SlideShare a Scribd company logo
IOSR Journal of Mathematics (IOSR-JM)
e-ISSN: 2278-5728.Volume 6, Issue 1 (Mar. - Apr. 2013), PP 74-79
www.iosrjournals.org
www.iosrjournals.org 74 | Page
Convolution Theorem for Canonical Cosine Transform and Their
Properties
A. S. Gudadhe #
A.V. Joshi*
# Govt. Vidarbha Institute of Science and Humanities, Amravati. (M. S.)
* Shankarlal Khandelwal College, Akola - 444002 (M. S.)
Abstract: The Canonical Cosine transform, which is a generalization of the linear canonical transform, has
many applications in several areas, including signal processing and optics. In this paper we have introduced
convolution theorem, linearity property, derivative property, modulation property and Parseval’s identity for
the generalized canonical cosine transform.
Keywords: Fractional Fourier Transform, Linear Canonical Transform, Convolution.
I. Introduction:
As generalization of the Fourier Transform (FT), the Fractional Fourier Transform (FrFT) has been
used in several areas, including optics and signal processing. Many properties for this transform are already
known. In recent years, Almeida and Zayed derived product and convolution of two functions in a
usual manner and proved the convolution theorem in fractional Fourier transform domain. In the past decade,
FRFT has attracted much attention of the signal processing community, as the generalization of FT. The
relevant theory has been developed including uncertainty principle, sampling theory, convolution theorem.
A further generalization of FrFT is Linear Canonical Transform (LCT). Just as Fourier cosine
transform and Fourier sine transform are defined from Fourier Transform, similarly canonical cosine and
canonical sine transforms are defined from LCT by Pie and Ding [3]. We have discussed some properties of
Half canonical cosine transform in [2].
This paper emphasizes on defining generalized canonical cosine transform and deriving its convolution
theorem, then some properties of the canonical cosine transform are discussed and finally conclusions are given.
Notations and terminology as per [5]
II. Testing Function Space E :
An infinitely differentiable complex valued function  on Rn
belongs to E (Rn
), if for each compact
set, SI  where }0,,:{   tnRttS and for ,n
Rk 
sup
( ) ( ) .
,
k
t D t
k t I
    
E
Note that space E is complete and a Frechet space, let E’ denotes the dual space of E.
2.1Definition: The generalized Canonical Cosine Transform ( )n
f RE can be defined by,
{CCT f (t)} (s) = < f(t), KC(t, s) > where,




















 t
b
s
t
b
ai
e
s
b
di
e
ib
st
C
K cos
2
2
2
2
.2
1
),(

Hence the generalized canonical cosine transform of a regular function ( )n
f RE can be defined by,
  




















 )1.1()(cos
2
1
)()(
22
22
dttfet
b
s
e
ib
stCCTf
t
b
ai
s
b
di

2.2 The Generalized Canonical Cosine Transform of Convolution
Now we introduced a special type of convolution and product for canonical cosine transform.
2.3 Definition: For any function , let us define the functions and by
)()(~,)(|)(|~
22
)(
2
)(
2
yvgeyvgyvgeyvg
yv
b
ai
yv
b
ai













and )()(
~
2
2
yfeyf
y
b
ai







Convolution Theorem For Canonical Cosine Transform And Their Properties
www.iosrjournals.org 75 | Page
For any two functions f and g, we define the Convolution operation by
(1.2)
Now we state and prove convolution theorem.
3.1 Convolution Theorem:
If and denote the Canonical Cosine transform of
respectively, then
Proof: From the definition of the Canonical Cosine transform, we have
dtdytgyft
b
s
y
b
s
ee
bi
ty
b
ai
s
b
d
i
)()(coscos2
2
1
0
)(
2
0
222












 
 











dtdytgyfty
b
s
ty
b
s
ee
bi
ty
b
ai
s
b
d
i
)()(})(cos)({cos
1
0
)(
2
0
222












 
 











dtdytgyfty
b
s
ee
bi
dtdytgyfty
b
s
ee
bi
ty
b
ai
s
b
d
i
ty
b
ai
s
b
d
i
)()()(cos
1
)()()(cos
1
0
)(
2
0
0
)(
2
0
222
222
















 










 












21 II  (1.3)
For I1, putting dvdtvty  for limit when yvot  , when  vt
For I2, putting dvdtvty  for limit when yvot  , when  vt
dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
stgGsyfF
yv
yv
b
ai
y
b
ai
y
s
b
d
i
yv
yv
b
ai
y
b
ai
y
s
b
d
i
CC
)()()(cos
1
)()(cos
1
)))]((()[))]((([)3.1(
222
222
)(
22
0
)(
22
0




























































dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
stgGsyfF
yv
yv
b
ai
y
b
ai
y
s
b
d
i
v
yv
b
ai
y
b
ai
y
s
b
d
i
yv
yv
b
ai
y
b
ai
y
s
b
d
i
v
yv
b
ai
y
b
ai
y
s
b
d
i
CC
)()(cos
1
)()(cos
1
)()(cos
1
)()(cos
1
)))]((()[))]((([
0 )(
22
0
0
)(
22
0
0 )(
22
0
0
)(
22
0
222
222
222
222






















































































































Convolution Theorem For Canonical Cosine Transform And Their Properties
www.iosrjournals.org 76 | Page
dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
stgGsyfF
yv
yv
b
ai
y
b
ai
y
s
b
d
i
v
yv
b
ai
y
b
ai
y
s
b
d
i
y
v
yv
b
ai
y
b
ai
y
s
b
d
i
v
yv
b
ai
y
b
ai
y
s
b
d
i
CC
)()(cos
1
)()(cos
1
)()(cos
1
)()(cos
1
)))]((()[))]((([
0 )(
22
0
0
)(
22
0
0
)(
22
0
0
)(
22
0
222
222
222
222






















































































































4321)))]((()[))]((([ IIIIstgGsyfF CC  (1.4) For
I4, putting dvdvvv  for limit when yvyv  , when 00  vv
dvdyvygyfv
b
s
eee
bi
dvdyvygyfv
b
s
eee
bi
I
y
v
vy
b
ai
y
b
ai
y
s
b
d
i
yv
vy
b
ai
y
b
ai
y
s
b
d
i
)()(cos
1
)()()()(cos
1
0
)(
22
0
0 )(
22
0
4
222
222


























































dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
stgGsyfF
y
v
yv
b
ai
y
b
ai
y
s
b
d
i
v
yv
b
ai
y
b
ai
y
s
b
d
i
y
v
yv
b
ai
y
b
ai
y
s
b
d
i
v
yv
b
ai
y
b
ai
y
s
b
d
i
CC
)()(cos
1
)()(cos
1
)()(cos
1
)()(cos
1
)))]((()[))]((([)4.1(
0
)(
22
0
0
)(
22
0
0
)(
22
0
0
)(
22
0
222
222
222
222






















































































































dvdyyvgyfv
b
s
eee
bi
dvdyyvgyfv
b
s
eee
bi
stgGsyfF
v
yv
b
ai
y
b
ai
y
s
b
d
i
v
yv
b
ai
y
b
ai
y
s
b
d
i
CC
)()(cos
1
)()(cos
1
)))]((()[))]((([
0
)(
22
0
0
)(
22
0
222
222




























































dvev
b
s
dyyvgvygee
bibi
v
b
ai
v
b
ai
s
b
d
i
yf
222
2
0 0
2
cos|))(|~)(~(
2
2
1
)(
~ 




 

























  
by (1.2)














 
 






















dvvgfv
b
s
ee
biib
ee v
b
ai
s
b
div
b
ai
s
b
di
)})(~*
~
{(cos
2
2 0
22
22 22
22

by (2.3)
   )()(~*
~
2
)))]((()[))]((([
22
22
svgfF
ib
ee
stgGsyfF C
v
b
ai
s
b
di
CC














Convolution Theorem For Canonical Cosine Transform And Their Properties
www.iosrjournals.org 77 | Page
4.1 Some operational results:
4.1.1 Linearity property of canonical cosine transformations:
If {CCT f(t)}(s), {CCT g(t)}(s) denotes generalized canonical cosine transform of f(t), g(t) and P1, P2
are constants then       )())(()()(()())()(( 2121 stgCCTPstfCCTPstgPtfPCCT 
Proof is simple and hence omitted.
4.1.2 Derivative (with respect to parameter) of canonical cosine transform:
If {CCT f(t)}(s) denotes generalized canonical cosine transform, then,
 












 ))]}((.[{
1
))}(({.))}(({ stftCST
b
stCCTf
b
d
sistCCTf
ds
d
Proof: We have,














 














dttft
b
s
ee
ibds
d
stfCCT
ds
d t
b
ai
s
b
di
)(cos
2
1
))}(({
22
22

dttft
b
s
e
s
e
ib
stfCCT
ds
d s
b
di
t
b
ai
)(cos.
2
1
))}(({
22
22































dttft
b
s
es
b
d
it
b
s
e
b
t
e
ib
s
b
di
s
b
di
t
b
ai
)(cos..sin.
2
1
222
222
















































































































 dttft
b
s
ee
ibb
d
sdttftt
b
s
e
b
e
ib
ii
s
b
di
t
b
ai
s
b
di
t
b
ai
)(cos
2
1
.)](.[sin.
1
2
1
)(
2222
2222

))}(({.))]}((.[[
1
{ stCCTf
b
d
sstftCST
b
i 






 












 ))]}((.[{
1
))}(({.))}(({ stftCST
b
stCCTf
b
d
sistCCTf
ds
d
4.1.3 Modulation property of canonical cosine transform:
If {CCT f(t)} (s) denotes generalized canonical cosine transform of f(t) then,
     





 


 

)()()()(
2
)()(.cos
2
2
b
bzs
etfCCT
b
bzs
etfCCT
e
stfztCCT idszidsz
dbz
i
Proof: By definition of CCT,
dttftz
b
s
tz
b
s
ee
ib
stfztTCC
t
b
ai
s
b
di
)(coscos.
2
1
2
1
))}((.cos{
22
22



































 
 
})(..cos
2
1
)(.cos
2
1
{
2
1
))}((.cos{
222
222
2
)(
22
2
)(
22
dttftz
b
s
eeee
ib
dttftz
b
s
eeee
ib
stfztTCC
zdb
i
idsz
bzs
b
di
t
b
ai
zdb
i
idsz
bzs
b
di
t
b
ai
















































 
})(..
)(
cos
2
1
)(.
)(
cos
2
1
{
2
))}((.cos{
22
22
2
)(
22
)(
22
2
dttfet
b
bzs
ee
ib
dttfet
b
bzs
ee
ib
e
stfztTCC
idsz
bzs
b
di
t
b
ai
idsz
bzs
b
di
t
b
aizdb
i




































 





 



Convolution Theorem For Canonical Cosine Transform And Their Properties
www.iosrjournals.org 78 | Page
     





 


 

)()()()(
2
)()(.cos
2
2
b
bzs
etfCCT
b
bzs
etfCCT
e
stfztCCT idszidsz
dbz
i
4.1.4 If {CCT f(t)} (s) denotes generalized canonical cosine transform of f(t) then,
 
 
   





 


 

)()()()(
2
)()()(.sin
2
2
b
bzs
etfCCT
b
bzs
etfCST
e
istfztCCT idszidsz
zdb
i
Proof: By definition of CCT,
dttfztt
b
s
ee
ib
stfztTCC
t
b
ai
s
b
di
)(sincos.
2
1
))}((.sin{
22
22






 















dttftz
b
s
tz
b
s
ee
ib
stfztTCC
t
b
ai
s
b
di
)(sinsin.
2
1
2
1
))}((.sin{
22
22



































 
 
})(..sin
2
1
)(.sin
2
1
{
2
1
))}((.sin{
222
222
2
)(
22
2
)(
22
dttftz
b
s
eeee
ib
dttftz
b
s
eeee
ib
stfztTCC
zdb
i
idsz
bzs
b
di
t
b
ai
zdb
i
idsz
bzs
b
di
t
b
ai
















































 
})(..cos
2
1
)(
)(.sin
2
1
){(
2
)(
))}((.sin{
22
22
2
)(
22
)(
22
2
dttfet
b
bzs
ee
ib
i
dttfet
b
bzs
ee
ib
i
ei
stfztTCC
idsz
bzs
b
di
t
b
ai
idsz
bzs
b
di
t
b
aizdb
i




































 






 





 
 
   





 


 

)()()()(
2
)()()(.sin
2
2
b
bzs
etfCCT
b
bzs
etfCST
e
istfztCCT idszidsz
zdb
i
5.1 Parseval’s Identity for canonical cosine transform:
If )(tf and )(tg are the inversion canonical cosine transform of )(sFC and )(sGC respectively, then
(1) dssGsFdttgtf CC )(.)(2)(.)( 




  and (2) dssFdttf C





22
)(2)(. 
Proof: By definition of CCT,
  dttgt
b
s
ee
ib
stgCCT
t
b
ai
s
b
di
)(cos
2
1
)()(
22
22






















 ---------------- by (1.1)
Using the inversion formula of CCT
dssGt
b
s
ee
b
i
tg C
s
b
di
t
b
ai
)(cos
2
)(
22
22






 















Taking complex conjugate we get,
dssGt
b
s
ee
b
i
tg C
s
b
di
t
b
ai
)(cos
2
)(
22
22








 















Convolution Theorem For Canonical Cosine Transform And Their Properties
www.iosrjournals.org 79 | Page
 

































 dssGt
b
s
ee
b
i
dttfdttgtf C
s
b
di
t
b
ai
)(cos
2
)()(.)(
22
22
Changing the order of integration, we get,
 































 dttft
b
s
ee
ib
ib
dssG
b
i
dttgtf
s
b
di
t
b
ai
C )(cos
2
1
2
1
1
)(
2
)(.)(
22
22



(1.5)
(2) Now putting )()( tgtf  in equation (1.5), we get
dssFdttf C





22
)(2)( 
Table for canonical cosine transform
S.N
.
f(t) FC(s)
1 ))()(( 21 tgPtfP      )())(()()(( 21 stgCCTPstfCCTP 
2
)(.cos tfzt
 
   





 


 

)()()()(
2
2
2
b
bzs
etfCCT
b
bzs
etfCCT
e idszidsz
zdb
i
3
)(.sin tfzt
 
   





 


 

)()()()(
2
)(
2
2
b
bzs
etfCCT
b
bzs
etfCST
e
i idszidsz
zdb
i
III. Conclusion:
The Convolution of generalized canonical cosine transform is developed in this paper. Operation
transform formulae proved in this paper can be used, when this transform is used to solve ordinary or partial
differential equation.
References:
[1] Almeida L B (1997): Product and convolution theorems for the fractional Fourier transform. IEEE Signal Processing Letters,4(1):
Page No.15—17
[2] Gudadhe A. S., Joshi A.V. (2013): On Generalized Half Canonical Cosine Transform, IOSR-JM Volume X, Issue X.
[3] Pie S. C., Ding J. J.( 2002): Fractional cosine, sine and Hartley transform; trans. On signal processing, Vo. 50, No. 7, P. 1661-1680,
pub.
[4] Zayed A. I., (1998): A convolution and product theorem for the fractional Fourier transform, IEEE Sig. Proc. Letters, Vol. 5, No. 4,
101-103.
[5] Zemanian A. H., (1965): Distribution Theory and Transform Analysis, Mc. Graw Hill, New York.

More Related Content

PDF
Attitude Dynamics of Re-entry Vehicle
PPTX
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
PPTX
Dynamics of Satellite With a Tether System
PDF
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
PDF
A Short Report on Different Wavelets and Their Structures
PDF
Jokyokai2
PDF
Welcome to International Journal of Engineering Research and Development (IJERD)
PDF
Welcome to International Journal of Engineering Research and Development (IJERD)
Attitude Dynamics of Re-entry Vehicle
The Dynamics and Control of Axial Satellite Gyrostats of Variable Structure
Dynamics of Satellite With a Tether System
Existence of Hopf-Bifurcations on the Nonlinear FKN Model
A Short Report on Different Wavelets and Their Structures
Jokyokai2
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)

What's hot (18)

PDF
Periodic material-based vibration isolation for satellites
PDF
MIMO Stability Margins
PDF
Research Inventy : International Journal of Engineering and Science is publis...
PDF
On gradient Ricci solitons
PDF
Zontos___EP_410___Particle_Motion
PDF
11.on a non variational viewpoint in newtonian mechanics
PDF
Jee2103 phy02 1tu_problems_for_circulation
PDF
Talk spinoam photon
PDF
Da32633636
PDF
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
PDF
Some bianchi type i magnetized bulk viscous fluid tilted cosmological models
PDF
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...
PDF
Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...
PDF
Fission rate and_time_of_higly_excited_nuclei
PDF
20404 Electromagnetic Waves And Transmission Lines
PDF
5th Semester Electronic and Communication Engineering (2013-December) Questio...
PDF
Electrovariable Devices
PDF
Modal Comparison Of Thin Carbon Fiber Beams
Periodic material-based vibration isolation for satellites
MIMO Stability Margins
Research Inventy : International Journal of Engineering and Science is publis...
On gradient Ricci solitons
Zontos___EP_410___Particle_Motion
11.on a non variational viewpoint in newtonian mechanics
Jee2103 phy02 1tu_problems_for_circulation
Talk spinoam photon
Da32633636
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
Some bianchi type i magnetized bulk viscous fluid tilted cosmological models
Nondeterministic testing of Sequential Quantum Logic Propositions on a Quant...
Steven Duplij and Raimund Vogl, "Obscure Qubits and Membership Amplitudes" (i...
Fission rate and_time_of_higly_excited_nuclei
20404 Electromagnetic Waves And Transmission Lines
5th Semester Electronic and Communication Engineering (2013-December) Questio...
Electrovariable Devices
Modal Comparison Of Thin Carbon Fiber Beams
Ad

Viewers also liked (20)

PDF
On The Effect of Perturbations, Radiation and Triaxiality on the Stability of...
PDF
C017321319
PDF
Uncompressed Image Steganography using BPCS: Survey and Analysis
PDF
Bipolar Disorder Investigation Using Modified Logistic Ridge Estimator
PDF
Cellular digitized map on Google Earth
PDF
Multiple Equilibria and Chemical Distribution of Some Bio Metals With β-Amide...
PDF
Antimicrobial Activity of Ferns
PDF
Phytochemical, cytotoxic, in-vitro antioxidant and anti-microbial investigati...
PDF
New and Unconventional Techniques in Pictorial Steganography and Steganalysis
PDF
HCI for Real world Applications
PDF
Comparison of Psychological Variables within different positions of players o...
PDF
Simulation of Route Optimization with load balancing Using AntNet System
PDF
Needs Assessment Approach To Product Bundling In Banking Enterprise
PDF
Extended Study on the Performance Evaluation of ISP MBG based Route Optimiza...
PDF
A Comparative Study on Dyeing of Cotton and Silk Fabric Using Madder as a Nat...
PDF
Peak to Average Power Ratio Performance of a 16-QAM/OFDM System with Partial ...
PDF
The effect of rotational speed variation on the velocity vectors in the singl...
PDF
Model-based Approach of Controller Design for a FOPTD System and its Real Tim...
PDF
Solving Age-old Transportation Problems by Nonlinear Programming methods
PDF
A Dynamically-adaptive Resource Aware Load Balancing Scheme for VM migrations...
On The Effect of Perturbations, Radiation and Triaxiality on the Stability of...
C017321319
Uncompressed Image Steganography using BPCS: Survey and Analysis
Bipolar Disorder Investigation Using Modified Logistic Ridge Estimator
Cellular digitized map on Google Earth
Multiple Equilibria and Chemical Distribution of Some Bio Metals With β-Amide...
Antimicrobial Activity of Ferns
Phytochemical, cytotoxic, in-vitro antioxidant and anti-microbial investigati...
New and Unconventional Techniques in Pictorial Steganography and Steganalysis
HCI for Real world Applications
Comparison of Psychological Variables within different positions of players o...
Simulation of Route Optimization with load balancing Using AntNet System
Needs Assessment Approach To Product Bundling In Banking Enterprise
Extended Study on the Performance Evaluation of ISP MBG based Route Optimiza...
A Comparative Study on Dyeing of Cotton and Silk Fabric Using Madder as a Nat...
Peak to Average Power Ratio Performance of a 16-QAM/OFDM System with Partial ...
The effect of rotational speed variation on the velocity vectors in the singl...
Model-based Approach of Controller Design for a FOPTD System and its Real Tim...
Solving Age-old Transportation Problems by Nonlinear Programming methods
A Dynamically-adaptive Resource Aware Load Balancing Scheme for VM migrations...
Ad

Similar to Convolution Theorem for Canonical Cosine Transform and Their Properties (20)

PDF
Ij3514631467
PPTX
Fourier transforms
PPT
Lecturer 03. Digital imaging probability
PDF
Fourier transform
PPTX
32 Properties of Fourier Transform .pptx
PDF
ftransforms (1).pdf
PDF
Il3514711473
PPT
Unit - i-Image Transformations Gonzalez.ppt
PDF
3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf
PDF
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
PPTX
Chapter no4 image transform3
PPT
Z transfrm ppt
PPT
Website designing company in delhi ncr
PPT
Website designing company in delhi ncr
PPT
PDF
UIT1504-DSP-II-U9_LMS.pdf
PPTX
Fourier Series Fourier Series Fourier Series Fourier Series
PPTX
Signals and Systems-Fourier Series and Transform
PDF
Properties of Discrete Fourier Transform(DFT).pdf
Ij3514631467
Fourier transforms
Lecturer 03. Digital imaging probability
Fourier transform
32 Properties of Fourier Transform .pptx
ftransforms (1).pdf
Il3514711473
Unit - i-Image Transformations Gonzalez.ppt
3. Frequency-Domain Analysis of Continuous-Time Signals and Systems.pdf
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
Chapter no4 image transform3
Z transfrm ppt
Website designing company in delhi ncr
Website designing company in delhi ncr
UIT1504-DSP-II-U9_LMS.pdf
Fourier Series Fourier Series Fourier Series Fourier Series
Signals and Systems-Fourier Series and Transform
Properties of Discrete Fourier Transform(DFT).pdf

More from IOSR Journals (20)

PDF
A011140104
PDF
M0111397100
PDF
L011138596
PDF
K011138084
PDF
J011137479
PDF
I011136673
PDF
G011134454
PDF
H011135565
PDF
F011134043
PDF
E011133639
PDF
D011132635
PDF
C011131925
PDF
B011130918
PDF
A011130108
PDF
I011125160
PDF
H011124050
PDF
G011123539
PDF
F011123134
PDF
E011122530
PDF
D011121524
A011140104
M0111397100
L011138596
K011138084
J011137479
I011136673
G011134454
H011135565
F011134043
E011133639
D011132635
C011131925
B011130918
A011130108
I011125160
H011124050
G011123539
F011123134
E011122530
D011121524

Recently uploaded (20)

PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PDF
. Radiology Case Scenariosssssssssssssss
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
Comparative Structure of Integument in Vertebrates.pptx
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
AlphaEarth Foundations and the Satellite Embedding dataset
Derivatives of integument scales, beaks, horns,.pptx
. Radiology Case Scenariosssssssssssssss
Biophysics 2.pdffffffffffffffffffffffffff
Phytochemical Investigation of Miliusa longipes.pdf
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
ECG_Course_Presentation د.محمد صقران ppt
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
bbec55_b34400a7914c42429908233dbd381773.pdf
Classification Systems_TAXONOMY_SCIENCE8.pptx
Comparative Structure of Integument in Vertebrates.pptx
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS

Convolution Theorem for Canonical Cosine Transform and Their Properties

  • 1. IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728.Volume 6, Issue 1 (Mar. - Apr. 2013), PP 74-79 www.iosrjournals.org www.iosrjournals.org 74 | Page Convolution Theorem for Canonical Cosine Transform and Their Properties A. S. Gudadhe # A.V. Joshi* # Govt. Vidarbha Institute of Science and Humanities, Amravati. (M. S.) * Shankarlal Khandelwal College, Akola - 444002 (M. S.) Abstract: The Canonical Cosine transform, which is a generalization of the linear canonical transform, has many applications in several areas, including signal processing and optics. In this paper we have introduced convolution theorem, linearity property, derivative property, modulation property and Parseval’s identity for the generalized canonical cosine transform. Keywords: Fractional Fourier Transform, Linear Canonical Transform, Convolution. I. Introduction: As generalization of the Fourier Transform (FT), the Fractional Fourier Transform (FrFT) has been used in several areas, including optics and signal processing. Many properties for this transform are already known. In recent years, Almeida and Zayed derived product and convolution of two functions in a usual manner and proved the convolution theorem in fractional Fourier transform domain. In the past decade, FRFT has attracted much attention of the signal processing community, as the generalization of FT. The relevant theory has been developed including uncertainty principle, sampling theory, convolution theorem. A further generalization of FrFT is Linear Canonical Transform (LCT). Just as Fourier cosine transform and Fourier sine transform are defined from Fourier Transform, similarly canonical cosine and canonical sine transforms are defined from LCT by Pie and Ding [3]. We have discussed some properties of Half canonical cosine transform in [2]. This paper emphasizes on defining generalized canonical cosine transform and deriving its convolution theorem, then some properties of the canonical cosine transform are discussed and finally conclusions are given. Notations and terminology as per [5] II. Testing Function Space E : An infinitely differentiable complex valued function  on Rn belongs to E (Rn ), if for each compact set, SI  where }0,,:{   tnRttS and for ,n Rk  sup ( ) ( ) . , k t D t k t I      E Note that space E is complete and a Frechet space, let E’ denotes the dual space of E. 2.1Definition: The generalized Canonical Cosine Transform ( )n f RE can be defined by, {CCT f (t)} (s) = < f(t), KC(t, s) > where,                      t b s t b ai e s b di e ib st C K cos 2 2 2 2 .2 1 ),(  Hence the generalized canonical cosine transform of a regular function ( )n f RE can be defined by,                         )1.1()(cos 2 1 )()( 22 22 dttfet b s e ib stCCTf t b ai s b di  2.2 The Generalized Canonical Cosine Transform of Convolution Now we introduced a special type of convolution and product for canonical cosine transform. 2.3 Definition: For any function , let us define the functions and by )()(~,)(|)(|~ 22 )( 2 )( 2 yvgeyvgyvgeyvg yv b ai yv b ai              and )()( ~ 2 2 yfeyf y b ai       
  • 2. Convolution Theorem For Canonical Cosine Transform And Their Properties www.iosrjournals.org 75 | Page For any two functions f and g, we define the Convolution operation by (1.2) Now we state and prove convolution theorem. 3.1 Convolution Theorem: If and denote the Canonical Cosine transform of respectively, then Proof: From the definition of the Canonical Cosine transform, we have dtdytgyft b s y b s ee bi ty b ai s b d i )()(coscos2 2 1 0 )( 2 0 222                            dtdytgyfty b s ty b s ee bi ty b ai s b d i )()(})(cos)({cos 1 0 )( 2 0 222                            dtdytgyfty b s ee bi dtdytgyfty b s ee bi ty b ai s b d i ty b ai s b d i )()()(cos 1 )()()(cos 1 0 )( 2 0 0 )( 2 0 222 222                                           21 II  (1.3) For I1, putting dvdtvty  for limit when yvot  , when  vt For I2, putting dvdtvty  for limit when yvot  , when  vt dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi stgGsyfF yv yv b ai y b ai y s b d i yv yv b ai y b ai y s b d i CC )()()(cos 1 )()(cos 1 )))]((()[))]((([)3.1( 222 222 )( 22 0 )( 22 0                                                             dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi stgGsyfF yv yv b ai y b ai y s b d i v yv b ai y b ai y s b d i yv yv b ai y b ai y s b d i v yv b ai y b ai y s b d i CC )()(cos 1 )()(cos 1 )()(cos 1 )()(cos 1 )))]((()[))]((([ 0 )( 22 0 0 )( 22 0 0 )( 22 0 0 )( 22 0 222 222 222 222                                                                                                                      
  • 3. Convolution Theorem For Canonical Cosine Transform And Their Properties www.iosrjournals.org 76 | Page dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi stgGsyfF yv yv b ai y b ai y s b d i v yv b ai y b ai y s b d i y v yv b ai y b ai y s b d i v yv b ai y b ai y s b d i CC )()(cos 1 )()(cos 1 )()(cos 1 )()(cos 1 )))]((()[))]((([ 0 )( 22 0 0 )( 22 0 0 )( 22 0 0 )( 22 0 222 222 222 222                                                                                                                       4321)))]((()[))]((([ IIIIstgGsyfF CC  (1.4) For I4, putting dvdvvv  for limit when yvyv  , when 00  vv dvdyvygyfv b s eee bi dvdyvygyfv b s eee bi I y v vy b ai y b ai y s b d i yv vy b ai y b ai y s b d i )()(cos 1 )()()()(cos 1 0 )( 22 0 0 )( 22 0 4 222 222                                                           dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi stgGsyfF y v yv b ai y b ai y s b d i v yv b ai y b ai y s b d i y v yv b ai y b ai y s b d i v yv b ai y b ai y s b d i CC )()(cos 1 )()(cos 1 )()(cos 1 )()(cos 1 )))]((()[))]((([)4.1( 0 )( 22 0 0 )( 22 0 0 )( 22 0 0 )( 22 0 222 222 222 222                                                                                                                       dvdyyvgyfv b s eee bi dvdyyvgyfv b s eee bi stgGsyfF v yv b ai y b ai y s b d i v yv b ai y b ai y s b d i CC )()(cos 1 )()(cos 1 )))]((()[))]((([ 0 )( 22 0 0 )( 22 0 222 222                                                             dvev b s dyyvgvygee bibi v b ai v b ai s b d i yf 222 2 0 0 2 cos|))(|~)(~( 2 2 1 )( ~                                    by (1.2)                                         dvvgfv b s ee biib ee v b ai s b div b ai s b di )})(~* ~ {(cos 2 2 0 22 22 22 22  by (2.3)    )()(~* ~ 2 )))]((()[))]((([ 22 22 svgfF ib ee stgGsyfF C v b ai s b di CC              
  • 4. Convolution Theorem For Canonical Cosine Transform And Their Properties www.iosrjournals.org 77 | Page 4.1 Some operational results: 4.1.1 Linearity property of canonical cosine transformations: If {CCT f(t)}(s), {CCT g(t)}(s) denotes generalized canonical cosine transform of f(t), g(t) and P1, P2 are constants then       )())(()()(()())()(( 2121 stgCCTPstfCCTPstgPtfPCCT  Proof is simple and hence omitted. 4.1.2 Derivative (with respect to parameter) of canonical cosine transform: If {CCT f(t)}(s) denotes generalized canonical cosine transform, then,                ))]}((.[{ 1 ))}(({.))}(({ stftCST b stCCTf b d sistCCTf ds d Proof: We have,                               dttft b s ee ibds d stfCCT ds d t b ai s b di )(cos 2 1 ))}(({ 22 22  dttft b s e s e ib stfCCT ds d s b di t b ai )(cos. 2 1 ))}(({ 22 22                                dttft b s es b d it b s e b t e ib s b di s b di t b ai )(cos..sin. 2 1 222 222                                                                                                                  dttft b s ee ibb d sdttftt b s e b e ib ii s b di t b ai s b di t b ai )(cos 2 1 .)](.[sin. 1 2 1 )( 2222 2222  ))}(({.))]}((.[[ 1 { stCCTf b d sstftCST b i                       ))]}((.[{ 1 ))}(({.))}(({ stftCST b stCCTf b d sistCCTf ds d 4.1.3 Modulation property of canonical cosine transform: If {CCT f(t)} (s) denotes generalized canonical cosine transform of f(t) then,                   )()()()( 2 )()(.cos 2 2 b bzs etfCCT b bzs etfCCT e stfztCCT idszidsz dbz i Proof: By definition of CCT, dttftz b s tz b s ee ib stfztTCC t b ai s b di )(coscos. 2 1 2 1 ))}((.cos{ 22 22                                        })(..cos 2 1 )(.cos 2 1 { 2 1 ))}((.cos{ 222 222 2 )( 22 2 )( 22 dttftz b s eeee ib dttftz b s eeee ib stfztTCC zdb i idsz bzs b di t b ai zdb i idsz bzs b di t b ai                                                   })(.. )( cos 2 1 )(. )( cos 2 1 { 2 ))}((.cos{ 22 22 2 )( 22 )( 22 2 dttfet b bzs ee ib dttfet b bzs ee ib e stfztTCC idsz bzs b di t b ai idsz bzs b di t b aizdb i                                                
  • 5. Convolution Theorem For Canonical Cosine Transform And Their Properties www.iosrjournals.org 78 | Page                   )()()()( 2 )()(.cos 2 2 b bzs etfCCT b bzs etfCCT e stfztCCT idszidsz dbz i 4.1.4 If {CCT f(t)} (s) denotes generalized canonical cosine transform of f(t) then,                     )()()()( 2 )()()(.sin 2 2 b bzs etfCCT b bzs etfCST e istfztCCT idszidsz zdb i Proof: By definition of CCT, dttfztt b s ee ib stfztTCC t b ai s b di )(sincos. 2 1 ))}((.sin{ 22 22                        dttftz b s tz b s ee ib stfztTCC t b ai s b di )(sinsin. 2 1 2 1 ))}((.sin{ 22 22                                        })(..sin 2 1 )(.sin 2 1 { 2 1 ))}((.sin{ 222 222 2 )( 22 2 )( 22 dttftz b s eeee ib dttftz b s eeee ib stfztTCC zdb i idsz bzs b di t b ai zdb i idsz bzs b di t b ai                                                   })(..cos 2 1 )( )(.sin 2 1 ){( 2 )( ))}((.sin{ 22 22 2 )( 22 )( 22 2 dttfet b bzs ee ib i dttfet b bzs ee ib i ei stfztTCC idsz bzs b di t b ai idsz bzs b di t b aizdb i                                                                        )()()()( 2 )()()(.sin 2 2 b bzs etfCCT b bzs etfCST e istfztCCT idszidsz zdb i 5.1 Parseval’s Identity for canonical cosine transform: If )(tf and )(tg are the inversion canonical cosine transform of )(sFC and )(sGC respectively, then (1) dssGsFdttgtf CC )(.)(2)(.)(        and (2) dssFdttf C      22 )(2)(.  Proof: By definition of CCT,   dttgt b s ee ib stgCCT t b ai s b di )(cos 2 1 )()( 22 22                        ---------------- by (1.1) Using the inversion formula of CCT dssGt b s ee b i tg C s b di t b ai )(cos 2 )( 22 22                        Taking complex conjugate we get, dssGt b s ee b i tg C s b di t b ai )(cos 2 )( 22 22                         
  • 6. Convolution Theorem For Canonical Cosine Transform And Their Properties www.iosrjournals.org 79 | Page                                     dssGt b s ee b i dttfdttgtf C s b di t b ai )(cos 2 )()(.)( 22 22 Changing the order of integration, we get,                                   dttft b s ee ib ib dssG b i dttgtf s b di t b ai C )(cos 2 1 2 1 1 )( 2 )(.)( 22 22    (1.5) (2) Now putting )()( tgtf  in equation (1.5), we get dssFdttf C      22 )(2)(  Table for canonical cosine transform S.N . f(t) FC(s) 1 ))()(( 21 tgPtfP      )())(()()(( 21 stgCCTPstfCCTP  2 )(.cos tfzt                   )()()()( 2 2 2 b bzs etfCCT b bzs etfCCT e idszidsz zdb i 3 )(.sin tfzt                   )()()()( 2 )( 2 2 b bzs etfCCT b bzs etfCST e i idszidsz zdb i III. Conclusion: The Convolution of generalized canonical cosine transform is developed in this paper. Operation transform formulae proved in this paper can be used, when this transform is used to solve ordinary or partial differential equation. References: [1] Almeida L B (1997): Product and convolution theorems for the fractional Fourier transform. IEEE Signal Processing Letters,4(1): Page No.15—17 [2] Gudadhe A. S., Joshi A.V. (2013): On Generalized Half Canonical Cosine Transform, IOSR-JM Volume X, Issue X. [3] Pie S. C., Ding J. J.( 2002): Fractional cosine, sine and Hartley transform; trans. On signal processing, Vo. 50, No. 7, P. 1661-1680, pub. [4] Zayed A. I., (1998): A convolution and product theorem for the fractional Fourier transform, IEEE Sig. Proc. Letters, Vol. 5, No. 4, 101-103. [5] Zemanian A. H., (1965): Distribution Theory and Transform Analysis, Mc. Graw Hill, New York.