This document describes a study that uses machine learning techniques to predict heart disease and diabetes from medical data. The study collected data from a public repository and preprocessed it to handle missing values. Feature selection was performed using chi-square and principal component analysis to identify important features. Three boosting classifiers - Adaptive boosting, Gradient boosting, and Extreme Gradient boosting - were trained on the data and evaluated based on accuracy. The results showed that the boosting classifiers achieved accurate prediction for both heart disease and diabetes, with the highest accuracy reported for specific classifiers and diseases.