SlideShare a Scribd company logo
4
Most read
5
Most read
7
Most read
Salahaddin university /Erbil
College of Science
Mathematics Department
1𝑠𝑡
Year class
Outline
1. Def/ Logical statement………………………………... 3
2. Connective statements……………………………….. 4
3. Truth tables………………………………………………. 5
4. Converse,Inverse,Contrapossitive…………………... 6
5. Equivalence……………………………………………... 8
6. Tautology and Contraduction……………………….. 9
7. Algebric Rules for statement forms………………….10
8. Quantifiers………………………………………………. 13
9. Theorm…………………………………………………... 15
9/24/2022 2
Logical statement
 Definition: is declarative sentence that is either true or
false but not both.
REMARK
In general Question and comments are not logical
statementes.
For Example:
1. 3< 5 true statement
2. R> 8 𝑖𝑠 𝑛𝑜𝑡 statement
3. 4+6=12 is false statement
4. 1+1=2 is true statement
5. Today is Friday is false statement
9/24/2022 3
Example
Symbol
Means
Words
~𝑝 𝑜𝑟 ¬𝑝
~ 𝑜𝑟 ¬
not
Negation
and
Conjunction
or
Disjunction
If then
Conditional
If and only if
Bi
conditional

q
p 

q
p 
q
p 

q
p 

9/24/2022 4
Truth table
Let p and q be two statement then the conjunction,
Dis conjunction , conditional and Bi conditional.
q
p
T
T
T
T
T
T
F
F
F
T
F
T
F
T
F
T
T
F
T
T
F
F
F
F
q
p q
p q
p  q
p 
9/24/2022 5
 Consider the proposition 𝑝 → 𝑞
• Its Converse is the proposition 𝑞 → 𝑝
• Its Inverse is the proposition ~𝑝 → ~𝑞
• Its Contrapositive is the proposition ~𝑞 → ~𝑝
~𝒒 → ~𝒑
~𝒑 → ~𝒒
𝒒 → 𝒑
𝒑 → 𝒒
~𝒒
𝒒
~𝒑
𝒑
T
T
T
T
F
T
F
T
F
T
T
F
T
F
F
T
T
F
F
T
F
T
T
F
T
T
T
T
T
F
T
F
9/24/2022 6
Definition: Two statement p and q are equivalence
Which is denoted by p≡q , if they have the same
Truth table
For example; 𝑝 → 𝑞 ≡ ~𝑝 → 𝑞 and because
they have the same truth table
q
p
q
p 



𝒑 ↔ 𝒒
𝒑 → 𝒒
~𝒑v𝒒
~𝒒
𝒒
~𝒑
𝒑
T
T
T
F
T
F
T
F
F
F
T
F
F
T
T
T
T
F
T
T
F
T
T
T
T
F
T
F
9/24/2022 7
 Definition of tutology: If the statement are always true
is said to be tautology.
 Definition of contraduction: if the statement are always
false is said to be contraduction.
For example:
𝒑˄~𝒑
𝑝˅~𝑝
~𝒑
𝒑
F
T
F
T
F
T
T
F
9/24/2022 8
Algebric Rules for statement forms
I. Idempotent Rules:
II. Commutaitive Rules:
III. Associative Rules:
p
p
p
p
p
p




p
q
q
p
p
q
q
p






   
   
r
q
p
r
q
p
r
q
p
r
q
p










9/24/2022 9
Rules (Continued)
IV. Distributive Rules:
V. Identity (Bound) Rules:
     
     
r
p
q
p
r
q
p
r
p
q
p
r
q
p












T
T
p
or
p
p
T
p
or
p
p
p
F
p
or
p
p
F
F
p
or
p
















1
1
1
0
0
0
9/24/2022 10
Rules
(Continued)
VI. Complement Rules:
VII. DeMorgans Rules:
VIII. Double negation:
IX. Absorpition Rules:
F
p
p
or
p
p
T
p
p
or
p
p












0
1
 
  q
p
q
p
q
p
q
p












p
p 

 
  p
q
p
p
p
q
p
p






9/24/2022 11
Prove:
 
 
   
 
q
p
p
q
T
p
q
p
q
p
q
q
p
q
q
q
p


















 Left-hand statement
Commutative law
Distributive law
Tautology
Identity law
Commutative law
9/24/2022 12
q
p
q
q
p 



 )
(
The phrase (for all or for each) is called a
universal quantifier and is symbolically written as
∀ .
The phrase (for some or there exist) is called an
existential quantifier and symbolically written as
∃ .
Example:
1. ∀𝑥 ∶ 𝑥 > 0 → 𝑥 − 1 > 0
2. ∃𝑥 ∶ 𝑥 > 0 ˄ 𝑥2 = 81 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛
∃𝑥 > 0 ∶ 𝑥2
= 81
9/24/2022 13
For example:
If 𝐴 = 1,2,3 and 𝑃 𝑥 : 𝑥 < 7
𝑃 1 : 1 < 7 𝑖𝑠 𝑇𝑟𝑢𝑒
𝑃 2 : 2 < 7 𝑖𝑠 𝑇𝑟𝑢𝑒
𝑃 3 : 3 < 7 𝑖𝑠 𝑇𝑟𝑢𝑒
This means that (∀𝑥 ∈ 𝐴, 𝑃(𝑥)) is true
Another
If 𝐴 = 1,2,4 and 𝑃 𝑥 : 𝑥 < 4
𝑃 1 : 1 < 4 𝑖𝑠 𝑇𝑟𝑢𝑒
𝑃 2 : 2 < 4 𝑖𝑠 𝑇𝑟𝑢𝑒
𝑃 4 : 4 < 4 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒
This means that (∃𝑥 ∈ 𝐴, 𝑃 𝑥 ) 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒
9/24/2022 14
 
 
 
 
 
  )
(
)
(
)
(
)
(
.
6
)
(
)
(
)
(
)
(
.
5
)
(
)
(
)
(
)
(
.
4
)
(
)
(
)
(
)
(
.
3
)
(
)
(
)
(
)
(
.
2
)
(
)
(
)
(
)
(
.
1
x
q
x
x
p
x
x
q
x
p
x
x
q
x
x
p
x
x
q
x
p
x
x
q
x
x
p
x
x
q
x
p
x
x
q
x
x
p
x
x
q
x
p
x
x
q
x
x
p
x
x
q
x
p
x
x
q
x
x
p
x
x
q
x
p
x




































9/24/2022 15
Refrence

‫الرياضيات‬ ‫اسس‬
.
‫كردنى‬ ‫ئاماده‬
:
BAHZAD BAHRAM
9/24/2022 16

More Related Content

PDF
Conic sections in daily life
PPTX
Applications of conic sections3
DOCX
PPT
Quadrilaterals
PPT
Maths P.P.T. Connectives
PPTX
INCIDENCE.pptx
PPT
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
PPTX
Mathematical Logic
Conic sections in daily life
Applications of conic sections3
Quadrilaterals
Maths P.P.T. Connectives
INCIDENCE.pptx
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Mathematical Logic

What's hot (20)

PDF
Inductive and Deductive Reasoning
PPTX
Mathematics 10 - Lesson 1: Number Pattern
PDF
Logical equivalence, laws of logic
PPT
Circle and its parts
PDF
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
PPTX
cheyene ppt.pptx
PPTX
CMSC 56 | Lecture 1: Propositional Logic
PPTX
Logic Statements:Conditional statements
PPTX
Understanding quadrilaterals
PPT
Plane Geometry
PPTX
Triangles in daily life
PPT
Mathematical Logic - Part 1
PPTX
8.7 Angles of Elevation and Depression
PPTX
Logical connectives
PPTX
Geometry presentation
PDF
Applied mathematics for complex engineering
PPTX
Determining the Inverse, Converse, and Contrapositive of an If-then Statement...
DOCX
Detailed Lesson Plan in Math
PPTX
Truth table
PPTX
Quadrilaterals
Inductive and Deductive Reasoning
Mathematics 10 - Lesson 1: Number Pattern
Logical equivalence, laws of logic
Circle and its parts
The lattice Boltzmann equation: background, boundary conditions, and Burnett-...
cheyene ppt.pptx
CMSC 56 | Lecture 1: Propositional Logic
Logic Statements:Conditional statements
Understanding quadrilaterals
Plane Geometry
Triangles in daily life
Mathematical Logic - Part 1
8.7 Angles of Elevation and Depression
Logical connectives
Geometry presentation
Applied mathematics for complex engineering
Determining the Inverse, Converse, and Contrapositive of an If-then Statement...
Detailed Lesson Plan in Math
Truth table
Quadrilaterals
Ad

Similar to Logical Statement.pptx (20)

PPTX
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
PPTX
DISCRETE MATHEMATICS for IT students.pptx
PDF
Proposition Logic in Discrete Structure
PDF
PPT
Mathematical foundations of computer science
PDF
logicproof-141212042039-conversion-gate01.pdf
PPT
1019Lec1.ppt
PPT
Per3 logika&amp;pembuktian
PPTX
PPT
Best presentation about discrete structure
PDF
UGC NET Computer Science & Application book.pdf [Sample]
PDF
002-logic-presentation-slides-recent.pdf
PPTX
20220818151924_PPT01 - The Logic of Compound and Quantitative Statement.pptx
PPT
Logic&proof
PPT
good teaching skills and other beautiful things
PDF
this is the presentation on Discrete Structures
PPTX
Discrete structures &amp; optimization unit 1
PPTX
MATHEMATICS LOGIC AND SET THEORY PRESENTATION.pptx
PPT
Propositional Logic and Pridicate logic
PDF
Logic and proof
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
DISCRETE MATHEMATICS for IT students.pptx
Proposition Logic in Discrete Structure
Mathematical foundations of computer science
logicproof-141212042039-conversion-gate01.pdf
1019Lec1.ppt
Per3 logika&amp;pembuktian
Best presentation about discrete structure
UGC NET Computer Science & Application book.pdf [Sample]
002-logic-presentation-slides-recent.pdf
20220818151924_PPT01 - The Logic of Compound and Quantitative Statement.pptx
Logic&proof
good teaching skills and other beautiful things
this is the presentation on Discrete Structures
Discrete structures &amp; optimization unit 1
MATHEMATICS LOGIC AND SET THEORY PRESENTATION.pptx
Propositional Logic and Pridicate logic
Logic and proof
Ad

More from Bahzad5 (20)

PDF
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
PDF
2013 (Total Station & Civil 3D) فێرکاری
PDF
Engineering field knowledge -زانیاری بواری ئەندازیاری
PDF
(atmosphere correction) زانیاری دەربارەی
PDF
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
PDF
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)
PDF
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTION
PDF
Lecture 1: Basics of trigonometry (surveying)
PDF
الشروط العامة لمقاولات اعمال الهندسة المدنية
PDF
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
PDF
2 سەرەتاکانی دیزاین
PDF
Soil Mechanics (Problems & solutions)
PDF
ڕێبەری بەشە ئەندازیارییەکان
PDF
سەرەتاکانی دیزاین
PDF
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
PDF
پرۆژەی ناساندنی ئەندازیاری
PDF
بناغە و بنەپایە Footing and Foundation
PDF
slump test سڵەمپ تێست
PDF
Design of Storm Sewer System
PDF
ڕۆنی بزوێنەر
دليل تجارب الاسفلت المختبرية - Asphalt Experiments Guide Laboratory
2013 (Total Station & Civil 3D) فێرکاری
Engineering field knowledge -زانیاری بواری ئەندازیاری
(atmosphere correction) زانیاری دەربارەی
(Building Permit Guidelines ) ڕێنماییەکانی مۆڵەتی بینا
المبادئ التوجيهية البلدية - ڕێنامەی شارەوانی (Municipal guidelines)
CONDITIONS OF CONTRACT FOR WORKS OF CIVIL ENGINEERING CONSTRUCTION
Lecture 1: Basics of trigonometry (surveying)
الشروط العامة لمقاولات اعمال الهندسة المدنية
GENERAL CONDITIONS FOR CONTRACTS OF CIVIL ENGINEERING WORKS
2 سەرەتاکانی دیزاین
Soil Mechanics (Problems & solutions)
ڕێبەری بەشە ئەندازیارییەکان
سەرەتاکانی دیزاین
ڕێبەری بەشەئەندازیارییەكانی زانكۆی كۆیە
پرۆژەی ناساندنی ئەندازیاری
بناغە و بنەپایە Footing and Foundation
slump test سڵەمپ تێست
Design of Storm Sewer System
ڕۆنی بزوێنەر

Recently uploaded (20)

PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
GDM (1) (1).pptx small presentation for students
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
master seminar digital applications in india
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Cell Types and Its function , kingdom of life
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Institutional Correction lecture only . . .
human mycosis Human fungal infections are called human mycosis..pptx
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
GDM (1) (1).pptx small presentation for students
Chinmaya Tiranga quiz Grand Finale.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Final Presentation General Medicine 03-08-2024.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Microbial diseases, their pathogenesis and prophylaxis
master seminar digital applications in india
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
O5-L3 Freight Transport Ops (International) V1.pdf
Cell Types and Its function , kingdom of life
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Microbial disease of the cardiovascular and lymphatic systems
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Supply Chain Operations Speaking Notes -ICLT Program
Institutional Correction lecture only . . .

Logical Statement.pptx

  • 1. Salahaddin university /Erbil College of Science Mathematics Department 1𝑠𝑡 Year class
  • 2. Outline 1. Def/ Logical statement………………………………... 3 2. Connective statements……………………………….. 4 3. Truth tables………………………………………………. 5 4. Converse,Inverse,Contrapossitive…………………... 6 5. Equivalence……………………………………………... 8 6. Tautology and Contraduction……………………….. 9 7. Algebric Rules for statement forms………………….10 8. Quantifiers………………………………………………. 13 9. Theorm…………………………………………………... 15 9/24/2022 2
  • 3. Logical statement  Definition: is declarative sentence that is either true or false but not both. REMARK In general Question and comments are not logical statementes. For Example: 1. 3< 5 true statement 2. R> 8 𝑖𝑠 𝑛𝑜𝑡 statement 3. 4+6=12 is false statement 4. 1+1=2 is true statement 5. Today is Friday is false statement 9/24/2022 3
  • 4. Example Symbol Means Words ~𝑝 𝑜𝑟 ¬𝑝 ~ 𝑜𝑟 ¬ not Negation and Conjunction or Disjunction If then Conditional If and only if Bi conditional  q p   q p  q p   q p   9/24/2022 4
  • 5. Truth table Let p and q be two statement then the conjunction, Dis conjunction , conditional and Bi conditional. q p T T T T T T F F F T F T F T F T T F T T F F F F q p q p q p  q p  9/24/2022 5
  • 6.  Consider the proposition 𝑝 → 𝑞 • Its Converse is the proposition 𝑞 → 𝑝 • Its Inverse is the proposition ~𝑝 → ~𝑞 • Its Contrapositive is the proposition ~𝑞 → ~𝑝 ~𝒒 → ~𝒑 ~𝒑 → ~𝒒 𝒒 → 𝒑 𝒑 → 𝒒 ~𝒒 𝒒 ~𝒑 𝒑 T T T T F T F T F T T F T F F T T F F T F T T F T T T T T F T F 9/24/2022 6
  • 7. Definition: Two statement p and q are equivalence Which is denoted by p≡q , if they have the same Truth table For example; 𝑝 → 𝑞 ≡ ~𝑝 → 𝑞 and because they have the same truth table q p q p     𝒑 ↔ 𝒒 𝒑 → 𝒒 ~𝒑v𝒒 ~𝒒 𝒒 ~𝒑 𝒑 T T T F T F T F F F T F F T T T T F T T F T T T T F T F 9/24/2022 7
  • 8.  Definition of tutology: If the statement are always true is said to be tautology.  Definition of contraduction: if the statement are always false is said to be contraduction. For example: 𝒑˄~𝒑 𝑝˅~𝑝 ~𝒑 𝒑 F T F T F T T F 9/24/2022 8
  • 9. Algebric Rules for statement forms I. Idempotent Rules: II. Commutaitive Rules: III. Associative Rules: p p p p p p     p q q p p q q p               r q p r q p r q p r q p           9/24/2022 9
  • 10. Rules (Continued) IV. Distributive Rules: V. Identity (Bound) Rules:             r p q p r q p r p q p r q p             T T p or p p T p or p p p F p or p p F F p or p                 1 1 1 0 0 0 9/24/2022 10
  • 11. Rules (Continued) VI. Complement Rules: VII. DeMorgans Rules: VIII. Double negation: IX. Absorpition Rules: F p p or p p T p p or p p             0 1     q p q p q p q p             p p       p q p p p q p p       9/24/2022 11
  • 12. Prove:           q p p q T p q p q p q q p q q q p                    Left-hand statement Commutative law Distributive law Tautology Identity law Commutative law 9/24/2022 12 q p q q p      ) (
  • 13. The phrase (for all or for each) is called a universal quantifier and is symbolically written as ∀ . The phrase (for some or there exist) is called an existential quantifier and symbolically written as ∃ . Example: 1. ∀𝑥 ∶ 𝑥 > 0 → 𝑥 − 1 > 0 2. ∃𝑥 ∶ 𝑥 > 0 ˄ 𝑥2 = 81 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 ∃𝑥 > 0 ∶ 𝑥2 = 81 9/24/2022 13
  • 14. For example: If 𝐴 = 1,2,3 and 𝑃 𝑥 : 𝑥 < 7 𝑃 1 : 1 < 7 𝑖𝑠 𝑇𝑟𝑢𝑒 𝑃 2 : 2 < 7 𝑖𝑠 𝑇𝑟𝑢𝑒 𝑃 3 : 3 < 7 𝑖𝑠 𝑇𝑟𝑢𝑒 This means that (∀𝑥 ∈ 𝐴, 𝑃(𝑥)) is true Another If 𝐴 = 1,2,4 and 𝑃 𝑥 : 𝑥 < 4 𝑃 1 : 1 < 4 𝑖𝑠 𝑇𝑟𝑢𝑒 𝑃 2 : 2 < 4 𝑖𝑠 𝑇𝑟𝑢𝑒 𝑃 4 : 4 < 4 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒 This means that (∃𝑥 ∈ 𝐴, 𝑃 𝑥 ) 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 9/24/2022 14
  • 15.             ) ( ) ( ) ( ) ( . 6 ) ( ) ( ) ( ) ( . 5 ) ( ) ( ) ( ) ( . 4 ) ( ) ( ) ( ) ( . 3 ) ( ) ( ) ( ) ( . 2 ) ( ) ( ) ( ) ( . 1 x q x x p x x q x p x x q x x p x x q x p x x q x x p x x q x p x x q x x p x x q x p x x q x x p x x q x p x x q x x p x x q x p x                                     9/24/2022 15