SlideShare a Scribd company logo
Vladimir S. Aslanov, Aleksandr S. Ledkov
        aslanov_vs@mail.ru, ledkov@inbox.ru



Mathematical models and analysis
of the space tether systems motion

       Theoretical mechanics department
                  www.termech.ru

       Samara State Aerospace Univercity
                   www.ssau.ru




                       2012
1.1. Area of application of space tether systems




Dynamics of space tether systems has been studied by: Beletsky V. V., Levin E. M., Cartmell M.P., Cosmo M.L. , Lorenzini
E.C., Misra A.K., Modi. V.J., Williams P., Fujii H. A., Edwards B. C., Kumar K. D., Kumar R., McCoy J. E., Sorensen K.,
Zimmermann F.                                                                                                              2
1.1.1. Creation of certain conditions onboard the
                    spacecraft
         Artificial gravity                  Generation of electricity




 Creating artificial gravity through   Generation of electricity by the interaction of
    centrifugal force of inertia       tether with an electromagnetic field of the Earth.

                                                                                            3
1.1.2. Creation of certain conditions onboard the
                    spacecraft
             Gravitational stabilisation of the spacecraft




        Between the spacecraft and the spherical hinge dissipation force acts.

                                                                                 4
1.1.3. The research and national economy

                   Studying of an upper atmosphere




 Due to the influence of the atmosphere the probe can not survive for long at a high
              of 80-100 km. These heights are not available for aircraft.
                                                                                       5
1.1.4. The research and national economy

                Sounding of a surface of the Earth




   By reducing the height of the probe can be got a higher resolution scan.

                                                                              6
1.1.5. The research and national economy


Interferometer with a long base   Installation of radio-repeaters




                                                                    7
1.1.6 Transport operations in space
             Space Elevator




                                      8
1.1.7. Transport operations in space

Delivery of payload        Space Escalator




                                             9
1.1.7. Transport operations in space

Braking of the spacecraft by electrodynamics tether




                                                      10
1.2. Experiment with space tethers
                   There are currently executed more than 20 experiments using the STS
       Mission        Orbit        Year of    Full tether       Deployed
                                 implementa    length            tether
                                     tion                        length
Gemini-11             LEO          1966       36 m          36 m
Gemini-12             LEO          1966       36 m          36 m
TPE-1               Suborbital     1980       400 m         38 m
TPE-2               Suborbital     1981       400 m         103 m
Charge-1 (TPE-3)    Suborbital     1983       418 m         418 m
Charge-2 (TPE-4)    Suborbital     1984       426 m         426 m
                                                                                             T-REX
Oedipus-A           Suborbital     1989       958 m         958 m
Charge-2B           Suborbital     1992       426 m         426 m
TSS-1                 LEO          1992       20 km         268 m           TiPS   PICOSAT
SEDS-1                LEO          1993       20 km         20 km
PMG                   LEO                     500 m         500 m
SEDS-2                LEO          1994       20 km         20 km          YES-2   SEDS
Oedipus-C           Suborbital     1995       1174 m        1174 m
TSS-1R                LEO          1996       19.7 km       19.7 km
TiPS                  LEO          1996       4 km          4 km
YES                   GTO          1997       35 km         -
ATEx                  LEO          1998       6.05 km       22 m
PICOSAT 1.0           LEO          2000       30 m          30 m
PICOSAT 1.1           LEO          2000       30 m          30 m
YES2                  LEO          2007       31.7 km       29 km
T-REX               Suborbital     2010       300 m         300 m


                                                                                                     3
1.3. Modern materials and tethers

Material           Density ,   Tensile         Elastic                  Carbon nanotubes
                   g/cm3       strength, GPa   modulus, GPa



Aluminum              2.7           0.6                  70

Diamond               3.5            54              1050

Dyneema               0.99           3               172

Graphite              2.2            20              690      1977 – M.U. Kornilov
Kevlar 29             1.44          3.6                  83
                                                              1952 – L.V. Radushkevich and V.M. Lukyanivich
                                                              1991 - S.Iijima
Kevlar 49             1.44          3.6              124      1993 – N. Pungo
Silica                2.19           6                   74            Existing technologies
Spectra-2000          0.97          3.34             124

Stainless steel       7.9            2               200

Tungsten              19.3           4               410

Zylon AS              1.54          5.8              180

Zylon HM              1.56          5.8              270

Carbone Nanotube      1.3           150              630
                                                                                                          4
1.4. Problem formulation




•   Development of a mathematical model describing the motion of the space
    tether system.

•   Creation of the program complex designed to analyze the dynamics of the
    space tether system.

•   Analysis abnormal situations in the problem of cargo delivery from the
    orbit.




                                                                              5
2. Mathematical models


                       Types of mathematical models


1. Tether is considered as the rod.

2. Tether is considered as the set of point masses connected by weightless
   viscoelastic rod segments.

3. Tether is considered as the heavy thread.




       The choice of the model is due to the specifics of the problem


                                                                             6
2.1 Model with the massless rod

      3 ( A  B)                c
  2
                     sin 2     (l  l0 )sin(   ),
      2        C                C
   c(l  l0 )   2  2 C   2 cos(2  2 )  
l                                                  
          2C               m2                      
3 2 cos  (l cos    cos  )   2 l 
                                   
                                        3 2 sin 2 sin(   )
2l   (  2 )cos(   ) 
                                                              ,
                                                   2C
     2c                             (  2 )sin(   )
                                     

         (l  l0 )sin(2  2 )                          
     2lC                                       l
   3 2 sin  (l cos    cos  ) 2l(   ) 3 2 ( A  B)sin 2
                                            
                                                                 .
                    l                    l                2lC

Here  – angular velocity of the carrying spacecraft in
circular orbit, A, B, C – principal moments of inertia of
the spacecraft, l0 – length of the unstrained tether.


                                                                        7
2.2 Multipoint model of the tether
                         Discrete representation of the tether

                            
         ESi   i  1  Di i ,  i  1,
   Ti                      t              (1)
        0,                       i  1,
        


where Ti - tension of the i-th section of the
tether, E - modulus of elasticity, i -
elongation, ri - length of the i-th part of
strained tether, li - length of the i-th part of
unstrained tether, Si - area of i-th tether part
tether cross-secrion, h - loss factor , mi -
mass of the i-th point, Di - coefficient of
internal friction for the case of longitudinal
vibrations of the tether section. Point i=0 is
correspond to spacecraft, and i=N+1 - to
cargo.

                 Di  ESi mili 1h

                                                                 8
2.2 Multipoint model of the tether
                           The interaction with the atmosphere




                 2                    Approximate formulas for calculating the aerodynamic
c  0, cn ( )  k sin 2  ,
                 3                    coefficients

        raiVi kdT  sin 1,i         sin 2,i                      ni , j  (Vi  ρ j )  ρ j
FAi                        ni ,i           ni ,i 1 
            6      ri                 ri1            
Here ri – density of the atmosphere at an altitude of i-th point, dT – diameter of the
tether, k – adjusted coefficient of Newton.
                                                                                                 9
2.2 Multipoint model of the tether
       Accounting singularities Earth's gravitational field
      G i  gradU       gravitational force acting on the i-th point of tether

The gravitational potential of the Earth, in the form of an expansion in
spherical harmonics:

                                                                                  
                               n                        n
                    
                         rE            n
                                                   rE  ( k )
       U    1   J n   Pn sin      Pn sin  (Cnk cos k l  Snk sin k l ) 
          ri  n2  ri               n  2 k 1  r                              
                                                    i                              



Here  , l – geocentric latitude and longitude,
Pn - Legendre polynomial of the n-th order,
Pn(k) - associated Legendre function,
Jk - zonal harmonic coefficient,
Cnk, Snk - dimensionless coefficients, called for
n≠k tesseral harmonic coefficients, and when
n=k - coefficients of sectoral harmonics.



                                                                                        10
2.2 Multipoint model of the tether
                The equations of motion of the tether's points



 The general equation of dynamics for
noninertial Greenwich geocentric coordinate
system


 mii  Gi  FAi  Ti  Ti 1  Фi Ц  Фi К
   r


 Inertial forces


           Фi Ц  miω3  (ω3  ri )

              Фi К  2miω3  Vi




                                                                 11
2.2 The equations of motion of the end-bodies
           Dynamic equations
dK i
      ωi  K i  M Ai  MGi  Δi  Ti ,   i  A, B
 dt
Ki   –    angular    momentum       vector,
i – angular velocity of i-th body, MAi –
moment of aerodynamic forces, MGi –
moment of gravitational forces, Ti –
vector of the tension force of tether's part
adjacent to the body.



          Kinematic equation
       l ω , m  m ω , n  l m .
     li i       i
             i       i  i   i   i  i



Here li, mi, ni – unit vectors of the
coordinate system OXYZ, specified as
projections on the axis associated with
the i-th body coordinate system.
                                                      12
3. Software implementation (TetherCalc)
     The model is implemented in MatLab package




                                                  13
4 Analysis of abnormal situations




                                    14
4 Analysis of abnormal situations
   Wrong orientation at the cargo separation




                                               15
4 Analysis of abnormal situations
     Breakage of attitude control system




                                           16
3 Analysis of abnormal situations

The consequences of jamming                 Diadram of the consequences of jamming




 a - tether break
 b - winding the tether on the spacecraft
 c - impact tethered cargo and spacecraft




                                                                                17
The main results were published in the following
                        articles
•   Aslanov V.S. and Ledkov A.S. Dynamics of the Tethered Satellite Systems, Woodhead Publishing
    Limited, Cambridge, UK, (2012) 275 pages. ISBN-10: 0857091565 | ISBN-13: 978-0857091567)
•   Aslanov V.S. and Ledkov A.S. Chaotic oscillations of spacecraft by elastic radial oriented tether -
    Cosmic Research ISSN 0010-9525, No. 2, 2012, , Vol. 50, No. 2, 2012, 188-198.
•   Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol.
    46, Number5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013.
•   Aslanov V.S. Oscillations of a Spacecraft with a Vertical Elastic Tether - AIP Conference Proceedings
    1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World
    Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, Vol. 1, 1-16.
•   Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite -
    Journal of Applied Mathematics and Mechanics 74 (2010) 416–424.
•   Aslanov V.S. The Oscillations of a Spacecraft under the Action of the Tether Tension Moment and
    the Gravitational Moment - American Institute of Physics (AIP) conference proceedings 1048,
    ICNAAM, Melville, New York, pp.56-59, 2008
•   Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied
    Mathematics and Mechanics 71 (2007) 926–932.
•   V.S. Aslanov, A.V. Pirozhenko, B.V. Ivanov, A.S. Ledkov. Chaotic Motion of the Elastic Tether System
    - Vestnik SSAU, ISSN 1998-6629, 2009, No. 4(20), 9-15.
•   V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. The Influence of the Cable System Dedicated to Deliver
    Freights to the Earth of the Rotary Motion of Spacecraft -Scientific and technical journal "Polyot"
    ("Flight"), ISSN 1684-1301, 2009, No. 1, 54-60.
•   V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. Spatial Motion of Space Rope Cago Transport System -
    Scientific and technical journal "Polyot" ("Flight"), ISSN 1684-1301, 2007, No. 2, 28-33.
                                                                                                           18

More Related Content

PDF
Poster Layout
PDF
GPS Experiment on BOV
PDF
1093 gilchrist[2]
PPTX
Chaotic motions of tethered satellites with low thrust
PPTX
Dynamics of Satellite With a Tether System
PDF
The Removal of Large Space Debris Using Tethered Space Tug
PDF
Attitude Dynamics of Re-entry Vehicle
PPTX
Написание научной статьи на английском языке
Poster Layout
GPS Experiment on BOV
1093 gilchrist[2]
Chaotic motions of tethered satellites with low thrust
Dynamics of Satellite With a Tether System
The Removal of Large Space Debris Using Tethered Space Tug
Attitude Dynamics of Re-entry Vehicle
Написание научной статьи на английском языке

Similar to Mathematical models and analysis of the space tether systems motion (20)

PDF
Zubrin nov99
PDF
Space transportusingorbitaldebris
PDF
Spieth nov99
PDF
42 h08nw0011 (copy)
PDF
Advanced solarandlaserconcepts
PPT
Indian Space Transportation Systems : Present and Future Scenarios
PDF
The space elevator
PPTX
Payloads Presentation for Project A.D.I.O.S.
PDF
Ah26210213
PDF
Ao36247251
PDF
1298 angel[1]
PPTX
Chandrayaan 2 modules
PDF
Az32752758
PPTX
solar sail by kanav mansotra
PDF
Statistical Quality Control, Lower Tier Suppliers, Automotive Components
PDF
Dw31595598
PPSX
Orbital Debris Mapping
PDF
PPT
Seismic Risk Assessment of Buried Pipelines in City Regions, Hamzeh SHAKIB
PPTX
Seminar on solar sail
Zubrin nov99
Space transportusingorbitaldebris
Spieth nov99
42 h08nw0011 (copy)
Advanced solarandlaserconcepts
Indian Space Transportation Systems : Present and Future Scenarios
The space elevator
Payloads Presentation for Project A.D.I.O.S.
Ah26210213
Ao36247251
1298 angel[1]
Chandrayaan 2 modules
Az32752758
solar sail by kanav mansotra
Statistical Quality Control, Lower Tier Suppliers, Automotive Components
Dw31595598
Orbital Debris Mapping
Seismic Risk Assessment of Buried Pipelines in City Regions, Hamzeh SHAKIB
Seminar on solar sail
Ad

More from Theoretical mechanics department (20)

PDF
Космический мусор
PDF
PDF
PDF
Модификация механизма Йо-Йо
PDF
Python. Объектно-ориентированное программирование
PDF
Python. Обработка ошибок
PDF
Python: ввод и вывод
PDF
Python: Модули и пакеты
PDF
Основы Python. Функции
PDF
Основы языка Питон: типы данных, операторы
PDF
Машинная арифметика. Cтандарт IEEE-754
PPTX
Docking with noncooperative spent orbital stage using probe-cone mechanism
PDF
Алгоритмы и языки программирования
PDF
Deployers for nanosatellites
PPTX
CubeSat separation dynamics
PDF
Chaotic Behavior of a Passive Satellite During Towing by a Tether
PDF
Основы MATLAB. Численные методы
PPTX
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
PPTX
On problems of active space debris removal using tethered towing
PDF
Методы решения нелинейных уравнений
Космический мусор
Модификация механизма Йо-Йо
Python. Объектно-ориентированное программирование
Python. Обработка ошибок
Python: ввод и вывод
Python: Модули и пакеты
Основы Python. Функции
Основы языка Питон: типы данных, операторы
Машинная арифметика. Cтандарт IEEE-754
Docking with noncooperative spent orbital stage using probe-cone mechanism
Алгоритмы и языки программирования
Deployers for nanosatellites
CubeSat separation dynamics
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Основы MATLAB. Численные методы
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
On problems of active space debris removal using tethered towing
Методы решения нелинейных уравнений
Ad

Recently uploaded (20)

PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PPTX
A Presentation on Artificial Intelligence
PDF
Empathic Computing: Creating Shared Understanding
PDF
Machine learning based COVID-19 study performance prediction
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPT
Teaching material agriculture food technology
Advanced methodologies resolving dimensionality complications for autism neur...
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
A Presentation on Artificial Intelligence
Empathic Computing: Creating Shared Understanding
Machine learning based COVID-19 study performance prediction
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Review of recent advances in non-invasive hemoglobin estimation
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Mobile App Security Testing_ A Comprehensive Guide.pdf
Reach Out and Touch Someone: Haptics and Empathic Computing
Diabetes mellitus diagnosis method based random forest with bat algorithm
Building Integrated photovoltaic BIPV_UPV.pdf
CIFDAQ's Market Insight: SEC Turns Pro Crypto
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
NewMind AI Weekly Chronicles - August'25 Week I
Teaching material agriculture food technology

Mathematical models and analysis of the space tether systems motion

  • 1. Vladimir S. Aslanov, Aleksandr S. Ledkov aslanov_vs@mail.ru, ledkov@inbox.ru Mathematical models and analysis of the space tether systems motion Theoretical mechanics department www.termech.ru Samara State Aerospace Univercity www.ssau.ru 2012
  • 2. 1.1. Area of application of space tether systems Dynamics of space tether systems has been studied by: Beletsky V. V., Levin E. M., Cartmell M.P., Cosmo M.L. , Lorenzini E.C., Misra A.K., Modi. V.J., Williams P., Fujii H. A., Edwards B. C., Kumar K. D., Kumar R., McCoy J. E., Sorensen K., Zimmermann F. 2
  • 3. 1.1.1. Creation of certain conditions onboard the spacecraft Artificial gravity Generation of electricity Creating artificial gravity through Generation of electricity by the interaction of centrifugal force of inertia tether with an electromagnetic field of the Earth. 3
  • 4. 1.1.2. Creation of certain conditions onboard the spacecraft Gravitational stabilisation of the spacecraft Between the spacecraft and the spherical hinge dissipation force acts. 4
  • 5. 1.1.3. The research and national economy Studying of an upper atmosphere Due to the influence of the atmosphere the probe can not survive for long at a high of 80-100 km. These heights are not available for aircraft. 5
  • 6. 1.1.4. The research and national economy Sounding of a surface of the Earth By reducing the height of the probe can be got a higher resolution scan. 6
  • 7. 1.1.5. The research and national economy Interferometer with a long base Installation of radio-repeaters 7
  • 8. 1.1.6 Transport operations in space Space Elevator 8
  • 9. 1.1.7. Transport operations in space Delivery of payload Space Escalator 9
  • 10. 1.1.7. Transport operations in space Braking of the spacecraft by electrodynamics tether 10
  • 11. 1.2. Experiment with space tethers There are currently executed more than 20 experiments using the STS Mission Orbit Year of Full tether Deployed implementa length tether tion length Gemini-11 LEO 1966 36 m 36 m Gemini-12 LEO 1966 36 m 36 m TPE-1 Suborbital 1980 400 m 38 m TPE-2 Suborbital 1981 400 m 103 m Charge-1 (TPE-3) Suborbital 1983 418 m 418 m Charge-2 (TPE-4) Suborbital 1984 426 m 426 m T-REX Oedipus-A Suborbital 1989 958 m 958 m Charge-2B Suborbital 1992 426 m 426 m TSS-1 LEO 1992 20 km 268 m TiPS PICOSAT SEDS-1 LEO 1993 20 km 20 km PMG LEO 500 m 500 m SEDS-2 LEO 1994 20 km 20 km YES-2 SEDS Oedipus-C Suborbital 1995 1174 m 1174 m TSS-1R LEO 1996 19.7 km 19.7 km TiPS LEO 1996 4 km 4 km YES GTO 1997 35 km - ATEx LEO 1998 6.05 km 22 m PICOSAT 1.0 LEO 2000 30 m 30 m PICOSAT 1.1 LEO 2000 30 m 30 m YES2 LEO 2007 31.7 km 29 km T-REX Suborbital 2010 300 m 300 m 3
  • 12. 1.3. Modern materials and tethers Material Density , Tensile Elastic Carbon nanotubes g/cm3 strength, GPa modulus, GPa Aluminum 2.7 0.6 70 Diamond 3.5 54 1050 Dyneema 0.99 3 172 Graphite 2.2 20 690 1977 – M.U. Kornilov Kevlar 29 1.44 3.6 83 1952 – L.V. Radushkevich and V.M. Lukyanivich 1991 - S.Iijima Kevlar 49 1.44 3.6 124 1993 – N. Pungo Silica 2.19 6 74 Existing technologies Spectra-2000 0.97 3.34 124 Stainless steel 7.9 2 200 Tungsten 19.3 4 410 Zylon AS 1.54 5.8 180 Zylon HM 1.56 5.8 270 Carbone Nanotube 1.3 150 630 4
  • 13. 1.4. Problem formulation • Development of a mathematical model describing the motion of the space tether system. • Creation of the program complex designed to analyze the dynamics of the space tether system. • Analysis abnormal situations in the problem of cargo delivery from the orbit. 5
  • 14. 2. Mathematical models Types of mathematical models 1. Tether is considered as the rod. 2. Tether is considered as the set of point masses connected by weightless viscoelastic rod segments. 3. Tether is considered as the heavy thread. The choice of the model is due to the specifics of the problem 6
  • 15. 2.1 Model with the massless rod 3 ( A  B) c   2  sin 2  (l  l0 )sin(   ), 2 C C    c(l  l0 )   2  2 C   2 cos(2  2 )   l   2C  m2  3 2 cos  (l cos    cos  )   2 l   3 2 sin 2 sin(   ) 2l   (  2 )cos(   )     , 2C 2c  (  2 )sin(   )     (l  l0 )sin(2  2 )   2lC l 3 2 sin  (l cos    cos  ) 2l(   ) 3 2 ( A  B)sin 2     . l l 2lC Here  – angular velocity of the carrying spacecraft in circular orbit, A, B, C – principal moments of inertia of the spacecraft, l0 – length of the unstrained tether. 7
  • 16. 2.2 Multipoint model of the tether Discrete representation of the tether    ESi   i  1  Di i ,  i  1, Ti   t (1) 0,  i  1,  where Ti - tension of the i-th section of the tether, E - modulus of elasticity, i - elongation, ri - length of the i-th part of strained tether, li - length of the i-th part of unstrained tether, Si - area of i-th tether part tether cross-secrion, h - loss factor , mi - mass of the i-th point, Di - coefficient of internal friction for the case of longitudinal vibrations of the tether section. Point i=0 is correspond to spacecraft, and i=N+1 - to cargo. Di  ESi mili 1h 8
  • 17. 2.2 Multipoint model of the tether The interaction with the atmosphere 2 Approximate formulas for calculating the aerodynamic c  0, cn ( )  k sin 2  , 3 coefficients raiVi kdT  sin 1,i sin 2,i  ni , j  (Vi  ρ j )  ρ j FAi   ni ,i  ni ,i 1  6  ri ri1  Here ri – density of the atmosphere at an altitude of i-th point, dT – diameter of the tether, k – adjusted coefficient of Newton. 9
  • 18. 2.2 Multipoint model of the tether Accounting singularities Earth's gravitational field G i  gradU gravitational force acting on the i-th point of tether The gravitational potential of the Earth, in the form of an expansion in spherical harmonics:   n n   rE   n  rE  ( k ) U 1   J n   Pn sin      Pn sin  (Cnk cos k l  Snk sin k l )  ri  n2  ri  n  2 k 1  r    i  Here  , l – geocentric latitude and longitude, Pn - Legendre polynomial of the n-th order, Pn(k) - associated Legendre function, Jk - zonal harmonic coefficient, Cnk, Snk - dimensionless coefficients, called for n≠k tesseral harmonic coefficients, and when n=k - coefficients of sectoral harmonics. 10
  • 19. 2.2 Multipoint model of the tether The equations of motion of the tether's points The general equation of dynamics for noninertial Greenwich geocentric coordinate system mii  Gi  FAi  Ti  Ti 1  Фi Ц  Фi К r Inertial forces Фi Ц  miω3  (ω3  ri ) Фi К  2miω3  Vi 11
  • 20. 2.2 The equations of motion of the end-bodies Dynamic equations dK i  ωi  K i  M Ai  MGi  Δi  Ti , i  A, B dt Ki – angular momentum vector, i – angular velocity of i-th body, MAi – moment of aerodynamic forces, MGi – moment of gravitational forces, Ti – vector of the tension force of tether's part adjacent to the body. Kinematic equation   l ω , m  m ω , n  l m . li i i i i i i i i Here li, mi, ni – unit vectors of the coordinate system OXYZ, specified as projections on the axis associated with the i-th body coordinate system. 12
  • 21. 3. Software implementation (TetherCalc) The model is implemented in MatLab package 13
  • 22. 4 Analysis of abnormal situations 14
  • 23. 4 Analysis of abnormal situations Wrong orientation at the cargo separation 15
  • 24. 4 Analysis of abnormal situations Breakage of attitude control system 16
  • 25. 3 Analysis of abnormal situations The consequences of jamming Diadram of the consequences of jamming a - tether break b - winding the tether on the spacecraft c - impact tethered cargo and spacecraft 17
  • 26. The main results were published in the following articles • Aslanov V.S. and Ledkov A.S. Dynamics of the Tethered Satellite Systems, Woodhead Publishing Limited, Cambridge, UK, (2012) 275 pages. ISBN-10: 0857091565 | ISBN-13: 978-0857091567) • Aslanov V.S. and Ledkov A.S. Chaotic oscillations of spacecraft by elastic radial oriented tether - Cosmic Research ISSN 0010-9525, No. 2, 2012, , Vol. 50, No. 2, 2012, 188-198. • Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol. 46, Number5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013. • Aslanov V.S. Oscillations of a Spacecraft with a Vertical Elastic Tether - AIP Conference Proceedings 1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, Vol. 1, 1-16. • Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite - Journal of Applied Mathematics and Mechanics 74 (2010) 416–424. • Aslanov V.S. The Oscillations of a Spacecraft under the Action of the Tether Tension Moment and the Gravitational Moment - American Institute of Physics (AIP) conference proceedings 1048, ICNAAM, Melville, New York, pp.56-59, 2008 • Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied Mathematics and Mechanics 71 (2007) 926–932. • V.S. Aslanov, A.V. Pirozhenko, B.V. Ivanov, A.S. Ledkov. Chaotic Motion of the Elastic Tether System - Vestnik SSAU, ISSN 1998-6629, 2009, No. 4(20), 9-15. • V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. The Influence of the Cable System Dedicated to Deliver Freights to the Earth of the Rotary Motion of Spacecraft -Scientific and technical journal "Polyot" ("Flight"), ISSN 1684-1301, 2009, No. 1, 54-60. • V.S. Aslanov, A.S. Ledkov, N.R. Stratilatov. Spatial Motion of Space Rope Cago Transport System - Scientific and technical journal "Polyot" ("Flight"), ISSN 1684-1301, 2007, No. 2, 28-33. 18