SlideShare a Scribd company logo
TELKOMNIKA, Vol.17, No.4, August 2019, pp.1803~1809
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v17i4.11748  1803
Received May 29, 2018; Revised February 23, 2019; Accepted March 18, 2019
Live forensics of tools on android devices
for email forensics
Rusydi Umar1
, Imam Riadi2
, Bashor Fauzan Muthohirin*3
1,3
Department of Informatics Engineering, Universitas Ahmad Dahlan
Prof. Dr. Soepomo St., S.H., Janturan, Yogyakarta, 563515 Indonesia
2
Department of Information System, Universitas Ahmad Dahlan,
Prof. Dr. Soepomo St, S.H., Janturan, Yogyakarta, 563515 Indonesia
*Corresponding author, e-mail: bashor1707048017@webmail.uad.ac.id
Abstract
Email is one communication technology that can be used to exchange information, data, and etc.
The development of email technology not only can be opened using a computer but can be opened using
an smartphone. The most widely used smartphone in Indonesian society is Android. Within a row,
the development technology of higher cybercrime such as email fraud catching cybercrime offenders need
evidence to be submitted to a court, for obtain evidence can use tools like Wireshark and Networkminer to
analyzing network traffic on live networks. Opportunity, we will do a comparison of the forensic tools it to
acquire digital evidence. The subject of this research focused on Android-based email service to get as
much digital evidence as possible on both tools. This process uses National Institute of Standards and
Technology method. The results of this research that networkminer managed to get the receiving port,
while in Wireshark not found.
Keywords: android, email, networkminer, NIST, Wireshark
Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved.
1. Introduction
The development of technology can facilitate human work so that more effective, one of
the developments technology is an electronic mail (email). Email is one of the medium of
communication, information dissemination and the number of email provider services makes it all
to be concise and easy. Users can send information in minutes and even seconds to the world.
Likewise the recipient of the information can easily and quickly reply with the information [1].
The more people connect to the internet, making electronic mail (email) as one form of
communication the most rapid and economical. The amount of digital information in email as a
result of the development of information technology requires a way of organizing and grouping
information in an email inbox for the convenience of its users. This unstructured grouping of
information is known by the classification of documents [2].
Smartphones have many applications that can be used to help access email.
Smartphones are working phones that use the full potential of operating system software that
provides user-friendly connections and powerful hardware. Smartphones have different
operating systems, just like with the operating system for desktop computers [3]. Currently
smartphone devices have the same functionality as computers. Although the function is
the same as the computer, but there are some differences in the process of handling digital
forensics between computer devices and smartphones because the smartphone has unique
characteristics that cannot be equated with ordinary computer handling [4].
Indonesian society is no stranger to the name of smartphones, Indonesia is one of
the market is quite promising for companies makers of smartphones, especially Android. Every
year Android users continue to leave because the user interface friendly and open source
makes it easy for users to use it and develop it. Based on statistics of mobile operating system
market share in Indonesia from January 2012 to December 2017 users Android smartphone
continue to increase, can be seen in Figure 1 [5].
In any cybercrime must leave evidence, in the form of digital and electronic
evidence [6]. Digital evidence can be seen when the criminal process is direct and can be
stored, digital evidence can be handled exclusively by digital forensics science using tools to
solve and draw conclusions from criminal cases on digital evidence obtained. In real or fake
 ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 4, August 2019: 1803-1809
1804
emails it can be detected using several ways, such as viewing email headers [7, 8], digital
signature, and reading logs [9–11]. Digital forensics is the study of how to deal with crimes
involving technology such as computers [12]. There are several techniques in digital forensics,
one of which is live forensics that is used to handle digital crimes using approaches to systems
operating that are working and connected to the network [13].
The law on cybercrime crimes is set in the laws on ITE in Indonesia. The crimes of ITE
can be criminalized by civil or civil law in accordance with the level of the crime committed,
the process of arrest of the cybercrime by the authorities based on the evidence of crimes that
are stored on the smartphone or on other hardware that can be used as evidence in the law
court such as username, ip address and timestamp [14, 15]. No criminal cases have escaped
evidentiary evidence. Almost all criminal prosecutions always lean on examination of evidence.
At least in addition to proof with other evidence, there is always a need for verification with
at least two evidences. Tools that can be used to obtain digital evidence such as Wireshark and
Networkminer [16]. Wireshark and Networkminer are open source packet analytical tools that
can be used for troubleshooting networks and network analysis. Digital evidence can be found
in a way that is by traditional or dead means such as looking for evidence of artifacts, history,
and etc. Meanwhile, to obtain the evidence directly or the forensic analysis process when
the system is running is called live forensics [17, 18].
In [19] the title of A Comparative Study of Email Forensic Tools. The study conducted
a comparison of traditional email forensic tools. Tools used to obtain digital evidence are
Mailxaminer, Add4Mail, Digital Forensic Framework, Emailtrackerpro, and Paraben E-Mail
Examiner. The study successfully compared between forensic tools. In [20], the title of Network
and device forensic analysis of Android social-messaging applications. The research focused on
detecting the presence of unclear artifacts associated with email accounts, retrieving data from
service providers, and representative email in a well-structured format based on
existing standards.
In [21], they discussed the description of email architecture, based on a forensic
perspective. on architectures designed to explain the roles and responsibilities of e-mail users
and their components, analyze the metadata contained in e-mail headers and then explain the
tools used and techniques that can be used by investigators to forensic e-mail. From the results
of the metadata presents e-mail messages and various techniques used for e-mail forensics.
In [22], they discussed about forensic e-mail which includes analyzing the contents of e-mail,
header information, transit lines for e-mail information, senders or recipients and gathering
evidence for the culprit and making a safer system. In this case it also discusses e-mail
investigative techniques and the tools used in e-mail forensic processes. The email system and
internet applications have components such as hardware and software, including services,
protocols, servers and agents.
Figure 1. Smartphone user in Indonesia
TELKOMNIKA ISSN: 1693-6930 
Live forensics of tools on android devices for email forensics (Rusydi Umar)
1805
In [23], they discussed about tools that are open source and can be used to analyze
e-mail as digital evidence, and make responsive and interactive graph visualization of e-mail
data supported by statistics. The research successfully implemented which can be used for
e-mail forensic analysis with a dynamic visualization approach. From the above background
then we will conduct research on the comparison of Wireshark and networkminner forensics,
forensic tools to get as much digital evidence as possible for use in trials such as IP address,
ports, and timestamps. The comparison process, forensic tools use Android-based webmail
services. The method used in this study is the National Institute of Standards and Technology
(NIST) to obtain digital evidence.
2. Research Method
In this research, we use mobile forensics methods based on the guidelines available
and prepared by the National Institute of Standards and Technology (NIST). The NIST method
is used to perform analysis of digital evidence in emails and as a stage for obtaining information
from digital evidence, consisting of 4 stages such as Figure 2 [24, 25].
a. Collection
Colection is a collection process, identifying, labeling, recording and retrieving evidence
in the form of software to be retrieved for use as digital evidence of a digital crime case.
b. Examination
Testing includes an appraisal process and selects appropriate information from all
the data collected, as well as bypassing prosses or minimizes various features in the operating
system and applications that can eliminate data such as encryption, data compression, access
control mechanisms, specify file locations, checks metadata, extract files and more.
c. Analysis
The analysis is done by various method approaches, the task of this analysis includes
many activities, such as identifying the users involved indirectly, the location, the occurrence,
the device and considering how to get all the components connected to the final conclusion.
d. Reporting
Report the results of the analysis including the description of the actions performed,
what tools are used and the procedures used.
Figure 2. Stages of NIST method
3. Results and Analysis
The results of this research conducted a comparison of forensic tools in finding digital
evidence in the email received live forensics. Tools used are Wireshark and Networkminer for
sniffing on received email packets. The email used is webmail. Here is a comparison process of
forensics tools on Android based email services using the National Institute of Standarts and
Technology (NIST) forensics mobile method.
3.1. Collection
At this stage of collecting goods on smartphone owners, the smartphone used is google
Nexus 6 and Android version Oreo 8.0. Smartphone used in this research is smartphone
emulator genymotion version 2.12. The following is a collection stage concept. Figure 3 is
a conceptual stage in the collection process, the user receives an email from someone then
opens the email, together the investigator sniffing. This collection process of digital evidence is
done live forensics.
 ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 4, August 2019: 1803-1809
1806
Figure 3. Conceptual stages in collection process
3.2. Examination
In Examination, we performed a comparison on Wireshark and Networkminer forensic
tools. The email recipient opens using the Android smartphone browser version of oreo 8.0.
The smartphone runs on a 2.12.1 Geanymotion emulator. Here are the comparison stage
forensic tools in the process of getting the digital evidence on Android smartphone. Figure 4 is
an Android smartphone that is used to open the email received from someone to us.
At the same time, Wireshark and Networkminer are running to capture packets of passing data.
Here is the process of capturing packages using Wireshark and Networkminer. Figure 5 is a
sniffing process using Wireshark tools. Tools Wireshark successfully for sniffing data packets on
email service that opened using Android browser can see there is a red circle in Figure 5.
Figure 6 is a Networkminer sniffing tool. Networkminer succeeded in sniffing on email packets
marked with finding IP Address and webmail, can see there is a red circle in Figure 6.
Figure 4. Android Oreo
smartphone
Figure 5. Process examination tools Wireshark
Figure 6. Process examination tools NetworkMiner
TELKOMNIKA ISSN: 1693-6930 
Live forensics of tools on android devices for email forensics (Rusydi Umar)
1807
3.3. Analysis
At this stage is the result obtained by Wireshark and Networkminer forensics tools on
Android-based email is complete. Here are the results obtained. Figure 7 is the result of sniffing
on the email service accessed using Android smartphone. Found IP Address source:
192.168.43.111, IP Address destination: 103.247.11.231, and the email protocol: HTTP.
Figure 7. Results of Wireshark sniffing
Packages that are sniffing by Wireshark can be viewed in detail in the Transmission
Control Protocol/TCP Stream stream contained in the Wireshark menu. In TCP stream there is
complete information about sniffing data. following is the result of capturing Wireshark. Figure 8
is the contents of the TCP stream, in the TCP Stream gives a lot of information. The following
information can be found: (a) is the webmail host, (b) is the smartphone information used,
(c) is the browser used to open the email and layout webmail, (d) is username and password of
the user, timestamp email delivery, and email server, (e) is the sending port used.
Figure 9 is a result that is captured by Networkminer tools. Networkminer can be a lot of
information. The following information can be found: (a) is the ip address source,
(b) is port source, (c) is the ip address destination, (d) it is the timestamp information on
the server, (e) is the destination port, (f) is the interface used is roudcube, (g) is the webmail
host used, (h) is a smartphone used to open email, (i) is the browser used to open the email,
(j) is the user's username and password, (k) it is an email delivery timestamp, (l) represents
an email recipient timestamp.
Figure 8. TCP-Stream Wireshark
 ISSN: 1693-6930
TELKOMNIKA Vol. 17, No. 4, August 2019: 1803-1809
1808
Figure 9. Netwokminer sniffing result
3.4. Reporting
This is a report of the results of research on a comparison of Wireshark and
Networkminer forensic tools. In Figure 10, it is the result found. Figure 10 is the result of
a comparison of Wireshark and networkminer forensic tools, it is known that 92.3% of
the evidence obtained from Wireshark tools and 100% of evidence can be found with
the Network Miner tools. Extraction in Figure 10 uses Orange software.
Figure 10. Comparison of forensics tools
4. Conclusion
Based on the results of our research we conducted a comparison of Wireshark and
Networkminer forensic tools to obtain digital evidence on Android-based live email service in live
forensics. In the process of a comparison of forensic tools, the method we use is mobile forensic
methods based on the guidelines available and prepared by the National Institute of Standards
and Technology (NIST). The results of comparative analysis of Wireshark and networkminner
forensic tools obtained evidence, such as e-mail delivery timestamp, e-mail recipient timestamp,
TELKOMNIKA ISSN: 1693-6930 
Live forensics of tools on android devices for email forensics (Rusydi Umar)
1809
sender protocol port, recipient protocol port, and source address IP and destination IP address.
Networkminer forensic tools have succeeded in getting more digital evidence than Wireshark.
Wireshark cannot capture the receiving port and networkminner successfully captures
the receiving port. Networkminer has the ability to get digital evidence in emails so that
the evidence can be used in court. In the next research, we gave advice to compare
more forensic tools in email and on networks that run live forensics.
References
[1] Jones W, Bruce H, Bates MJ, Belkin N, Bergman O, Marshall C. Personal information management
in the present and future perfect: Reports from a special NSF‐sponsored workshop. Proceedings of
the American Society for Information Science and Technology. 2005; 42(1).
[2] Whittaker S, Bellotti V, Gwizdka J. Email in personal information management. Communications of
the ACM. 2006; 49(1): 68-73.
[3] Ayers R, Jansen W, Brothers S. Guidelines on mobile device forensics. NIST Special Publication
800-101 Revision 1. 2014; 1(1): 85.
[4] Ademu IO, Imafidon CO, Preston DS. A new approach of digital forensic model for digital forensic
investigation. Int. J. Adv. Comput. Sci. Appl. 2011; 2(12): 175–178.
[5] statCounter Global States. Mobile Operating System Market Share Indonesia. 2018.
[6] Zareen MS, Waqar A, Aslam B. Digital forensics: Latest challenges and response. 2013 2nd
National
Conference on Information Assurance (NCIA). 2013: 21–29.
[7] Umar R, Riadi I, Muthohirin BF. Acquisition of Email Service Based Android Using NIST. Kinet. Game
Technol. Inf. Syst. Comput. Netw. Comput. Electron. Control. 2018; 3(3): 263-70.
[8] Bin Abd Razak S, Bin Mohamad AF. Identification of spam email based on information from email
header. Int. Conf. Intell. Syst. Des. Appl. ISDA. 2014: 347–353.
[9] Fadlil A, Riadi I, Aji S. Review of detection DDOS attack detection using naive bayes classifier for
network forensics. Bulletin of Electrical Engineering and Informatics. 2017; 6(2): 140-–148.
[10] Cao Q, Qiao Y. Machine Learning to Detect Anomalies in Web Log Analysis. 2017 3rd
IEEE
International Conference on Computer and Communications (ICCC). 2017: 519–523.
[11] Alspaugh S, Chen B, Lin J, Ganapathi A, Hearst M, Katz R. Analyzing log analysis: An empirical
study of user log mining. 28th Large Installation System Administration Conference (LISA14).
2014: 53–68.
[12] Fenu G, Solinas F. Live digital forensics: Windows XP vs windows 7. ICIA 2013 Second International
Conference on Informatics and Applications. 2013: 1–6.
[13] Qi Z, Xiang C, Ma R, Li J, Guan H, Wei DS. ForenVisor: A tool for acquiring and preserving reliable
data in cloud live forensics. IEEE Transactions on Cloud Computing. 2017; 5(3): 443–456.
[14] Harichandran VS, Walnycky D, Baggili I, Breitinger F. Cufa: A more formal definition for digital
forensic artifacts. Digital Investigation. 2016; 18: S125–S137.
[15] Brown CS. Investigating and prosecuting cyber crime: Forensic dependencies and barriers to justice.
International Journal of Cyber Criminology. 2015; 9(1): 55–119.
[16] Ndatinya V, Xiao Z, Manepalli VR, Meng K, Xiao Y. Network forensics analysis using Wireshark.
International Journal of Security and Networks. 2015; 10(2): 91-106.
[17] Kolhe M, Ahirao P. Live Vs Dead Computer Forensic Image Acquisition. Int. J. Comput. Sci. Inf.
Technol. 2017; 8(3): 455–457.
[18] Riadi I, Umar R, Nasrulloh IM. Experimental Investigation of Frozen Solid State Drive on Digital
Evidence with Static Forensic Methods. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi.
2018: 169–181.
[19] Devendran VK, Shahriar H, Clincy V. A comparative study of email forensic tools. Journal of
Information Security. 2015; 6(2): 111–117.
[20] Paglierani J, Mabey M, Ahn GJ. Towards comprehensive and collaborative forensics on email
evidence. 9th IEEE International Conference on Collaborative Computing: Networking, Applications
and Worksharing. 2013: 11–20.
[21] Banday MT. Techniques and Tools for Forensic Investigation of E-mail. International Journal of
Network Security & Its Applications. 2011; 3(6): 227–241.
[22] Chhabra GS, Bajwa DS. Review of E-mail System, Security Protocols and Email Forensics.
International Journal of Computer Science & Communication Networks. 2015; 5(3): 201–211.
[23] Stadlinger J, Dewald A. A forensic email analysis tool using dynamic visualization. Journal of Digital
Forensics, Security and Law. 2017; 12(1): 6.
[24] Umar R, Riadi I, Zamroni GM. Mobile forensic tools evaluation for digital crime investigation.
International Journal on Advanced Science, Engineering and Information Technology. 2018; 8(3):
949-955.
[25] Grance T, Chevalier S, Kent K, Dang H. Guide to Computer and Network Data Analysis: Applying
Forensic Techniques to Incident Response. National Institute ofStandards and Technology. Report
Number: NIST Special Publication 800-86. 2005.

More Related Content

PDF
AN EMPIRICAL ANALYSIS OF EMAIL FORENSICS TOOLS
PDF
Post-Genesis Digital Forensics Investigation
PDF
Forensic Tools Performance Analysis on Android-based Blackberry Messenger usi...
PDF
The Detection of Suspicious Email Based on Decision Tree ...
PDF
Sms base file search & automatic contact saving technique using gsm 38521
PDF
A CONCEPTUAL SECURE BLOCKCHAIN- BASED ELECTRONIC VOTING SYSTEM
PDF
PHISHING MITIGATION TECHNIQUES: A LITERATURE SURVEY
PDF
The architecture social media and online newspaper credibility measurement fo...
AN EMPIRICAL ANALYSIS OF EMAIL FORENSICS TOOLS
Post-Genesis Digital Forensics Investigation
Forensic Tools Performance Analysis on Android-based Blackberry Messenger usi...
The Detection of Suspicious Email Based on Decision Tree ...
Sms base file search & automatic contact saving technique using gsm 38521
A CONCEPTUAL SECURE BLOCKCHAIN- BASED ELECTRONIC VOTING SYSTEM
PHISHING MITIGATION TECHNIQUES: A LITERATURE SURVEY
The architecture social media and online newspaper credibility measurement fo...

What's hot (19)

PDF
Indonesian language email spam detection using N-gram and Naïve Bayes algorithm
PDF
Ijarcet vol-2-issue-2-342-346
PDF
Experimental Analysis of Web Browser Sessions Using Live Forensics Method
PDF
a-novel-web-attack-detection-system-for-internet-of-things-via-ensemble-class...
PDF
Correlation Analysis of Forensic Metadata for Digital Evidence
PDF
A Comparative Study of Different File Sharing Applications and Wi-Fi Direct T...
PDF
[IJET-V1I6P2] Authors:Imran khan , Asst. Prof K.Suresh , Asst.Prof Miss Ranja...
PDF
IRJET- PDF Extraction using Data Mining Techniques
PDF
Investigating crimes using text mining and network analysis
PPTX
E-mail Investigation
PDF
A Heuristic Approach for Network Data Clustering
PDF
Phishing: A Field Experiment
PDF
IP Messenger And File Transfer over Ethernet LAN
PPTX
MOBILE DEVICE FORENSICS USING NLP
PDF
Identifying Malicious Data in Social Media
PDF
Obfuscated computer virus detection using machine learning algorithm
PDF
A survey on Stack Path Identification and Encryption Adopted as Spoofing Defe...
PDF
A Deep Learning Model For Crime Surveillance In Phone Calls.
PDF
Convolutional Neural Networks
Indonesian language email spam detection using N-gram and Naïve Bayes algorithm
Ijarcet vol-2-issue-2-342-346
Experimental Analysis of Web Browser Sessions Using Live Forensics Method
a-novel-web-attack-detection-system-for-internet-of-things-via-ensemble-class...
Correlation Analysis of Forensic Metadata for Digital Evidence
A Comparative Study of Different File Sharing Applications and Wi-Fi Direct T...
[IJET-V1I6P2] Authors:Imran khan , Asst. Prof K.Suresh , Asst.Prof Miss Ranja...
IRJET- PDF Extraction using Data Mining Techniques
Investigating crimes using text mining and network analysis
E-mail Investigation
A Heuristic Approach for Network Data Clustering
Phishing: A Field Experiment
IP Messenger And File Transfer over Ethernet LAN
MOBILE DEVICE FORENSICS USING NLP
Identifying Malicious Data in Social Media
Obfuscated computer virus detection using machine learning algorithm
A survey on Stack Path Identification and Encryption Adopted as Spoofing Defe...
A Deep Learning Model For Crime Surveillance In Phone Calls.
Convolutional Neural Networks
Ad

Similar to Live forensics of tools on android devices for email forensics (20)

PDF
Evidence Gathering and Identification of LINE Messenger on Android Device
PDF
776 s0005
PDF
Smartphone Forensic Investigation Process Model
PDF
s42452-019-1312-8.pdf
PDF
Smartphone Forensic Challenges
PDF
2018 - Mobile Fojjjjjjjhhhjjjjjrensics.pdf
PDF
A BRIEF SURVEY OF MOBILE FORENSICS ANALYSIS ON SOCIAL NETWORKING APPLICATION
PDF
IRJET - Android based Mobile Forensic and Comparison using Various Tools
PPTX
Mobile Forensics challenges and Extraction process
PDF
digital forensic examination of mobile phone data
PDF
Ijmet 10 01_095
PDF
76 s201924
PDF
C017211519
PDF
A Survey on Mobile Forensic for Android Smartphones
PDF
A Survey on Mobile Forensic for Android Smartphones
PDF
New research directions in the area of
DOCX
Running header EMAIL FORENSICSEMAIL FORENSICSEmail Forens.docx
PDF
Judgments on digital Evidence u/s 65 b of IE act
Evidence Gathering and Identification of LINE Messenger on Android Device
776 s0005
Smartphone Forensic Investigation Process Model
s42452-019-1312-8.pdf
Smartphone Forensic Challenges
2018 - Mobile Fojjjjjjjhhhjjjjjrensics.pdf
A BRIEF SURVEY OF MOBILE FORENSICS ANALYSIS ON SOCIAL NETWORKING APPLICATION
IRJET - Android based Mobile Forensic and Comparison using Various Tools
Mobile Forensics challenges and Extraction process
digital forensic examination of mobile phone data
Ijmet 10 01_095
76 s201924
C017211519
A Survey on Mobile Forensic for Android Smartphones
A Survey on Mobile Forensic for Android Smartphones
New research directions in the area of
Running header EMAIL FORENSICSEMAIL FORENSICSEmail Forens.docx
Judgments on digital Evidence u/s 65 b of IE act
Ad

More from TELKOMNIKA JOURNAL (20)

PDF
Earthquake magnitude prediction based on radon cloud data near Grindulu fault...
PDF
Implementation of ICMP flood detection and mitigation system based on softwar...
PDF
Indonesian continuous speech recognition optimization with convolution bidir...
PDF
Recognition and understanding of construction safety signs by final year engi...
PDF
The use of dolomite to overcome grounding resistance in acidic swamp land
PDF
Clustering of swamp land types against soil resistivity and grounding resistance
PDF
Hybrid methodology for parameter algebraic identification in spatial/time dom...
PDF
Integration of image processing with 6-degrees-of-freedom robotic arm for adv...
PDF
Deep learning approaches for accurate wood species recognition
PDF
Neuromarketing case study: recognition of sweet and sour taste in beverage pr...
PDF
Reversible data hiding with selective bits difference expansion and modulus f...
PDF
Website-based: smart goat farm monitoring cages
PDF
Novel internet of things-spectroscopy methods for targeted water pollutants i...
PDF
XGBoost optimization using hybrid Bayesian optimization and nested cross vali...
PDF
Convolutional neural network-based real-time drowsy driver detection for acci...
PDF
Addressing overfitting in comparative study for deep learningbased classifica...
PDF
Integrating artificial intelligence into accounting systems: a qualitative st...
PDF
Leveraging technology to improve tuberculosis patient adherence: a comprehens...
PDF
Adulterated beef detection with redundant gas sensor using optimized convolut...
PDF
A 6G THz MIMO antenna with high gain and wide bandwidth for high-speed wirele...
Earthquake magnitude prediction based on radon cloud data near Grindulu fault...
Implementation of ICMP flood detection and mitigation system based on softwar...
Indonesian continuous speech recognition optimization with convolution bidir...
Recognition and understanding of construction safety signs by final year engi...
The use of dolomite to overcome grounding resistance in acidic swamp land
Clustering of swamp land types against soil resistivity and grounding resistance
Hybrid methodology for parameter algebraic identification in spatial/time dom...
Integration of image processing with 6-degrees-of-freedom robotic arm for adv...
Deep learning approaches for accurate wood species recognition
Neuromarketing case study: recognition of sweet and sour taste in beverage pr...
Reversible data hiding with selective bits difference expansion and modulus f...
Website-based: smart goat farm monitoring cages
Novel internet of things-spectroscopy methods for targeted water pollutants i...
XGBoost optimization using hybrid Bayesian optimization and nested cross vali...
Convolutional neural network-based real-time drowsy driver detection for acci...
Addressing overfitting in comparative study for deep learningbased classifica...
Integrating artificial intelligence into accounting systems: a qualitative st...
Leveraging technology to improve tuberculosis patient adherence: a comprehens...
Adulterated beef detection with redundant gas sensor using optimized convolut...
A 6G THz MIMO antenna with high gain and wide bandwidth for high-speed wirele...

Recently uploaded (20)

PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPT
Project quality management in manufacturing
PDF
composite construction of structures.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Digital Logic Computer Design lecture notes
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPT
Mechanical Engineering MATERIALS Selection
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
Artificial Intelligence
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Foundation to blockchain - A guide to Blockchain Tech
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
CYBER-CRIMES AND SECURITY A guide to understanding
bas. eng. economics group 4 presentation 1.pptx
Project quality management in manufacturing
composite construction of structures.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Digital Logic Computer Design lecture notes
CH1 Production IntroductoryConcepts.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Mechanical Engineering MATERIALS Selection
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Safety Seminar civil to be ensured for safe working.
Artificial Intelligence
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Foundation to blockchain - A guide to Blockchain Tech

Live forensics of tools on android devices for email forensics

  • 1. TELKOMNIKA, Vol.17, No.4, August 2019, pp.1803~1809 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v17i4.11748  1803 Received May 29, 2018; Revised February 23, 2019; Accepted March 18, 2019 Live forensics of tools on android devices for email forensics Rusydi Umar1 , Imam Riadi2 , Bashor Fauzan Muthohirin*3 1,3 Department of Informatics Engineering, Universitas Ahmad Dahlan Prof. Dr. Soepomo St., S.H., Janturan, Yogyakarta, 563515 Indonesia 2 Department of Information System, Universitas Ahmad Dahlan, Prof. Dr. Soepomo St, S.H., Janturan, Yogyakarta, 563515 Indonesia *Corresponding author, e-mail: bashor1707048017@webmail.uad.ac.id Abstract Email is one communication technology that can be used to exchange information, data, and etc. The development of email technology not only can be opened using a computer but can be opened using an smartphone. The most widely used smartphone in Indonesian society is Android. Within a row, the development technology of higher cybercrime such as email fraud catching cybercrime offenders need evidence to be submitted to a court, for obtain evidence can use tools like Wireshark and Networkminer to analyzing network traffic on live networks. Opportunity, we will do a comparison of the forensic tools it to acquire digital evidence. The subject of this research focused on Android-based email service to get as much digital evidence as possible on both tools. This process uses National Institute of Standards and Technology method. The results of this research that networkminer managed to get the receiving port, while in Wireshark not found. Keywords: android, email, networkminer, NIST, Wireshark Copyright © 2019 Universitas Ahmad Dahlan. All rights reserved. 1. Introduction The development of technology can facilitate human work so that more effective, one of the developments technology is an electronic mail (email). Email is one of the medium of communication, information dissemination and the number of email provider services makes it all to be concise and easy. Users can send information in minutes and even seconds to the world. Likewise the recipient of the information can easily and quickly reply with the information [1]. The more people connect to the internet, making electronic mail (email) as one form of communication the most rapid and economical. The amount of digital information in email as a result of the development of information technology requires a way of organizing and grouping information in an email inbox for the convenience of its users. This unstructured grouping of information is known by the classification of documents [2]. Smartphones have many applications that can be used to help access email. Smartphones are working phones that use the full potential of operating system software that provides user-friendly connections and powerful hardware. Smartphones have different operating systems, just like with the operating system for desktop computers [3]. Currently smartphone devices have the same functionality as computers. Although the function is the same as the computer, but there are some differences in the process of handling digital forensics between computer devices and smartphones because the smartphone has unique characteristics that cannot be equated with ordinary computer handling [4]. Indonesian society is no stranger to the name of smartphones, Indonesia is one of the market is quite promising for companies makers of smartphones, especially Android. Every year Android users continue to leave because the user interface friendly and open source makes it easy for users to use it and develop it. Based on statistics of mobile operating system market share in Indonesia from January 2012 to December 2017 users Android smartphone continue to increase, can be seen in Figure 1 [5]. In any cybercrime must leave evidence, in the form of digital and electronic evidence [6]. Digital evidence can be seen when the criminal process is direct and can be stored, digital evidence can be handled exclusively by digital forensics science using tools to solve and draw conclusions from criminal cases on digital evidence obtained. In real or fake
  • 2.  ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 4, August 2019: 1803-1809 1804 emails it can be detected using several ways, such as viewing email headers [7, 8], digital signature, and reading logs [9–11]. Digital forensics is the study of how to deal with crimes involving technology such as computers [12]. There are several techniques in digital forensics, one of which is live forensics that is used to handle digital crimes using approaches to systems operating that are working and connected to the network [13]. The law on cybercrime crimes is set in the laws on ITE in Indonesia. The crimes of ITE can be criminalized by civil or civil law in accordance with the level of the crime committed, the process of arrest of the cybercrime by the authorities based on the evidence of crimes that are stored on the smartphone or on other hardware that can be used as evidence in the law court such as username, ip address and timestamp [14, 15]. No criminal cases have escaped evidentiary evidence. Almost all criminal prosecutions always lean on examination of evidence. At least in addition to proof with other evidence, there is always a need for verification with at least two evidences. Tools that can be used to obtain digital evidence such as Wireshark and Networkminer [16]. Wireshark and Networkminer are open source packet analytical tools that can be used for troubleshooting networks and network analysis. Digital evidence can be found in a way that is by traditional or dead means such as looking for evidence of artifacts, history, and etc. Meanwhile, to obtain the evidence directly or the forensic analysis process when the system is running is called live forensics [17, 18]. In [19] the title of A Comparative Study of Email Forensic Tools. The study conducted a comparison of traditional email forensic tools. Tools used to obtain digital evidence are Mailxaminer, Add4Mail, Digital Forensic Framework, Emailtrackerpro, and Paraben E-Mail Examiner. The study successfully compared between forensic tools. In [20], the title of Network and device forensic analysis of Android social-messaging applications. The research focused on detecting the presence of unclear artifacts associated with email accounts, retrieving data from service providers, and representative email in a well-structured format based on existing standards. In [21], they discussed the description of email architecture, based on a forensic perspective. on architectures designed to explain the roles and responsibilities of e-mail users and their components, analyze the metadata contained in e-mail headers and then explain the tools used and techniques that can be used by investigators to forensic e-mail. From the results of the metadata presents e-mail messages and various techniques used for e-mail forensics. In [22], they discussed about forensic e-mail which includes analyzing the contents of e-mail, header information, transit lines for e-mail information, senders or recipients and gathering evidence for the culprit and making a safer system. In this case it also discusses e-mail investigative techniques and the tools used in e-mail forensic processes. The email system and internet applications have components such as hardware and software, including services, protocols, servers and agents. Figure 1. Smartphone user in Indonesia
  • 3. TELKOMNIKA ISSN: 1693-6930  Live forensics of tools on android devices for email forensics (Rusydi Umar) 1805 In [23], they discussed about tools that are open source and can be used to analyze e-mail as digital evidence, and make responsive and interactive graph visualization of e-mail data supported by statistics. The research successfully implemented which can be used for e-mail forensic analysis with a dynamic visualization approach. From the above background then we will conduct research on the comparison of Wireshark and networkminner forensics, forensic tools to get as much digital evidence as possible for use in trials such as IP address, ports, and timestamps. The comparison process, forensic tools use Android-based webmail services. The method used in this study is the National Institute of Standards and Technology (NIST) to obtain digital evidence. 2. Research Method In this research, we use mobile forensics methods based on the guidelines available and prepared by the National Institute of Standards and Technology (NIST). The NIST method is used to perform analysis of digital evidence in emails and as a stage for obtaining information from digital evidence, consisting of 4 stages such as Figure 2 [24, 25]. a. Collection Colection is a collection process, identifying, labeling, recording and retrieving evidence in the form of software to be retrieved for use as digital evidence of a digital crime case. b. Examination Testing includes an appraisal process and selects appropriate information from all the data collected, as well as bypassing prosses or minimizes various features in the operating system and applications that can eliminate data such as encryption, data compression, access control mechanisms, specify file locations, checks metadata, extract files and more. c. Analysis The analysis is done by various method approaches, the task of this analysis includes many activities, such as identifying the users involved indirectly, the location, the occurrence, the device and considering how to get all the components connected to the final conclusion. d. Reporting Report the results of the analysis including the description of the actions performed, what tools are used and the procedures used. Figure 2. Stages of NIST method 3. Results and Analysis The results of this research conducted a comparison of forensic tools in finding digital evidence in the email received live forensics. Tools used are Wireshark and Networkminer for sniffing on received email packets. The email used is webmail. Here is a comparison process of forensics tools on Android based email services using the National Institute of Standarts and Technology (NIST) forensics mobile method. 3.1. Collection At this stage of collecting goods on smartphone owners, the smartphone used is google Nexus 6 and Android version Oreo 8.0. Smartphone used in this research is smartphone emulator genymotion version 2.12. The following is a collection stage concept. Figure 3 is a conceptual stage in the collection process, the user receives an email from someone then opens the email, together the investigator sniffing. This collection process of digital evidence is done live forensics.
  • 4.  ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 4, August 2019: 1803-1809 1806 Figure 3. Conceptual stages in collection process 3.2. Examination In Examination, we performed a comparison on Wireshark and Networkminer forensic tools. The email recipient opens using the Android smartphone browser version of oreo 8.0. The smartphone runs on a 2.12.1 Geanymotion emulator. Here are the comparison stage forensic tools in the process of getting the digital evidence on Android smartphone. Figure 4 is an Android smartphone that is used to open the email received from someone to us. At the same time, Wireshark and Networkminer are running to capture packets of passing data. Here is the process of capturing packages using Wireshark and Networkminer. Figure 5 is a sniffing process using Wireshark tools. Tools Wireshark successfully for sniffing data packets on email service that opened using Android browser can see there is a red circle in Figure 5. Figure 6 is a Networkminer sniffing tool. Networkminer succeeded in sniffing on email packets marked with finding IP Address and webmail, can see there is a red circle in Figure 6. Figure 4. Android Oreo smartphone Figure 5. Process examination tools Wireshark Figure 6. Process examination tools NetworkMiner
  • 5. TELKOMNIKA ISSN: 1693-6930  Live forensics of tools on android devices for email forensics (Rusydi Umar) 1807 3.3. Analysis At this stage is the result obtained by Wireshark and Networkminer forensics tools on Android-based email is complete. Here are the results obtained. Figure 7 is the result of sniffing on the email service accessed using Android smartphone. Found IP Address source: 192.168.43.111, IP Address destination: 103.247.11.231, and the email protocol: HTTP. Figure 7. Results of Wireshark sniffing Packages that are sniffing by Wireshark can be viewed in detail in the Transmission Control Protocol/TCP Stream stream contained in the Wireshark menu. In TCP stream there is complete information about sniffing data. following is the result of capturing Wireshark. Figure 8 is the contents of the TCP stream, in the TCP Stream gives a lot of information. The following information can be found: (a) is the webmail host, (b) is the smartphone information used, (c) is the browser used to open the email and layout webmail, (d) is username and password of the user, timestamp email delivery, and email server, (e) is the sending port used. Figure 9 is a result that is captured by Networkminer tools. Networkminer can be a lot of information. The following information can be found: (a) is the ip address source, (b) is port source, (c) is the ip address destination, (d) it is the timestamp information on the server, (e) is the destination port, (f) is the interface used is roudcube, (g) is the webmail host used, (h) is a smartphone used to open email, (i) is the browser used to open the email, (j) is the user's username and password, (k) it is an email delivery timestamp, (l) represents an email recipient timestamp. Figure 8. TCP-Stream Wireshark
  • 6.  ISSN: 1693-6930 TELKOMNIKA Vol. 17, No. 4, August 2019: 1803-1809 1808 Figure 9. Netwokminer sniffing result 3.4. Reporting This is a report of the results of research on a comparison of Wireshark and Networkminer forensic tools. In Figure 10, it is the result found. Figure 10 is the result of a comparison of Wireshark and networkminer forensic tools, it is known that 92.3% of the evidence obtained from Wireshark tools and 100% of evidence can be found with the Network Miner tools. Extraction in Figure 10 uses Orange software. Figure 10. Comparison of forensics tools 4. Conclusion Based on the results of our research we conducted a comparison of Wireshark and Networkminer forensic tools to obtain digital evidence on Android-based live email service in live forensics. In the process of a comparison of forensic tools, the method we use is mobile forensic methods based on the guidelines available and prepared by the National Institute of Standards and Technology (NIST). The results of comparative analysis of Wireshark and networkminner forensic tools obtained evidence, such as e-mail delivery timestamp, e-mail recipient timestamp,
  • 7. TELKOMNIKA ISSN: 1693-6930  Live forensics of tools on android devices for email forensics (Rusydi Umar) 1809 sender protocol port, recipient protocol port, and source address IP and destination IP address. Networkminer forensic tools have succeeded in getting more digital evidence than Wireshark. Wireshark cannot capture the receiving port and networkminner successfully captures the receiving port. Networkminer has the ability to get digital evidence in emails so that the evidence can be used in court. In the next research, we gave advice to compare more forensic tools in email and on networks that run live forensics. References [1] Jones W, Bruce H, Bates MJ, Belkin N, Bergman O, Marshall C. Personal information management in the present and future perfect: Reports from a special NSF‐sponsored workshop. Proceedings of the American Society for Information Science and Technology. 2005; 42(1). [2] Whittaker S, Bellotti V, Gwizdka J. Email in personal information management. Communications of the ACM. 2006; 49(1): 68-73. [3] Ayers R, Jansen W, Brothers S. Guidelines on mobile device forensics. NIST Special Publication 800-101 Revision 1. 2014; 1(1): 85. [4] Ademu IO, Imafidon CO, Preston DS. A new approach of digital forensic model for digital forensic investigation. Int. J. Adv. Comput. Sci. Appl. 2011; 2(12): 175–178. [5] statCounter Global States. Mobile Operating System Market Share Indonesia. 2018. [6] Zareen MS, Waqar A, Aslam B. Digital forensics: Latest challenges and response. 2013 2nd National Conference on Information Assurance (NCIA). 2013: 21–29. [7] Umar R, Riadi I, Muthohirin BF. Acquisition of Email Service Based Android Using NIST. Kinet. Game Technol. Inf. Syst. Comput. Netw. Comput. Electron. Control. 2018; 3(3): 263-70. [8] Bin Abd Razak S, Bin Mohamad AF. Identification of spam email based on information from email header. Int. Conf. Intell. Syst. Des. Appl. ISDA. 2014: 347–353. [9] Fadlil A, Riadi I, Aji S. Review of detection DDOS attack detection using naive bayes classifier for network forensics. Bulletin of Electrical Engineering and Informatics. 2017; 6(2): 140-–148. [10] Cao Q, Qiao Y. Machine Learning to Detect Anomalies in Web Log Analysis. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). 2017: 519–523. [11] Alspaugh S, Chen B, Lin J, Ganapathi A, Hearst M, Katz R. Analyzing log analysis: An empirical study of user log mining. 28th Large Installation System Administration Conference (LISA14). 2014: 53–68. [12] Fenu G, Solinas F. Live digital forensics: Windows XP vs windows 7. ICIA 2013 Second International Conference on Informatics and Applications. 2013: 1–6. [13] Qi Z, Xiang C, Ma R, Li J, Guan H, Wei DS. ForenVisor: A tool for acquiring and preserving reliable data in cloud live forensics. IEEE Transactions on Cloud Computing. 2017; 5(3): 443–456. [14] Harichandran VS, Walnycky D, Baggili I, Breitinger F. Cufa: A more formal definition for digital forensic artifacts. Digital Investigation. 2016; 18: S125–S137. [15] Brown CS. Investigating and prosecuting cyber crime: Forensic dependencies and barriers to justice. International Journal of Cyber Criminology. 2015; 9(1): 55–119. [16] Ndatinya V, Xiao Z, Manepalli VR, Meng K, Xiao Y. Network forensics analysis using Wireshark. International Journal of Security and Networks. 2015; 10(2): 91-106. [17] Kolhe M, Ahirao P. Live Vs Dead Computer Forensic Image Acquisition. Int. J. Comput. Sci. Inf. Technol. 2017; 8(3): 455–457. [18] Riadi I, Umar R, Nasrulloh IM. Experimental Investigation of Frozen Solid State Drive on Digital Evidence with Static Forensic Methods. Lontar Komputer: Jurnal Ilmiah Teknologi Informasi. 2018: 169–181. [19] Devendran VK, Shahriar H, Clincy V. A comparative study of email forensic tools. Journal of Information Security. 2015; 6(2): 111–117. [20] Paglierani J, Mabey M, Ahn GJ. Towards comprehensive and collaborative forensics on email evidence. 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing. 2013: 11–20. [21] Banday MT. Techniques and Tools for Forensic Investigation of E-mail. International Journal of Network Security & Its Applications. 2011; 3(6): 227–241. [22] Chhabra GS, Bajwa DS. Review of E-mail System, Security Protocols and Email Forensics. International Journal of Computer Science & Communication Networks. 2015; 5(3): 201–211. [23] Stadlinger J, Dewald A. A forensic email analysis tool using dynamic visualization. Journal of Digital Forensics, Security and Law. 2017; 12(1): 6. [24] Umar R, Riadi I, Zamroni GM. Mobile forensic tools evaluation for digital crime investigation. International Journal on Advanced Science, Engineering and Information Technology. 2018; 8(3): 949-955. [25] Grance T, Chevalier S, Kent K, Dang H. Guide to Computer and Network Data Analysis: Applying Forensic Techniques to Incident Response. National Institute ofStandards and Technology. Report Number: NIST Special Publication 800-86. 2005.