This thesis presents a generalized Monte Carlo tool for investigating the properties of materials using a non-parabolic band structure model. The tool allows users to define new material parameters and properties by making every parameter a variable. It incorporates various scattering mechanisms and uses an analytic band structure model, making it fast. The tool has been integrated with the Rappture interface and deployed on nanoHUB.org for broad accessibility. Results from the tool closely match experimental data for common semiconductors like silicon, germanium, and gallium arsenide, demonstrating its versatility. The user-friendly interface allows defining materials and obtaining accurate results without coding.