SlideShare a Scribd company logo
Linear Regression Parameters




      Rodolfo Campos (@camposer)
     Universidad Politécnica de Madrid
          Madrid, October 2012
When to consider Linear
         Regression?
   When the outcome, or class, is numeric, and all 
    the attributes are numeric. 
   The idea is to express the class as a linear 
    combination of the attributes, with predetermined 
    weights:
       x = w0 + w1a1 + w2a2 + … + wkak
   x is the class; a1, a2, …, ak are the attribute values; 
    and w0, w1, …, wk are weights.
When to consider Linear
     Regression?
Linear Regression in Weka
Linear Regression in Weka
   Options specific to 
    weka.classifiers.functions.LinearRegression:
   ­D. Produce debugging output (default disabled).
   ­S <number of selection method>. Set the 
    attribute selection method to use. 1 = None, 2 = 
    Greedy (default 0 = M5' method).
   ­C. Do not try to eliminate colinear attributes.
   ­R <double>. Set ridge parameter (default 1.0e­
    8).
Linear Regression in Weka
   ­S <number of selection method>. Set the 
    method used to select attributes for use in the 
    linear regression:
          0 = M5' method.  Build trees whose leaves are 
           associated to multivariate linear models and the 
           nodes of the tree are chosen over the attribute that 
           maximizes the expected error reduction, given by 
           the Akaike information criterion (a measure of the 
           relative goodness of fit of a statistical model).
Linear Regression in Weka
      1 = None. No need explanation.
      2 = Greedy. ”For example, a greedy strategy for 
       the traveling salesman problem (which is of a high 
       computational complexity) is the following 
       heuristic: "At each stage visit an unvisited city 
       nearest to the current city". This heuristic need not 
       find a best solution but terminates in a reasonable 
       number of steps; finding an optimal solution 
       typically requires unreasonably many steps” from 
       Wikipedia.
Linear Regression in Weka
   ­C. Do not try to eliminate colinear attributes. 
    Possible examples:
          high performance, expensive German cars
          low performance, cheap American cars
Linear Regression in Weka
   ­R <double>. Set ridge parameter (default 1.0e­8).
           Its value is assigned by the analyst, and determines 
           how much Ridge Regression departs from Least 
           Square Regression, whose goal is to circumvent the 
           problem of predictors collinearity.
          If this value is too small, Ridge Regression cannot 
           fight collinearity efficiently. 
          If it is too large, the bias of the parameters become too 
           large, and so do the parameters and predictions Mean 
           Square Errors.
          It has therefore to be estimated by a series of trial and 
           errors, usually resorting to cross­validation
References
   I. Witten, E. Frank and M. Hall. Data Mining: Practical Machine 
    Learning Tools and Techniques (Third Edition). Elsevier. MA, 
    USA, 2011.
   Weka API. Class LinearRegression. Extracted on October 16, 
    2012 from 
    http://weka.sourceforge.net/doc/weka/classifiers/functions/LinearRegre
   D. Rodríguez, J.J. Cuadrado, M.A. Sicilia and R. Ruiz. 
    Segmentation of Software Engineering Datasets Using the M5 
    Algorithm. Extracted on October 14, 2012 from 
    http://www.cc.uah.es/drg/c/ICCS06.pdf
   AI Access. Ridge Regression. Extracted on October 16, 2012 from 
    http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_ridge.htm
No questions, right? :-)

More Related Content

PDF
Logistic regression : Use Case | Background | Advantages | Disadvantages
PPTX
Convolution using Scilab
PDF
Numerical analysis using Scilab: Numerical stability and conditioning
PPTX
Operators in mule dataweave
PDF
KNN Algorithm Using R | Edureka
PDF
Numerical analysis using Scilab: Solving nonlinear equations
PPT
Odersky week1 notes
PPTX
WolframAlpha matrices
Logistic regression : Use Case | Background | Advantages | Disadvantages
Convolution using Scilab
Numerical analysis using Scilab: Numerical stability and conditioning
Operators in mule dataweave
KNN Algorithm Using R | Edureka
Numerical analysis using Scilab: Solving nonlinear equations
Odersky week1 notes
WolframAlpha matrices

What's hot (20)

ODP
Commutative Short Circuit Operators
PPTX
WolframAlpha Examples part 3
PDF
Numerical analysis using Scilab: Error analysis and propagation
PPTX
WolframAlpha Examples part 4
PPTX
WolframAlpha Examples part 2
PDF
Bubble Sort algorithm in Assembly Language
PDF
Aaa ped-10-Supervised Learning: Introduction to Supervised Learning
DOC
Report on c
PPTX
PPTX
Precedence and associativity (Computer programming and utilization)
PPTX
WolframAlpha - KS3 part 1
PPTX
COM1407: C Operators
PPTX
Matlab Programming Help Research Guidance
PDF
Conditional operators
 
PPT
Operators in c language
PDF
Operators in c programming
PDF
190030341 fcp lab 1
PPTX
Matlab Projects for EEE Research Ideas
PPTX
Operators in java presentation
PPT
Commutative Short Circuit Operators
WolframAlpha Examples part 3
Numerical analysis using Scilab: Error analysis and propagation
WolframAlpha Examples part 4
WolframAlpha Examples part 2
Bubble Sort algorithm in Assembly Language
Aaa ped-10-Supervised Learning: Introduction to Supervised Learning
Report on c
Precedence and associativity (Computer programming and utilization)
WolframAlpha - KS3 part 1
COM1407: C Operators
Matlab Programming Help Research Guidance
Conditional operators
 
Operators in c language
Operators in c programming
190030341 fcp lab 1
Matlab Projects for EEE Research Ideas
Operators in java presentation
Ad

Viewers also liked (14)

PDF
Clustering and Regression using WEKA
PDF
Machine Learning with WEKA
PDF
DATA MINING WITH WEKA
PPTX
Discovering knowledge using web structure mining
PPT
Logistic Regression in Case-Control Study
PDF
Survey on data mining techniques in heart disease prediction
PPTX
How to detect &amp; diagnose congenital heart disease in children
PDF
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
PPT
Multiple regression presentation
PPTX
Presentation On Regression
PPT
Regression analysis
ODP
Multiple linear regression
PPTX
Logistic regression
PPS
Correlation and regression
Clustering and Regression using WEKA
Machine Learning with WEKA
DATA MINING WITH WEKA
Discovering knowledge using web structure mining
Logistic Regression in Case-Control Study
Survey on data mining techniques in heart disease prediction
How to detect &amp; diagnose congenital heart disease in children
Artificial Neural Networks Lect5: Multi-Layer Perceptron & Backpropagation
Multiple regression presentation
Presentation On Regression
Regression analysis
Multiple linear regression
Logistic regression
Correlation and regression
Ad

Similar to Linear Regression Parameters (20)

PPTX
Lec4(Multiple Regression) & Building a Model & Dummy Variable.pptx
PPTX
exploring Machine Learning with best way
PDF
Conference_paper.pdf
PDF
A WHIRLWIND TOUR OF ACADEMIC TECHNIQUES FOR REAL-WORLD SECURITY RESEARCHERS
PPTX
Machine Learning course Lecture number 4, Linear regression and variants.pptx
PDF
Supervised Learning.pdf
PDF
Linear logisticregression
PPTX
LDE ML PPT.pptx machine learning power point
PPTX
Machine learning and linear regression programming
PDF
Analysis and Design of Algorithms notes
PDF
working with python
PPTX
Predicting Employee Attrition
PPTX
linear regression1.pptx machine learning
PPTX
Arjrandomjjejejj3ejjeejjdjddjjdjdjdjdjdjdjdjdjd
DOCX
CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx
PPTX
PDF
Shrinkage Methods in Linear Regression
PPTX
lec0734523532453425324523452345245432.pptx
PDF
机器学习Adaboost
Lec4(Multiple Regression) & Building a Model & Dummy Variable.pptx
exploring Machine Learning with best way
Conference_paper.pdf
A WHIRLWIND TOUR OF ACADEMIC TECHNIQUES FOR REAL-WORLD SECURITY RESEARCHERS
Machine Learning course Lecture number 4, Linear regression and variants.pptx
Supervised Learning.pdf
Linear logisticregression
LDE ML PPT.pptx machine learning power point
Machine learning and linear regression programming
Analysis and Design of Algorithms notes
working with python
Predicting Employee Attrition
linear regression1.pptx machine learning
Arjrandomjjejejj3ejjeejjdjddjjdjdjdjdjdjdjdjdjd
CSCI 2033 Elementary Computational Linear Algebra(Spring 20.docx
Shrinkage Methods in Linear Regression
lec0734523532453425324523452345245432.pptx
机器学习Adaboost

More from camposer (10)

PDF
Curso de Ajax
PDF
Hadoop
PDF
Fundamentos de Administración PostgreSQL
PDF
Fundamentos de SQL
PDF
MongoDB
PDF
Javascript Básico
PDF
Seguridad web
PDF
Entonamiento de aplicaciones Web (Enfasis en PHP)
PDF
Entonamiento y perfilado de Drupal
PDF
Extracción de Requerimientos
Curso de Ajax
Hadoop
Fundamentos de Administración PostgreSQL
Fundamentos de SQL
MongoDB
Javascript Básico
Seguridad web
Entonamiento de aplicaciones Web (Enfasis en PHP)
Entonamiento y perfilado de Drupal
Extracción de Requerimientos

Recently uploaded (20)

PDF
Empathic Computing: Creating Shared Understanding
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Electronic commerce courselecture one. Pdf
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Cloud computing and distributed systems.
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Encapsulation theory and applications.pdf
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
Spectroscopy.pptx food analysis technology
PDF
Approach and Philosophy of On baking technology
PPTX
MYSQL Presentation for SQL database connectivity
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
Empathic Computing: Creating Shared Understanding
Network Security Unit 5.pdf for BCA BBA.
Programs and apps: productivity, graphics, security and other tools
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Electronic commerce courselecture one. Pdf
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Digital-Transformation-Roadmap-for-Companies.pptx
Chapter 3 Spatial Domain Image Processing.pdf
Cloud computing and distributed systems.
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Encapsulation theory and applications.pdf
MIND Revenue Release Quarter 2 2025 Press Release
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
20250228 LYD VKU AI Blended-Learning.pptx
Spectral efficient network and resource selection model in 5G networks
Spectroscopy.pptx food analysis technology
Approach and Philosophy of On baking technology
MYSQL Presentation for SQL database connectivity
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm

Linear Regression Parameters

  • 1. Linear Regression Parameters Rodolfo Campos (@camposer) Universidad Politécnica de Madrid Madrid, October 2012
  • 2. When to consider Linear Regression?  When the outcome, or class, is numeric, and all  the attributes are numeric.   The idea is to express the class as a linear  combination of the attributes, with predetermined  weights: x = w0 + w1a1 + w2a2 + … + wkak  x is the class; a1, a2, …, ak are the attribute values;  and w0, w1, …, wk are weights.
  • 3. When to consider Linear Regression?
  • 5. Linear Regression in Weka  Options specific to  weka.classifiers.functions.LinearRegression:  ­D. Produce debugging output (default disabled).  ­S <number of selection method>. Set the  attribute selection method to use. 1 = None, 2 =  Greedy (default 0 = M5' method).  ­C. Do not try to eliminate colinear attributes.  ­R <double>. Set ridge parameter (default 1.0e­ 8).
  • 6. Linear Regression in Weka  ­S <number of selection method>. Set the  method used to select attributes for use in the  linear regression:  0 = M5' method.  Build trees whose leaves are  associated to multivariate linear models and the  nodes of the tree are chosen over the attribute that  maximizes the expected error reduction, given by  the Akaike information criterion (a measure of the  relative goodness of fit of a statistical model).
  • 7. Linear Regression in Weka  1 = None. No need explanation.  2 = Greedy. ”For example, a greedy strategy for  the traveling salesman problem (which is of a high  computational complexity) is the following  heuristic: "At each stage visit an unvisited city  nearest to the current city". This heuristic need not  find a best solution but terminates in a reasonable  number of steps; finding an optimal solution  typically requires unreasonably many steps” from  Wikipedia.
  • 8. Linear Regression in Weka  ­C. Do not try to eliminate colinear attributes.  Possible examples:  high performance, expensive German cars  low performance, cheap American cars
  • 9. Linear Regression in Weka  ­R <double>. Set ridge parameter (default 1.0e­8).   Its value is assigned by the analyst, and determines  how much Ridge Regression departs from Least  Square Regression, whose goal is to circumvent the  problem of predictors collinearity.  If this value is too small, Ridge Regression cannot  fight collinearity efficiently.   If it is too large, the bias of the parameters become too  large, and so do the parameters and predictions Mean  Square Errors.  It has therefore to be estimated by a series of trial and  errors, usually resorting to cross­validation
  • 10. References  I. Witten, E. Frank and M. Hall. Data Mining: Practical Machine  Learning Tools and Techniques (Third Edition). Elsevier. MA,  USA, 2011.  Weka API. Class LinearRegression. Extracted on October 16,  2012 from  http://weka.sourceforge.net/doc/weka/classifiers/functions/LinearRegre  D. Rodríguez, J.J. Cuadrado, M.A. Sicilia and R. Ruiz.  Segmentation of Software Engineering Datasets Using the M5  Algorithm. Extracted on October 14, 2012 from  http://www.cc.uah.es/drg/c/ICCS06.pdf  AI Access. Ridge Regression. Extracted on October 16, 2012 from  http://www.aiaccess.net/English/Glossaries/GlosMod/e_gm_ridge.htm