SlideShare a Scribd company logo
An Introduction to Mathematica 6.0 for Direction Field Plots
                       Feb.18th,2009
1. M athematica 6.0 is already loaded on all ITaP machines as standard software.
   To access Mathematica 6.0 from any ITaP machine:
   Start → All programs → Standard Softwares → Computational Packages →
   Mathematica 6.0 → Mathematica 6.0 .
2. You may also access Mathematica 6.0 via Software Remote by ITap, or through
   the Citrix Client :
   https://goremote.ics.purdue.edu/Citrix/AccessPlatform/site/default.aspx
3. Notebooks: Mathematica documents are called ”notebooks”. They can contain
   text, commands, and graphics. All entries appear in ”cells” which are delineated
   by brackets at the right side of the page. For example, once you input 2 + 2, press
   the enter key on the number pad at the lower right side of the keyboard (NOT
   the return key on a Macintosh or the Enter key next to the single and double
   quote marks on a Windows machine!), 4 will show up in the following line.You
   can also use shift+Enter if you don’t have the small number pad. Save this file
   as .nb file with any name you like so that you can review next time.
4. Direction Field Plot
   For example, 35 on page 550, y = x2 − 1, we use these commands:
   << V ectorF ieldP lots‘;
   V ectorF ieldP lot[{1, x2 −1}, {x, −3, 3}, {y, −3, 3}, P lotP oints → 20, Axes → T rue]
   (The first line is needed all the time here!)Then we will get the same direction
   field as shown in our textbook:
                             3




                             2




                             1




    3       2        1                1        2       3




                             1




                             2




                             3

   Please look at the screen printout of our notebook from Mathematica 6.0.

                                          1
In[1]:=   2+2

Out[1]=    4

           << VectorFieldPlots`;
           VectorFieldPlot@81, x ^ 2 − 1<, 8x, −3, 3<, 8y, −3, 3<, PlotPoints → 7, Axes → TrueD
In[12]:=



                                        4




                                        3




                                        2




                                        1


Out[13]=



           -3        -2        -1                  1         2         3




                                       -1




                                       -2




                                       -3
2   Untitled-1




           << VectorFieldPlots`;
           VectorFieldPlot@81, x ^ 2 − 1<, 8x, −3, 3<, 8y, −3, 3<, PlotPoints → 12, Axes → TrueD
In[14]:=




                                             3




                                             2




                                             1




Out[15]=


           -3          -2         -1                     1           2          3




                                            -1




                                            -2




                                            -3
Untitled-1   3




           << VectorFieldPlots`;
           VectorFieldPlot@81, x ^ 2 − 1<, 8x, −3, 3<, 8y, −3, 3<, PlotPoints → 20, Axes → TrueD
In[16]:=




                                                 3




                                                 2




                                                 1




Out[17]=

           -3           -2          -1                        1            2           3




                                                -1




                                                -2




                                                -3

More Related Content

DOC
Funciones1
PPT
Order Of Operations
PPTX
Algebra 7 Point 3
PPTX
เอกนาม
PPTX
Algebra review trashketball
PPTX
Factoring polynomials
PPT
Perfect square
Funciones1
Order Of Operations
Algebra 7 Point 3
เอกนาม
Algebra review trashketball
Factoring polynomials
Perfect square

What's hot (20)

PPTX
Solving quadratic equation using completing the square
PPTX
Factoring Perfect Square Trinomial
PPTX
Factoring if a is greater than 1 grade8
PPTX
Mate ejercicios de factorización por binomio - 2º
PPTX
Factoring
DOCX
Tugas matik ii
PPTX
Factoring2
PPTX
perfect square trinomial
PPTX
Extracting the roots
DOC
Math activities
PDF
Factorising quadratic expressions 1
PPT
factoring polynomials
PPT
Inequalities day 1 worked
PDF
saul-trinomial
PPTX
Fatoring Non Perfect Square Trinomial
PPT
Factoring 15.3 and 15.4 Grouping and Trial and Error
DOCX
Ecs.log.ii parte.3ºsec.
DOCX
Tugas ii (2)
PPTX
perfect square trinomial
PDF
Ejercicios de hessiano
Solving quadratic equation using completing the square
Factoring Perfect Square Trinomial
Factoring if a is greater than 1 grade8
Mate ejercicios de factorización por binomio - 2º
Factoring
Tugas matik ii
Factoring2
perfect square trinomial
Extracting the roots
Math activities
Factorising quadratic expressions 1
factoring polynomials
Inequalities day 1 worked
saul-trinomial
Fatoring Non Perfect Square Trinomial
Factoring 15.3 and 15.4 Grouping and Trial and Error
Ecs.log.ii parte.3ºsec.
Tugas ii (2)
perfect square trinomial
Ejercicios de hessiano
Ad

Viewers also liked (12)

PPTX
PDF
To mat diknas 1112 01
PPTX
Ade nurlaila (1200635)
PDF
2 peluang-l-a-s-kaidah-pencacahan-dan-faktorial-hanya-soal
PDF
Munifmath matematikakelasxiipa
PPT
Materi Kombinasi
PPSX
Permutasi dan kombinasi
PPT
Sma xi ipa sem 1 (ukuran pemusatan data) kd1.3
PDF
Kumpulan rumus skl un fisika sma
DOCX
Lks Tentang kaidah Pencacahan
PPTX
Aturan Pencacahan (Aturan Perkalian dan Faktorial) oleh Ade nurlaila/1200635
PPTX
Permutasi dan Kombinasi
To mat diknas 1112 01
Ade nurlaila (1200635)
2 peluang-l-a-s-kaidah-pencacahan-dan-faktorial-hanya-soal
Munifmath matematikakelasxiipa
Materi Kombinasi
Permutasi dan kombinasi
Sma xi ipa sem 1 (ukuran pemusatan data) kd1.3
Kumpulan rumus skl un fisika sma
Lks Tentang kaidah Pencacahan
Aturan Pencacahan (Aturan Perkalian dan Faktorial) oleh Ade nurlaila/1200635
Permutasi dan Kombinasi
Ad

Similar to Mathematica6 (20)

PDF
Solutions on log examples
DOCX
สมการเชิงเส้นตัวแปรเดียว
DOC
09 Trial Penang S1
PDF
Nota math-spm
PDF
E3 f1 bộ binh
PDF
Absolute Value
PPT
DOC
ข้อสอบม.1 math final 54
KEY
Haskellで学ぶ関数型言語
PDF
Basic operations by novi reandy sasmita
PPT
Absolute Value Notes
PPTX
Matherrors
PDF
鳳山高級中學 B1 3 3---ans
PDF
S 3
PDF
Surds,
PDF
5 indices & logarithms
PDF
09 trial melaka_s1
PDF
Los atomos-t4
PPTX
Dr.nouh part summery
PPTX
MATLAB ARRAYS
Solutions on log examples
สมการเชิงเส้นตัวแปรเดียว
09 Trial Penang S1
Nota math-spm
E3 f1 bộ binh
Absolute Value
ข้อสอบม.1 math final 54
Haskellで学ぶ関数型言語
Basic operations by novi reandy sasmita
Absolute Value Notes
Matherrors
鳳山高級中學 B1 3 3---ans
S 3
Surds,
5 indices & logarithms
09 trial melaka_s1
Los atomos-t4
Dr.nouh part summery
MATLAB ARRAYS

Recently uploaded (20)

PPT
Teaching material agriculture food technology
PPTX
Cloud computing and distributed systems.
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PDF
Machine learning based COVID-19 study performance prediction
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
Machine Learning_overview_presentation.pptx
PPTX
Spectroscopy.pptx food analysis technology
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
DOCX
The AUB Centre for AI in Media Proposal.docx
Teaching material agriculture food technology
Cloud computing and distributed systems.
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Agricultural_Statistics_at_a_Glance_2022_0.pdf
20250228 LYD VKU AI Blended-Learning.pptx
Chapter 3 Spatial Domain Image Processing.pdf
NewMind AI Weekly Chronicles - August'25-Week II
Machine learning based COVID-19 study performance prediction
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Advanced methodologies resolving dimensionality complications for autism neur...
MYSQL Presentation for SQL database connectivity
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Machine Learning_overview_presentation.pptx
Spectroscopy.pptx food analysis technology
Assigned Numbers - 2025 - Bluetooth® Document
“AI and Expert System Decision Support & Business Intelligence Systems”
Dropbox Q2 2025 Financial Results & Investor Presentation
The Rise and Fall of 3GPP – Time for a Sabbatical?
The AUB Centre for AI in Media Proposal.docx

Mathematica6

  • 1. An Introduction to Mathematica 6.0 for Direction Field Plots Feb.18th,2009 1. M athematica 6.0 is already loaded on all ITaP machines as standard software. To access Mathematica 6.0 from any ITaP machine: Start → All programs → Standard Softwares → Computational Packages → Mathematica 6.0 → Mathematica 6.0 . 2. You may also access Mathematica 6.0 via Software Remote by ITap, or through the Citrix Client : https://goremote.ics.purdue.edu/Citrix/AccessPlatform/site/default.aspx 3. Notebooks: Mathematica documents are called ”notebooks”. They can contain text, commands, and graphics. All entries appear in ”cells” which are delineated by brackets at the right side of the page. For example, once you input 2 + 2, press the enter key on the number pad at the lower right side of the keyboard (NOT the return key on a Macintosh or the Enter key next to the single and double quote marks on a Windows machine!), 4 will show up in the following line.You can also use shift+Enter if you don’t have the small number pad. Save this file as .nb file with any name you like so that you can review next time. 4. Direction Field Plot For example, 35 on page 550, y = x2 − 1, we use these commands: << V ectorF ieldP lots‘; V ectorF ieldP lot[{1, x2 −1}, {x, −3, 3}, {y, −3, 3}, P lotP oints → 20, Axes → T rue] (The first line is needed all the time here!)Then we will get the same direction field as shown in our textbook: 3 2 1 3 2 1 1 2 3 1 2 3 Please look at the screen printout of our notebook from Mathematica 6.0. 1
  • 2. In[1]:= 2+2 Out[1]= 4 << VectorFieldPlots`; VectorFieldPlot@81, x ^ 2 − 1<, 8x, −3, 3<, 8y, −3, 3<, PlotPoints → 7, Axes → TrueD In[12]:= 4 3 2 1 Out[13]= -3 -2 -1 1 2 3 -1 -2 -3
  • 3. 2 Untitled-1 << VectorFieldPlots`; VectorFieldPlot@81, x ^ 2 − 1<, 8x, −3, 3<, 8y, −3, 3<, PlotPoints → 12, Axes → TrueD In[14]:= 3 2 1 Out[15]= -3 -2 -1 1 2 3 -1 -2 -3
  • 4. Untitled-1 3 << VectorFieldPlots`; VectorFieldPlot@81, x ^ 2 − 1<, 8x, −3, 3<, 8y, −3, 3<, PlotPoints → 20, Axes → TrueD In[16]:= 3 2 1 Out[17]= -3 -2 -1 1 2 3 -1 -2 -3