SlideShare a Scribd company logo
Vladimir S. Aslanov
          aslanov_vs@mail.ru



Dynamics of satellite with
   a Tether System

  Theoretical Mechanics Department
            www.termech.ru

  Samara State Aerospace University,
               Russia
             www.ssau.ru



                 2012
Statement of the problem

   The motion about a centre of mass of a spacecraft (satellite) with a
   elastic heavy tethered system at a orbit is studied.

  Tethered satellite systems (TTS)
  includes:
          - rigid satellite (spacecraft),
          - elastic heavy tether,
          - end load.




The dynamics of a rotating body studied famous mathematicians of all time as Euler, Poinsot, Lagrange and Kovalevskaya. The
research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellites. In this
area we note the papers of scientists as Yaroshevsky, Belezky, Rumyantsev, J.Nicolaides, G.Gross et al. Study the behavior of
the space tethered systems devoted to the papers: Beletsky and Levin, Williams, Kruijff, Misra, Sidorov, Pirozhenko and
others.
                                                                                                                                  2
Example of the Tethered Satellite Systems

               Scheme of the dynamic deployment of TSS
                    «Foton-М3" №3 – YES2" (2008)


Initial Foton-M3 parameters are assumed
as follows:
Mass                         6530 kg
Ballistic coefficient       0.0123 m2/kg.
Inclination                 63 degrees
Minimum orbital altitude       262 km
Maximum orbital altitude        304 km

Tether parameters are assumed as
follows:
Diameter                   0.5 mm
Length                     30000 m
Mass density               0.00018 kg/m
Initial Speed of
 tether deployment         2.58 m/c
Mass End Load              12 kg
                                                         3
Aims of the research


1. To obtain mathematical models of the plane motion of the satellite of
   about of mass center under the influence of elastic the tether system.
2. To deduce approximate analytical solutions describing
   the oscillations of the satellite caused by the change magnitude and
   direction of the tether force.
3. To build models chaotic behavior of the satellite and to study of the
   satellite motion under the influence the elastic tether of the chaotic
   dynamics methods.
4. To find the approximate estimates of the accelerations in the
   satellite arising from the deployment of the tether.



                                                                            4
The Lagrange equations
   Kinetic energy of the TSS

      1             1 2        1
   T  m(r  r  )   mi i2  C0 (   )2  C1 (   )2 
          2  2 2
                                                                               (1)
      2             2 i0      2


where ρi  ri  r, i  0,1,2; q j   , , , l , r - generalized coordinates


 Potential energy
            2
              mi 3               m1l 2          c
 W      3  A  B  cos  
                            2
                                         cos 2   (l  l0 )2                   (2)
         i 0 ri 2r0              8r13            2

 Lagrange equations of the second kind

                              d L L
                                           Qj                                               D0 P, l  PD2
                              dt q j q j
                                  

where L    T W       - Lagrange function,        Qj   - nonpotential forces
                                                                                                                5
The motion equations

                The approximate motion equations of the TTS

                                We assume          / l  1, l / r  1


C0  C0  ml cos(   )  ml cos(   )  m sin(   )  f1 (l, , , )  Q
                                                              l                           (3)


ml cos(   )   I  ml cos(   )   f 2 (l, , , , )  Q
                                                                                           (4)


                 
                l                        Q
 sin(   )       f3 (l, , , , )  l
                                                m
                                                                                                 (5)


 mr   2
            C0  I   C0  I  f3 (l, , r , , )  Q
                                                                                         (6)

             3 I                      9
                    4 
r      
  r 2  2         1  3cos 2        4 
                                                A  B  cos 2   Qr                             (7)
           r    2mr                     2mr


where         m  m0 m2 / m, I  ml 2
                                                                                                       6
The motion equations on a elliptic orbit

  Since the orbital time on a elliptic orbit is relatively short, it may be assumed that the
  centre of mass remains in an unperturbed Keplerian elliptic orbit. In such a case, the
  generalized coordinates and are known through

                                                   p      p
                                        r                                    
                                                                                nk 2       n   p 3
                                              1  e cos k
                                                                                               d
Substitution variable from t to the true anomaly angle θ:                         dt 
                                                                                         n 1  e cos 
                                                                                                           2




                                                          The motion equations
                                                                                                                                  Q
     C0  k   2e  sin    ml cos(   )  k   2e  sin    m sin(   )kl   f1* ( , , , ', l ',)             (8)
                                                                                                                                 n2 k 3
                                                                                              Q
     ml cos(   )  k   2e  sin    I k   f 2* ( , , , ', ', l ',)                                                 (9)
                                                                                             n2 k 3

                                                                     Ql
      sin(   )k   kl   f3* ( , , , ', ', l ',)                                                                       (10)
                                                                   mn2 k 3

                                                                                                                                             7
The equations of elastic vibrations the tether


We assume that the line of action of the tether tension is the center of mass
of the spacecraft, then   0 Q 0      




                     The equations of elastic vibrations the tether


                     l             3               e
             2      1      sin  cos   2 1     sin                (11)
                     l              k               k


                            l  l0   1  3cos    l 1  
                     c                l                                e
                      2 4 
          l                                                     2 l  sin 
                                                2                  2
                                                                                    (12)
                   mn k              k                                k




                                                                                           8
The elastic vibrations of tether near the local vertical

                    We assume, that:       O  

                            Motion equations of the elastic tether


              A B
      3        sin  cos   J 1  L  sin   2 L cos    2e 1     sin 
                                                                                              (13)
              kC
               c
   L               L  1  3   sin    1     cos   2e  cos  L sin  
                                                             2
                                                                                                (14)
           n2 k 4 m                                              


                                 l     ml02
            where          , L , J        , C  C0  m0 
                                                               2

                            l    l0      C




                                                                                                       9
The approximate analytical solutions

     The motion equation of the spacecraft under the action of the tension force
                             and the gravitational moment

                               C  T  sin(   )  3n 2 ( B  A) sin  cos 
                                                                                 (15)

where

     -angle between the longitudinal axis of the spacecraft
       and the local vertical
    ( ) - angle between the rope and the local vertical
  T  T ( ) - tension force
  A, B, C - inertia moments of the spacecraft
  3n 2 ( B  A) sin  cos    - gravitational moment

    t    - the slow time

     - small parameter
    CA



                                                                                          10
The approximate analytical solutions

    The motion equation of the spacecraft under the action of the tension force only

      ( )sin   ( ) cos    sin 2
                                                      (16)



  where
        ( )   2 ( ) cos  ( ),
        ( )   2 ( ) sin  ( ),
               3
         n 2  B  A / C ,
               2
        2 ( )  T ( ) / C


Exact solution in terms of elliptic functions for   0
                   2arcsin  sn(t  K (k ), k )      (17)

                                                                                       11
The approximate analytical solutions
The tension force and its direction change slowly over time                     T  T ( ),    ( )

                                      The adiabatic invariant

                         J (, k )    E (k )  (1  k 2 ) K  k   h  const
                                                                                                       (18)

                                  The approximate analytical solutions
                                                                            2                 3
                                                    h      1     h         1        h 
                min,max  t    (t )  2 arcsin                         2
                                                                  (t )  4          (t )   ...    (19)
                                                    (t ) 2                               


              If        - is small value, then

                                                                0
                                 min,max  t    (t )  A0                                            (20)
                                                                 (t )
where   A0   is the arbitrary constant

  Micro-acceleration at the point the remote at a distance d from the mass center

                                                  x0 d  4
                                    Wmax (t )             T0 T (t )
                                                                      3/4
                                                                                                         (21)
                                                    C
                                                                                                                12
The approximate analytical solutions
                        The simulations for the YES-2
The deployment trajectory of the TTS      The deflection angle of the tether from
                                          the local vertical and the tension force




   Oscillations of the spacecraft about                 Accelerations on
               mass center                  the spacecraft to point removed at d = 1m




                                                                                     13
The approximate analytical solutions

           The linearized equation of the spacecraft motion under
        the influence of the gravitational torque and the tension force


                                       a( )  c   b( )  0
                                                                                                      (22)


                                                                         B A
where   a( )  T ( )     cos  ( ), b( )  T ( ) sin  ( ), c  3n 2      0
                         C                           C                      C



            The approximate solution for the oscillation amplitude
                             of the spacecraft

                                       const C                               T (t ) sin  (t )
             max (t )                                                                                (23)
                             T (t ) cos  (t )  3n ( B  A)
                                                   2                T (t ) cos  (t )  3n2 ( B  A)


                                                                                                               14
Chaotic oscillations of the spacecraft
                   with a vertical tether
 The motion equations of the spacecraft with the elastic vertical tether for
                              a circular orbit
                A B
             3    sin  cos   J 1  L  sin   2 L cos 
                                                                                             (24)
                 kC
                  c
          L  2 4  L  1  3   sin    1     cos 
                                                            2
                                                                                               (25)
               n k m                                            
     Approximate law of change rope length (δ = 0)

                                     L                      c / m 1/2 / n, L1   3  2  2 
                             L  L1  0 sin                                                       
                                     
                                                              3
                                               
The tether will always be stretched (L> 1) if L0 
                                                              

       The equation of the perturbed motion of the spacecraft about its mass center

                        a sin   c sin  cos     sin  sin   2cos cos               (26)

             ml0           B A                 
                                           ml0 L0
where a              , c3           ,                         - the small parameter
            C  m1 2       C  m1 2      C  m1 2
                                                                                                             15
Chaotic oscillations of the spacecraft
                  with a vertical tether
           The equation of the unperturbed motion of the spacecraft

                              a sin   c sin  cos            (27)


                           2
The energy integral:              W ( )  E
                           2

Equilibrium position is defined as the roots of the equation

                                               c B A 1    3 2 
                  1   cos   sin   0,                    (28)
                                               a    m2l0 ES 

                 for     *    ,0   0,  

                                    *   arccos   1 
                 for the remaining provisions of
                                      *   , 0, 
                                                                            16
Chaotic oscillations of the spacecraft
             with a vertical tether
The types of spacecraft     The bifurcation diagram




1  cos  sin   0
Chaotic oscillations of the spacecraft
                 with a vertical tether
              The homo-heteroclinic trajectories (separatrix solutions)

k    c/a                                                          Separatrix solutions
1                                     d                                  2 d sinh t
       1      (t )  2arctg              ,   (t )  ( )   
                                                                                         ,   a  c , d   a  c
                                      cosh t                          (cosh t )  d
                                                                                   2    2
                                                                                                                 a

2     1,                                                                     2 d cosh t
                (t )  2arctg  d sinh t  ,   (t )  ( )  
                                                                                                ,     a  c, d 
                                                                                                                       a
                                                                               1  d 2 sinh 2 t                      ac
      1
                                                                              2 cosh t
3
      0                                          
                (t )  2arctg sinh at ,   (t )  ( )  
                                                       
                                                                              1  sinh 2 t
                                                                                            , a

                                         S        t                             sin  S
                (t )  2arctg  tg          th     ,   (t )  ( )   
                                                                                                ,
                                         2         2                         cosh t  cos  S
4     1
                              1        c2  a2       a
               S   arccos    ,           ,d 
                                         c          c

                                              S            t                           sin  S
                (t )    2arctg  ctg               th     ,   (t )  ( )  
                                                                                                       .
                                               2            2                       cosh t  cos  S
5
      1
                              1        c2  a2        a
               S   arccos    ,           , d 
                                         c           c

                                                                                                                            18
Chaotic oscillations of the spacecraft
                    with a vertical tether
                                                   Melnikov method
  The equation of perturbed motion of the spacecraft - a generalized Duffing equation

                          a sin   c sin  cos   sin sin t   .
                                                                                                  (29)

  Two first-order equations
                                                       f1  g1 ,
                                                                                                    (30)
                                                     f2  g2 ,
                                                                                                    (31)

where   f1   , g1  0, f 2  a sin   c sin  cos  , g 2   sin  sin t  

                                                   
  Melnikov function                M  (t0 )   ( f1g2  f 2 g1 )dt  M   M  ,
                                                   

                                        
                         M  ( k )     k ) sin  k ) sin (t  t0 )dt   I k ) sin(t0 )
                                            (          (                            (
                                        

                                               
                            M  ( k )    ( k ) )2dt   J k ) , k  1,2...5
                                                (               (
                                              


  The condition of absence of the chaos:                                 M  M
                                                                                                            19
Chaotic oscillations of the spacecraft
        with a vertical tether
               Improper integrals appearing in Melnikov function
                         for the different motion types
                             sinh 2                                      sinh
                                                                                             2
                                                                                
     I   (1)
               2d     2
                                         sin 1 d , J   4d 2  
                                                        (1)
                                                                                  2
                                                                                     d
                       (cosh   d )                               cosh   d
                                                                                  
                               2     2 2                                    2




                            sinh 2                                        cosh
                                                                                                     2
                                                                                 
 I   (2)
               d  2
                                         sin 2 d , J   4d 2  
                                                        (2)
                                                                                 2 
                                                                                      d
                      (d sinh   1)                               1  d sinh 
                                                                                   
                          2     2      2                                    2




                             sinh 2                                  cosh 
                                                                                             2
                                                                                   
         I   (3)
                                        sin  2 d , J   4  
                                                           (3)
                                                                                      d
                       (sinh 2   1) 2                           1  sinh 2  
                                                                                   
                                                                                         2
                                  sinh
                                                                          sin  S     
         (4)
                (1  d )       2
                                               sin 4 d , J     
                                                              (4)
                                                                                           d
                                                                       cosh   cos  
     I                      (cosh   d ) 2
                                                                                      S 


                                                                                                 2
                                  sinh
                                                                          sin  S     
     (5)
                (1  d )       2
                                               sin 5 d , J     
                                                              (5)
                                                                                           d
                                                                       cosh   cos  
 I                          (cosh   d ) 2
                                                                                      S 



where                 i   / ,   t
                                                                                                         20
Chaotic oscillations of the spacecraft
              with a vertical tether
                   The Poincare sections




                  Load mass 100kg          Load mass 100kg
Load mass 20kg
       0                 0                   5  104




                                                              21
Chaotic oscillations of the spacecraft
                 with a vertical tether
                         Numerical simulation
   The TTS parameters: the mass of spacecraft - 6000kg, load weight - 100 kg,
p =6621 km, Δ = 2m, E = 5000N, load weight of 100 km, 30 km length of the tether,
              inertia moments: A = 2500kgm2, B = C = 10000kgm2,
                 the initial velocity load-1m / s (the case k = 2).

                           The Melnikov functions




                                                                                    22
The main results were published
                       in the following papers
1. Aslanov V. S. and Ledkov A. S. Chaotic Oscillations of Spacecraft with an Elastic Radially
Oriented Tether, ISSN 00109525, Cosmic Research, 2012, Vol. 50, No. 2, pp. 188–198.
2. Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol.
46, Number 5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013.
3. Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite -
Journal of Applied Mathematics and Mechanics 74 (2010) 416–424.
4. Aslanov V. Oscillations of a Spacecraft with a Vertical Elastic Tether, AIP Conference Proceedings
1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World
Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, One Volume, pp.1-16.
5. Aslanov V. Oscillations of a Spacecraft with a Vertical Tether. Proceedings of the World Congress on
Engineering 2009 v. 2, pp. 1827-1831.
6. Aslanov V. The Oscillations of a Spacecraft under the Action of the Tether Tension. Moment and the
Gravitational Moment AIP (American Institute of Physics) Conf. Proc. September 1. 2008. v. 1048. 56-59
p. (ISBN: 978-0-7354-0576-9 )
7. Aslanov V. S. Chaotic behavior of the biharmonic dynamics system. International Journal of
Mathematics and Mathematical Sciences Volume 2009, Article ID 319179, 18 pages
doi:10.1155/2009/319179. 2009.
8. Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied
Mathematics and Mechanics 71 (2007) 926–932.




                                                                                                          23

More Related Content

PPTX
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
PDF
Attitude Dynamics of Re-entry Vehicle
PDF
Talk spinoam photon
PDF
Ip entrance test paper 1
PDF
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
PPTX
Speech waves in tube and filters
PDF
Convolution Theorem for Canonical Cosine Transform and Their Properties
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
Attitude Dynamics of Re-entry Vehicle
Talk spinoam photon
Ip entrance test paper 1
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
Speech waves in tube and filters
Convolution Theorem for Canonical Cosine Transform and Their Properties

What's hot (20)

PPT
Simulation of Steam Coal Gasifier
PDF
N. Bilic - Supersymmetric Dark Energy
PDF
On gradient Ricci solitons
PDF
Module 13 Gradient And Area Under A Graph
PDF
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
PDF
P2 Area Under A Graph Modul
PDF
Solucionario Mecácnica Clásica Goldstein
PDF
Module 16 Earth As A Sphere
PPTX
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
PDF
Zontos___EP_410___Particle_Motion
PDF
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
PDF
D. Mladenov - On Integrable Systems in Cosmology
PDF
20150304 ims mikiya_fujii_dist
PDF
PDF
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
KEY
Jets MET Atlas Jamboree 2011
PPTX
Localized Electrons with Wien2k
PDF
Research Inventy : International Journal of Engineering and Science
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
Simulation of Steam Coal Gasifier
N. Bilic - Supersymmetric Dark Energy
On gradient Ricci solitons
Module 13 Gradient And Area Under A Graph
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
P2 Area Under A Graph Modul
Solucionario Mecácnica Clásica Goldstein
Module 16 Earth As A Sphere
Toward an Improved Computational Strategy for Vibration-Proof Structures Equi...
Zontos___EP_410___Particle_Motion
Fieldtheoryhighlights2015 setab 28122020verdisplay_typocorrected
D. Mladenov - On Integrable Systems in Cosmology
20150304 ims mikiya_fujii_dist
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
Jets MET Atlas Jamboree 2011
Localized Electrons with Wien2k
Research Inventy : International Journal of Engineering and Science
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
Ad

Viewers also liked (8)

PPTX
Chaotic motions of tethered satellites with low thrust
PPTX
Mathematical models and analysis of the space tether systems motion
PPTX
Написание научной статьи на английском языке
PDF
The Removal of Large Space Debris Using Tethered Space Tug
PPTX
Seminar project
PPTX
Satellite dynamic and control
PDF
Active Suspension System
PDF
Модификация механизма Йо-Йо
Chaotic motions of tethered satellites with low thrust
Mathematical models and analysis of the space tether systems motion
Написание научной статьи на английском языке
The Removal of Large Space Debris Using Tethered Space Tug
Seminar project
Satellite dynamic and control
Active Suspension System
Модификация механизма Йо-Йо
Ad

Similar to Dynamics of Satellite With a Tether System (20)

PPTX
Piezoaeroelastic Energy Harvesting
DOCX
Tutorial
PDF
Friction (2) [compatibility mode]
PDF
Friction [compatibility mode]
PDF
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
PPTX
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
PDF
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
PDF
IIT-JEE Advanced 2014 Question Paper 1
PDF
Research Inventy : International Journal of Engineering and Science is publis...
PDF
Aieee pt 5 2012
PDF
Fundamentals of geophysical hydrodynamics
PDF
Structural design and non linear modeling of a highly stable
PDF
12 x1 t07 01 projectile motion (2012)
PDF
Numerical solution of poisson’s equation
PDF
Problem
PDF
GATE - Physics - 2006
 
PDF
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
PDF
www.ijerd.com
PDF
Torsion of thin closed sections
PDF
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...
Piezoaeroelastic Energy Harvesting
Tutorial
Friction (2) [compatibility mode]
Friction [compatibility mode]
General Solution of Equations of Motion of Axisymmetric Problem of Micro-Isot...
Transverse vibration of slender sandwich beams with viscoelastic inner layer ...
SCRUTINY TO THE NON-AXIALLY DEFORMATIONS OF AN ELASTIC FOUNDATION ON A CYLIND...
IIT-JEE Advanced 2014 Question Paper 1
Research Inventy : International Journal of Engineering and Science is publis...
Aieee pt 5 2012
Fundamentals of geophysical hydrodynamics
Structural design and non linear modeling of a highly stable
12 x1 t07 01 projectile motion (2012)
Numerical solution of poisson’s equation
Problem
GATE - Physics - 2006
 
IJERD(www.ijerd.com)International Journal of Engineering Research and Develop...
www.ijerd.com
Torsion of thin closed sections
EQUIVALENCE PRINCIPLE OR NEW PRINCIPLE OF INERTIA?/¿PRINCIPIO DE EQUIVALENCIA...

More from Theoretical mechanics department (20)

PDF
Космический мусор
PDF
PDF
PDF
Python. Объектно-ориентированное программирование
PDF
Python. Обработка ошибок
PDF
Python: ввод и вывод
PDF
Python: Модули и пакеты
PDF
Основы Python. Функции
PDF
Основы языка Питон: типы данных, операторы
PDF
Машинная арифметика. Cтандарт IEEE-754
PPTX
Docking with noncooperative spent orbital stage using probe-cone mechanism
PDF
Алгоритмы и языки программирования
PDF
Deployers for nanosatellites
PPTX
CubeSat separation dynamics
PDF
Chaotic Behavior of a Passive Satellite During Towing by a Tether
PDF
Основы MATLAB. Численные методы
PPTX
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
PPTX
On problems of active space debris removal using tethered towing
PDF
Методы решения нелинейных уравнений
PDF
Наноспутники формата кубсат
Космический мусор
Python. Объектно-ориентированное программирование
Python. Обработка ошибок
Python: ввод и вывод
Python: Модули и пакеты
Основы Python. Функции
Основы языка Питон: типы данных, операторы
Машинная арифметика. Cтандарт IEEE-754
Docking with noncooperative spent orbital stage using probe-cone mechanism
Алгоритмы и языки программирования
Deployers for nanosatellites
CubeSat separation dynamics
Chaotic Behavior of a Passive Satellite During Towing by a Tether
Основы MATLAB. Численные методы
Транспортно-пусковой контейнер для наноспутников типоразмера 3U, 3U+
On problems of active space debris removal using tethered towing
Методы решения нелинейных уравнений
Наноспутники формата кубсат

Recently uploaded (20)

PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Machine learning based COVID-19 study performance prediction
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
cuic standard and advanced reporting.pdf
PPTX
Cloud computing and distributed systems.
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Approach and Philosophy of On baking technology
PDF
KodekX | Application Modernization Development
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
NewMind AI Weekly Chronicles - August'25 Week I
Reach Out and Touch Someone: Haptics and Empathic Computing
Machine learning based COVID-19 study performance prediction
Unlocking AI with Model Context Protocol (MCP)
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Review of recent advances in non-invasive hemoglobin estimation
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
cuic standard and advanced reporting.pdf
Cloud computing and distributed systems.
Building Integrated photovoltaic BIPV_UPV.pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
“AI and Expert System Decision Support & Business Intelligence Systems”
Spectral efficient network and resource selection model in 5G networks
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Approach and Philosophy of On baking technology
KodekX | Application Modernization Development
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
NewMind AI Weekly Chronicles - August'25 Week I

Dynamics of Satellite With a Tether System

  • 1. Vladimir S. Aslanov aslanov_vs@mail.ru Dynamics of satellite with a Tether System Theoretical Mechanics Department www.termech.ru Samara State Aerospace University, Russia www.ssau.ru 2012
  • 2. Statement of the problem The motion about a centre of mass of a spacecraft (satellite) with a elastic heavy tethered system at a orbit is studied. Tethered satellite systems (TTS) includes: - rigid satellite (spacecraft), - elastic heavy tether, - end load. The dynamics of a rotating body studied famous mathematicians of all time as Euler, Poinsot, Lagrange and Kovalevskaya. The research of the dynamics of rotating bodies is very important for numerous applications such as the dynamics of satellites. In this area we note the papers of scientists as Yaroshevsky, Belezky, Rumyantsev, J.Nicolaides, G.Gross et al. Study the behavior of the space tethered systems devoted to the papers: Beletsky and Levin, Williams, Kruijff, Misra, Sidorov, Pirozhenko and others. 2
  • 3. Example of the Tethered Satellite Systems Scheme of the dynamic deployment of TSS «Foton-М3" №3 – YES2" (2008) Initial Foton-M3 parameters are assumed as follows: Mass 6530 kg Ballistic coefficient 0.0123 m2/kg. Inclination 63 degrees Minimum orbital altitude 262 km Maximum orbital altitude 304 km Tether parameters are assumed as follows: Diameter 0.5 mm Length 30000 m Mass density 0.00018 kg/m Initial Speed of tether deployment 2.58 m/c Mass End Load 12 kg 3
  • 4. Aims of the research 1. To obtain mathematical models of the plane motion of the satellite of about of mass center under the influence of elastic the tether system. 2. To deduce approximate analytical solutions describing the oscillations of the satellite caused by the change magnitude and direction of the tether force. 3. To build models chaotic behavior of the satellite and to study of the satellite motion under the influence the elastic tether of the chaotic dynamics methods. 4. To find the approximate estimates of the accelerations in the satellite arising from the deployment of the tether. 4
  • 5. The Lagrange equations Kinetic energy of the TSS 1 1 2 1 T  m(r  r  )   mi i2  C0 (   )2  C1 (   )2   2 2 2        (1) 2 2 i0 2 where ρi  ri  r, i  0,1,2; q j   , , , l , r - generalized coordinates Potential energy 2 mi 3  m1l 2 c W      3  A  B  cos   2 cos 2   (l  l0 )2 (2) i 0 ri 2r0 8r13 2 Lagrange equations of the second kind d L L   Qj   D0 P, l  PD2 dt q j q j  where L  T W - Lagrange function, Qj - nonpotential forces 5
  • 6. The motion equations The approximate motion equations of the TTS We assume  / l  1, l / r  1 C0  C0  ml cos(   )  ml cos(   )  m sin(   )  f1 (l, , , )  Q    l  (3) ml cos(   )   I  ml cos(   )   f 2 (l, , , , )  Q     (4)    l    Q  sin(   )       f3 (l, , , , )  l m (5)  mr 2  C0  I   C0  I  f3 (l, , r , , )  Q      (6)  3 I 9 4  r    r 2  2  1  3cos 2    4  A  B  cos 2   Qr (7) r 2mr 2mr where m  m0 m2 / m, I  ml 2 6
  • 7. The motion equations on a elliptic orbit Since the orbital time on a elliptic orbit is relatively short, it may be assumed that the centre of mass remains in an unperturbed Keplerian elliptic orbit. In such a case, the generalized coordinates and are known through p p r     nk 2 n   p 3 1  e cos k d Substitution variable from t to the true anomaly angle θ: dt  n 1  e cos  2 The motion equations Q C0  k   2e  sin    ml cos(   )  k   2e  sin    m sin(   )kl   f1* ( , , , ', l ',)  (8) n2 k 3 Q ml cos(   )  k   2e  sin    I k   f 2* ( , , , ', ', l ',)  (9) n2 k 3 Ql  sin(   )k   kl   f3* ( , , , ', ', l ',)  (10) mn2 k 3 7
  • 8. The equations of elastic vibrations the tether We assume that the line of action of the tether tension is the center of mass of the spacecraft, then 0 Q 0  The equations of elastic vibrations the tether l 3 e    2 1      sin  cos   2 1     sin  (11) l k k l  l0   1  3cos    l 1   c l e 2 4  l      2 l  sin  2 2 (12) mn k k k 8
  • 9. The elastic vibrations of tether near the local vertical We assume, that:   O   Motion equations of the elastic tether A B    3 sin  cos   J 1  L  sin   2 L cos    2e 1     sin    (13) kC c L   L  1  3   sin    1     cos   2e  cos  L sin   2 (14) n2 k 4 m    l ml02 where   , L , J  , C  C0  m0  2 l l0 C 9
  • 10. The approximate analytical solutions The motion equation of the spacecraft under the action of the tension force and the gravitational moment C  T  sin(   )  3n 2 ( B  A) sin  cos   (15) where  -angle between the longitudinal axis of the spacecraft and the local vertical    ( ) - angle between the rope and the local vertical T  T ( ) - tension force A, B, C - inertia moments of the spacecraft 3n 2 ( B  A) sin  cos  - gravitational moment   t - the slow time  - small parameter   CA 10
  • 11. The approximate analytical solutions The motion equation of the spacecraft under the action of the tension force only   ( )sin   ( ) cos    sin 2  (16) where  ( )   2 ( ) cos  ( ),  ( )   2 ( ) sin  ( ), 3   n 2  B  A / C , 2  2 ( )  T ( ) / C Exact solution in terms of elliptic functions for   0     2arcsin  sn(t  K (k ), k ) (17) 11
  • 12. The approximate analytical solutions The tension force and its direction change slowly over time T  T ( ),    ( ) The adiabatic invariant J (, k )    E (k )  (1  k 2 ) K  k   h  const   (18) The approximate analytical solutions 2 3 h 1  h  1  h   min,max  t    (t )  2 arcsin   2   (t )  4   (t )   ... (19)  (t ) 2     If   - is small value, then 0  min,max  t    (t )  A0 (20)  (t ) where A0 is the arbitrary constant Micro-acceleration at the point the remote at a distance d from the mass center x0 d  4 Wmax (t )  T0 T (t ) 3/4 (21) C 12
  • 13. The approximate analytical solutions The simulations for the YES-2 The deployment trajectory of the TTS The deflection angle of the tether from the local vertical and the tension force Oscillations of the spacecraft about Accelerations on mass center the spacecraft to point removed at d = 1m 13
  • 14. The approximate analytical solutions The linearized equation of the spacecraft motion under the influence of the gravitational torque and the tension force    a( )  c   b( )  0  (22)   B A where a( )  T ( ) cos  ( ), b( )  T ( ) sin  ( ), c  3n 2 0 C C C The approximate solution for the oscillation amplitude of the spacecraft const C T (t ) sin  (t )  max (t )   (23) T (t ) cos  (t )  3n ( B  A) 2 T (t ) cos  (t )  3n2 ( B  A) 14
  • 15. Chaotic oscillations of the spacecraft with a vertical tether The motion equations of the spacecraft with the elastic vertical tether for a circular orbit A B    3 sin  cos   J 1  L  sin   2 L cos    (24) kC c L  2 4  L  1  3   sin    1     cos  2 (25) n k m   Approximate law of change rope length (δ = 0) L    c / m 1/2 / n, L1   3  2  2  L  L1  0 sin     3  The tether will always be stretched (L> 1) if L0   The equation of the perturbed motion of the spacecraft about its mass center    a sin   c sin  cos     sin  sin   2cos cos   (26) ml0 B A  ml0 L0 where a  , c3 ,  - the small parameter C  m1 2 C  m1 2 C  m1 2 15
  • 16. Chaotic oscillations of the spacecraft with a vertical tether The equation of the unperturbed motion of the spacecraft    a sin   c sin  cos (27)  2 The energy integral:  W ( )  E 2 Equilibrium position is defined as the roots of the equation c B A 1 3 2  1   cos   sin   0,       (28) a   m2l0 ES  for  *    ,0   0,    *   arccos   1  for the remaining provisions of  *   , 0,  16
  • 17. Chaotic oscillations of the spacecraft with a vertical tether The types of spacecraft The bifurcation diagram 1  cos  sin   0
  • 18. Chaotic oscillations of the spacecraft with a vertical tether The homo-heteroclinic trajectories (separatrix solutions) k  c/a Separatrix solutions 1  d  2 d sinh t   1   (t )  2arctg   ,   (t )  ( )     ,   a  c , d   a  c  cosh t  (cosh t )  d 2 2 a 2   1, 2 d cosh t   (t )  2arctg  d sinh t  ,   (t )  ( )    ,   a  c, d  a 1  d 2 sinh 2 t ac  1 2 cosh t 3  0     (t )  2arctg sinh at ,   (t )  ( )    1  sinh 2 t , a  S t   sin  S   (t )  2arctg  tg th  ,   (t )  ( )     ,  2 2 cosh t  cos  S 4  1  1 c2  a2 a  S   arccos    ,   ,d    c c  S t   sin  S   (t )    2arctg  ctg th  ,   (t )  ( )    .  2 2 cosh t  cos  S 5  1  1 c2  a2 a  S   arccos    ,   , d    c c 18
  • 19. Chaotic oscillations of the spacecraft with a vertical tether Melnikov method The equation of perturbed motion of the spacecraft - a generalized Duffing equation   a sin   c sin  cos   sin sin t   .   (29) Two first-order equations     f1  g1 ,  (30)   f2  g2 ,  (31) where f1   , g1  0, f 2  a sin   c sin  cos  , g 2   sin  sin t    Melnikov function M  (t0 )   ( f1g2  f 2 g1 )dt  M   M  ,   M  ( k )     k ) sin  k ) sin (t  t0 )dt   I k ) sin(t0 ) ( ( (   M  ( k )    ( k ) )2dt   J k ) , k  1,2...5 ( (  The condition of absence of the chaos: M  M 19
  • 20. Chaotic oscillations of the spacecraft with a vertical tether Improper integrals appearing in Melnikov function for the different motion types sinh 2 sinh 2     I (1)   2d  2 sin 1 d , J   4d 2   (1) 2 d  (cosh   d )  cosh   d   2 2 2 2 sinh 2 cosh 2     I (2)   d  2 sin 2 d , J   4d 2   (2) 2  d  (d sinh   1)  1  d sinh    2 2 2 2 sinh 2   cosh  2   I (3)   sin  2 d , J   4   (3) d   (sinh 2   1) 2  1  sinh 2     2 sinh    sin  S  (4)  (1  d )  2 sin 4 d , J      (4) d  cosh   cos   I   (cosh   d ) 2  S  2 sinh    sin  S  (5)  (1  d )  2 sin 5 d , J      (5) d  cosh   cos   I   (cosh   d ) 2  S  where i   / ,   t 20
  • 21. Chaotic oscillations of the spacecraft with a vertical tether The Poincare sections Load mass 100kg Load mass 100kg Load mass 20kg  0  0   5  104 21
  • 22. Chaotic oscillations of the spacecraft with a vertical tether Numerical simulation The TTS parameters: the mass of spacecraft - 6000kg, load weight - 100 kg, p =6621 km, Δ = 2m, E = 5000N, load weight of 100 km, 30 km length of the tether, inertia moments: A = 2500kgm2, B = C = 10000kgm2, the initial velocity load-1m / s (the case k = 2). The Melnikov functions 22
  • 23. The main results were published in the following papers 1. Aslanov V. S. and Ledkov A. S. Chaotic Oscillations of Spacecraft with an Elastic Radially Oriented Tether, ISSN 00109525, Cosmic Research, 2012, Vol. 50, No. 2, pp. 188–198. 2. Aslanov V.S. Orbital oscillations of an elastic vertically-tethered satellite, Mechanics of Solids, Vol. 46, Number 5, 2011, pp. 657-668, DOI: 10.3103/S0025654411050013. 3. Aslanov V.S. The effect of the elasticity of an orbital tether system on the oscillations of a satellite - Journal of Applied Mathematics and Mechanics 74 (2010) 416–424. 4. Aslanov V. Oscillations of a Spacecraft with a Vertical Elastic Tether, AIP Conference Proceedings 1220, CURRENT THEMES IN ENGINEERING SCIENCE 2009: Selected Presentations at the World Congress on Engineering-2009, Published February 2010; ISBN 978-0-7354-0766-4, One Volume, pp.1-16. 5. Aslanov V. Oscillations of a Spacecraft with a Vertical Tether. Proceedings of the World Congress on Engineering 2009 v. 2, pp. 1827-1831. 6. Aslanov V. The Oscillations of a Spacecraft under the Action of the Tether Tension. Moment and the Gravitational Moment AIP (American Institute of Physics) Conf. Proc. September 1. 2008. v. 1048. 56-59 p. (ISBN: 978-0-7354-0576-9 ) 7. Aslanov V. S. Chaotic behavior of the biharmonic dynamics system. International Journal of Mathematics and Mathematical Sciences Volume 2009, Article ID 319179, 18 pages doi:10.1155/2009/319179. 2009. 8. Aslanov V. S. The oscillations of a body with an orbital tethered system - Journal of Applied Mathematics and Mechanics 71 (2007) 926–932. 23