000.
Answer: $25
Answer: $6,000
Set equation = to 5424
and find the zeros.
Hint: Press zoom 0.
Answer: $19 or $31
Graph and find the maximum y-value.
Hint: Press Zoom 0 and change x-max to 50
and y max to 8000.
Classwork: Quadratics Review
Homework: Worksheet 4B

More Related Content

DOCX
EVALUATING INTEGRALS.Evaluate the integral shown below. (H.docx
PDF
Calc224FinalExamReview
PDF
Modeling with Quadratics
DOCX
1.  Write an equation in standard form of the parabola that has th.docx
DOCX
Review for the Third Midterm of Math 150 B 11242014Probl.docx
PDF
Higher formal homeworks unit 1
PDF
SLIDE LU2 Application of Diffrentiation-STUDENT YR2022.pdf
PPSX
Ch11.2&3(1)
EVALUATING INTEGRALS.Evaluate the integral shown below. (H.docx
Calc224FinalExamReview
Modeling with Quadratics
1.  Write an equation in standard form of the parabola that has th.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Higher formal homeworks unit 1
SLIDE LU2 Application of Diffrentiation-STUDENT YR2022.pdf
Ch11.2&3(1)

Similar to Lesson 4B - Intro to Quadratics.ppt (20)

PPT
The Application of Derivatives
PPT
Integration
PPT
Rate of change and tangent lines
PPTX
Mathnasium Presentation (1)
PPTX
DIFFERENTIATION Integration and limits (1).pptx
PPT
G9-Math-Q1-Week-9-Solving-Quadratic-Function.ppt
PDF
GR 8 Math Powerpoint about Polynomial Techniques
PDF
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
DOCX
Practice questions( calculus ) xii
PDF
MATH225Final
PDF
3.1 Quadratic Functions and Models
PDF
Algebra II Practice Test.pdfAlgebra II Practice Test.pdf
PPT
Calculusseveralvariables.ppt
PPTX
April 3, 2014
DOCX
1) Use properties of logarithms to expand the following logarithm.docx
PPT
PDF
Additional mathematics
DOCX
1.Evaluate the integral shown below. (Hint Try the substituti.docx
PPT
Algebra unit 8.7
The Application of Derivatives
Integration
Rate of change and tangent lines
Mathnasium Presentation (1)
DIFFERENTIATION Integration and limits (1).pptx
G9-Math-Q1-Week-9-Solving-Quadratic-Function.ppt
GR 8 Math Powerpoint about Polynomial Techniques
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
Practice questions( calculus ) xii
MATH225Final
3.1 Quadratic Functions and Models
Algebra II Practice Test.pdfAlgebra II Practice Test.pdf
Calculusseveralvariables.ppt
April 3, 2014
1) Use properties of logarithms to expand the following logarithm.docx
Additional mathematics
1.Evaluate the integral shown below. (Hint Try the substituti.docx
Algebra unit 8.7
Ad

Recently uploaded (20)

PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
Pre independence Education in Inndia.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Insiders guide to clinical Medicine.pdf
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
Pharma ospi slides which help in ospi learning
PDF
Basic Mud Logging Guide for educational purpose
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
RMMM.pdf make it easy to upload and study
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
Module 4: Burden of Disease Tutorial Slides S2 2025
Pre independence Education in Inndia.pdf
Renaissance Architecture: A Journey from Faith to Humanism
Final Presentation General Medicine 03-08-2024.pptx
Insiders guide to clinical Medicine.pdf
TR - Agricultural Crops Production NC III.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Anesthesia in Laparoscopic Surgery in India
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Microbial diseases, their pathogenesis and prophylaxis
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
2.FourierTransform-ShortQuestionswithAnswers.pdf
FourierSeries-QuestionsWithAnswers(Part-A).pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Pharma ospi slides which help in ospi learning
Basic Mud Logging Guide for educational purpose
O5-L3 Freight Transport Ops (International) V1.pdf
RMMM.pdf make it easy to upload and study
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PPH.pptx obstetrics and gynecology in nursing
Ad

Lesson 4B - Intro to Quadratics.ppt

  • 1. Quadratics Parts of a Parabola and Vertex Form Section 2.1
  • 2. Objective Vertex and Standard Form of Quadratic Graphing and Transformations of Quadratic Use GDC to find the intercepts.
  • 3. Relevance Learn how to evaluate data from real world applications that fit into a quadratic model.
  • 4. Warm Up #1  Find the equation in the form Ax + By + C = 0 of the line that passes through the given point and has the indicated slope.   undefined is slope 99 , 287 
  • 5. Warm Up #2  Find the equation in the form y = mx + b of the line that passes through the given point and has the indicated slope.   0 9821 , 3482 is slope  
  • 6. Warm Up #3  Find the equation in the form y = mx + b of the line that passes through the given point and has the indicated slope.   3 , 1 4 10 2     through y x to parallel
  • 7. Warm Up #4  Find the equation in the form y = mx + b of the line that passes through the given point and has the indicated slope.   4 , 1 2 3 2    through x y to lar perpendicu
  • 8. Find the following.       6 2 5 2 3 10 2        x x x h x x g x x f   x f Find 1 
  • 9. Find the following.       6 2 5 2 3 10 2        x x x h x x g x x f   x fg Find
  • 10. Find the following.       6 2 5 2 3 10 2        x x x h x x g x x f    x g h Find 
  • 11. Quadratic Functions  Function:  Standard Form (Vertex Form):  Graphs a parabola  All are symmetric to a line called the axis of symmetry or line of symmetry (los) 2 ( ) f x ax bx c    2 ( ) ( ) f x a x h k   
  • 12. Show that g represents a quadratic function. Identify a, b, and c.    7 2 3 ) (    x x x g    14 19 3 14 2 21 3 7 2 3 ) ( 2 2           x x x x x x x x g 14 19 3      c b a
  • 13. Show that g represents a quadratic function. Identify a, b, and c.    2 5 8 2 ) (     x x x g       32 76 10 32 80 4 10 2 5 16 2 2 5 8 2 ) ( 2 2                  x x x x x x x x x x g 32 76 10     c b a
  • 14. Show that g represents a quadratic function. Identify a, b, and c.   4 6 ) ( 2    x x g      32 12 4 36 6 6 4 6 6 4 6 ) ( 2 2 2                x x x x x x x x x g 32 12 1    c b a
  • 15. Parts of a Parabola  Axis of Symmetry (Line of Symmetry) LOS: The line that divides the parabola into two parts that are mirror images of each other.  Vertex: Either the lowest or highest point.
  • 16. Let’s look at a transformation 2 ) ( x x f  Up Concave Parent   2 3 ) ( 2    x x f Up Concave Form Vertex 3 . Rt 2 Up What is the vertex, max or min, and los?
  • 17.   2 3 ) ( 2    x x f  Vertex Form: ) 2 , 3 ( : V ertex 2 : min  y 3 :  x los
  • 18. Let’s look at a transformation 2 ) ( x x f  Up Concave Parent  2 4 ) (   x x f Up Concave Form Vertex 4 Left What is the vertex, max or min, and los?
  • 19.  2 4 ) (   x x f  Vertex Form: ) 0 , 4 ( :  V ertex 0 : min  y 4 :   x los
  • 20. Let’s look at a transformation 2 ) ( x x f  Up Concave Parent 2 ) 0 ( ) ( 2     x x f Down Concave Form Vertex Flips 2 Down What is the vertex, max or min, and los?
  • 21. 2 ) ( 2    x x f  Vertex Form: ) 2 , 0 ( :  V ertex 2 : min  y 0 :  x los
  • 22. Finding the Vertex and los on the GDC  Put equation into y1.  Press Zoom 6 – fix if necessary by changing the window.  Press 2nd Trace (Calc).  Press max/min.  Left of it; Then right of it; Then ENTER.
  • 23. Let’s Try It…. Find the vertex, min, and los. 4 7 3 ) ( 2    x x x f   17 . 1 : 08 . 8 : min 08 . 8 , 17 . 1 :       x los y Vertex
  • 24. Use your GDC to find the zeros (x-intercepts)….  Press 2nd Trace (Calc)  Press zero.  Again, to the left, to the right, ENTER.
  • 25. Find the zeros for the last example. 4 7 3 ) ( 2    x x x f 47 . 0 8 . 2    x x
  • 26. Example:  Find the vertex, los, max/min, zeros, and tell whether concave up or concave down. 8 3 2 ) ( 2     x x x f   Down Concave x x zeros y x los Vertex 89 . 2 , 39 . 1 : 13 . 9 : max 75 . 0 : 13 . 9 , 75 . 0 :     
  • 27. Example:  Find the vertex, los, max/min, zeros, and tell whether concave up or concave down. 5 2 3 ) ( 2    x x x f   Up Concave x x zeros y x los Vertex 1 , 70 . 1 : 3 . 5 : min 3 . 0 : 3 . 5 , 3 . 0 :          These are the solutions. What are the x-intercepts?
  • 28. Example:  Find the vertex, los, max/min, zeros, and tell whether concave up or concave down. 7 6 2 ) ( 2     x x x f   Down Concave Solutions REAL No Solutions NONE x y x los Vertex : : int 5 . 2 : max 5 . 1 : 5 . 2 , 5 . 1 :      These are the solutions. What are the x-intercepts?
  • 29. Example  Find the vertex, los, max/min, zeros, and tell whether concave up or concave down. 2 3 5 ) ( 2    x x x f   Up Concave None zeros y x los Vertex : 55 . 1 : min 30 . 0 : 55 . 1 , 30 . 0 :  
  • 30. Example:  Find the vertex, los, max/min, zeros, and tell whether concave up or concave down. x x x f 7 ) ( 2      Down Concave x x zeros y x los Vertex 7 , 0 : 25 . 12 : max 5 . 3 : 25 . 12 , 5 . 3 :    
  • 31. Example:  Find the vertex, los, max/min, zeros, and tell whether concave up or concave down. 20 2 3 ) ( 2    x x x f   Up Concave x x zeros y x los Vertex 3 . 2 , 9 . 2 : 3 . 20 : min 3 . 0 : 3 . 20 , 3 . 0 :         
  • 32. How do I know if it is concave up or down just by looking at the function?  In the following examples, state whether the parabola is concave up or down and whether the vertex is a max or a min by just looking at the function.
  • 33. m ax , D o w n C o n ca v e 1 7 8 ) ( 2    x x x f 1 4 7 ) ( 2     x x x f x x x f    2 3 8 ) ( 2 6 2 ) ( x x x f    m in , U p C o n ca v e m ax , D o w n C o n ca v e min , U p C on ca v e
  • 34. Write the equation in standard form of the parabola whose vertex is (1, 2) and passes through the point (3, -6). k h x a y    2 ) ( (h, k) (x, y)   2 4 8 2 1 3 6 2         a a a   2 1 2 : 2     x y FORM STANDARD
  • 35. Write the equation in standard form of the parabola whose vertex is (-2, -1) and passes through the point (0, 3). k h x a y    2 ) ( (h, k) (x, y)   1 4 4 1 2 0 3 2      a a a   1 2 : 2    x y FORM STANDARD
  • 36. Write the equation in standard form of the parabola whose vertex is (4, -1) and passes through the point (2, 3). k h x a y    2 ) ( (h, k) (x, y)   1 4 4 1 4 2 3 2      a a a   1 4 : 2    x y FORM STANDARD
  • 37. A golf ball is hit from the ground. Its height in feet above the ground is modeled by the function where t represents the time in seconds after the ball is hit. How long is the ball in the air? What is the maximum height of the ball?   , 180 16 2 t t t h    Graph on GDC. Find the zeros. Answer: 11.25 seconds Graph on GDC. Find the maximum y-value. Answer: 506.25 feet
  • 38.  A. What is the maximum height of the ball? B. At what time does the ball reach its maximum height? C. At what time(s) is the ball 16 feet high in the air? Graph and find the maximum y-value. Answer: 21 feet Set equation = to 21 and find the zeros. Answer: 1 second Set equation = to 16 and find the zeros. Answer: 1.56 seconds and 0.44 seconds.
  • 39.  . A. What ticket price gives the maximum profit? B. What is the maximum profit? C. What ticket price would generate a profit of $5424? Graph and find the maximum x-value. Hint: Press Zoom 0 and change x-max to 50 and y max to 8000. Answer: $25 Answer: $6,000 Set equation = to 5424 and find the zeros. Hint: Press zoom 0. Answer: $19 or $31 Graph and find the maximum y-value. Hint: Press Zoom 0 and change x-max to 50 and y max to 8000.