SlideShare a Scribd company logo
Unfiled Notes Page 9
SYLLABUS
MATHEMATICS
SUMMATIVE ASSESSMENT-II (2013-14)
Class-X
THE QUESTION PAPER WILL INCLUDE VALUE BASED QUESTION(S) TO THE EXTENT OF 3-5 MARKS.
ANNEXURE 'E'
Unfiled Notes Page 10
Design of Question Paper
Mathematics (041)
Summative Assessment-II (2013-2014)
Class X
Type of Question Marks per question Total no. of Questions Total Marks
M.C.Q 1 8 8
SA-I 2 6 12
SA-II 3 10 30
LA-I 4 10 40
TOTAL 34 90
The Question Paper will include value based question(s)
to the extent of 3-5 marks
Weightage
S.No. Unit No. Topic Weightage
1 II Algebra 23
2 III Geometry 17
3 IV Trigonometry 08
4 V Probability 08
5 VI Coordinate Geometry 11
6 VII Mensuration 23
Total 90
SAMPLE QUESTIONS
MATHEMATICS
SA II (March-2014)
CLASS-X
Multiple Choice type (1 mark) questions
1. f}?kkr lehdj.k 2x2-kx+k = 0, ds ewy leku gSaA k dk eku gS%
(A) dsoy 0 (B) 4 (C) dsoy 8 (D) 0, 8
Values of k for which the quadratic equation 2x2-kx+k = 0 has equal roots is:
(A) 0 only (B) 4 (C) 8 only (D) 0, 8
2. ,d 5lseh- dh f=T;k okys o`r ds fcUnq P ij ,d Li”kZ js[kk [khaph xbZ tks fd dsUnz ls [khaph xbZ
js[kk dks Q ij izfrPNsfnr djrh gSA OQ = 12cm rks PQ dh yEckbZ gS%
(A) 12cm (B) 13cm (C) 8.5cm (D) √ cm
A tangent PQ at a point of P of a circle of radius 5cm meets a line through the center O at a
point Q, such that OQ = 12cm. Length of PQ is:
(A) 12cm (B) 13cm (C) 8.5cm (D) √ cm
3. 1 ls 52 rd la[;k ds dkMksZa esa ls ,d dkMZ ;kn`PN;k fy;k x;kA dkMZa ij ,d iw.kZ oxZ la[;k ds
vkus dh izkf;drk gS%
(A) (B) (C) (D)
A card is drawn from a deck of cards numbered 1 to 52. The probability that the number on
the card is a perfect square is:
(A) (B) (C) (D)
4. fcUnq P(2, 3) dh x- v{k ls nwjh gS%
(A) 2bdkbZ (B) 3bdkbZ (C) 1bdkbZ (D) 5bdkbZ
The distance of the point P(2, 3) from the x-axis is:
(A) 2units (B) 3units (C) 1unit (D) 5units
5. 6cm Hkqtk ds oxZ ds vUr% o`r dk {ks=Qy gS%
(A) 36 cm2 (B) 18 cm2 (C) 12 cm2 (D) 9 cm2
The area of the circle that can be inscribed in a square of side 6cm is:
(A) 36 cm2 (B) 18 cm2 (C) 12 cm2 (D) 9 cm2
Short Answer-I type (2 mark) questions
1 f}?kkr lehdj.k 3x2 - 4√ x+4 = 0 ds ewy®a dh izd`fr Kkr dhft,A
Find the nature of the roots of the quadratic equation:
3x2 - 4√ x+4 = 0
2 k ds fdl eku ds fy, 2k, k+10 rFkk 3k+2 lekUrj Js.kh esa gS
For what value of k are 2k, k+10 and 3k+2 in AP?
3 fl) dhft, fd o`r ds O;kl ds Nksj fcUnqvksa ij [khapha xbZ Li”kZ js[kk,a lekUrj gksrh gSaA
Prove that tangents drawn at the ends of a diameter of a circle are parallel.
4 fl) dhft, fd ,d o`r ds ifjXkr lekUrj prqHkqZt leprqHkqZt gSA
Prove that the parallelogram circumscribing a circle is a rhombus.
5 किसी िारण 132 vPNs isuksa ds lkFk 12 [kjkc isu fey x, िेवल देखिर यह नहीं बताया जा सिता
है कि िोई पेन खराब है या अच्छा A इसमें से ,d isu ;kn`PN;k ls fudkyk x;kA izkf;drk Kkr
dhft, fd fudkyk x;k isu vPNk isu gSA
12 defective pens are accidently mixed with 132 good ones. It is not possible to just look at a
pen and tell whether or not it is defective. One pen is taken out at random from this lot.
Determine the probability that the pen taken out is a good one.
Short Answer-II type (3 mark) questions
1 fuEu f}?kkrh lehdj.k ds ewy xq.ku[k.M fof/k ls Kkr dhft,:
√ x2 - 7x+5√ = 0
Find the roots of the following quadratic equation by factorization:
√ x2 - 7x+5√ = 0
2 ,d lekUrj Js.kh esa izFke in 5] lkoZ vUrj 3 rFkk noka in 50 gSA bl lekUrj Js.kh esa n dk eku
rFkk izFke n inksa dk ;ksx Kkr dhft,A
In an A.P., first term is 5, common difference is 3 and nth term is 50. Find the value of n and
sum of its first n terms.
3 ,d Bsdsnkj us ikdZ esa cPpksa ds fy, nks fQlyus okyh fQly iêh yxkuh gSA 5o’kZ ls de vk;q ds
cPpksa ds fy, fQlyu iêh ds fljs dh Å¡pkbZ 1-5ehVj rFkk bldk xzkm.M ds lkFk >qdko 300
dk
gSA cM+s cPpksa ds fy, अधिि ढाल िी fQlyu iêh लगानी है धजसिी Å¡pkbZ 3ehVj rFkk xzkm.M ds
lkFk >qdko 600
dk gSA izR;sd voLFkk esa fQlyu iêh dh yEckbZ Kkr dhft,A
A contractor plans to install two slides for the children to play in a park. For the children
below the age of 5years, she prefers to have a slide whose top is at a height of 1.5m, and is
inclined at an angle of 300 to the ground, whereas for elder children, she wants to have a
steep slide at a height of 3m and inclined at an angle of 600 to the ground. What should be
the length of the slide in each case?
4 12 cm f=T;k okys o`r esa ,d thok dsUnz ij 1200
dk dks.k cukrh gSA bl o`r[k.M dk {ks=Qy
Kkr dhft,A ¼ = 3.14 rFkk √ = 1.73 dk iz;ksx dhft,½
A chord of a circle of radius 12cm subtends an angle of 1200 at the centre. Find the area of the
segment of the circle. (Use = 3.14 and √ = 1.73)
5 ,d ldZl dk rEcw 3m- dh Å¡pkbZ rd csyukdkj rFkk mlls Åij “kaDokdkj gSA ;fn vk/kkj dk
O;kl 105m rFkk “kaDokdkj Hkkx dh frjNh Å¡pkbZ 53m gS तो bl VSUV dks cukus esa iz;ksx esa ykbZ
xbZ dSuol dk {ks=Qy Kkr dhft,A
A circus tent is cylindrical upto a height of 3m and conical above it. If the diameter of the
base is 105m and the slant height of the conical part is 53m, find the area of canvas used in
making the tent.
Long Answer-I type (4 mark) questions
1 ,d fHké dk va”k gj ls 2 de gSA ;fn va”k rFkk gj nksuksa esa 1 tksM+k tk, rks ubZ fHké rFkk ewy
fHké dk ;ksx gS rks ewy fHké Kkr dhft,A
The numerator of a fraction is 2 less than the denominator. If 1 is added to both numerator
and denominator, the sum of the new and original fraction is . Find the original fraction.
2 ,d lekUrj Js.kh ds izFke n inksa dk ;ksx Sn = 3n2 – 4n gSA lekUrj Js.kh rFkk bldk 12oka in
Kkr dhft,A
The sum of the first n terms of an AP is given by Sn = 3n2 – 4n. Determine the AP and the 12th
term.
3 ,d o`r ds ifjxr prqHkqZt dh lEeq[k Hkqtk,a o`r ds dsUnz ij laiwjd dks.k varfjr djrh gSaA fl)
dhft,A
Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary
angles at the centre of the circle.
4 1.2 m yEch yM+dh ,d xqCckjs dks gok ds lkFk {kSfrt fn”kk esa 88-2 m dh Å¡pkbZ ij mM+rk
ns[krh gSA xqCckjs dk yM+dh dh vk¡[k ij mé;u dks.k 600
dk gSA dqN le; i”pkr~ mé;u dks.k
घटिर 300
हो जाता है ¼vkd`fr ns[ksa½A bl vof/k esa xqCckjs }kjk fdruh nwjh r; dh xbZ
A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of
88.2m from the ground. The angle of elevation of the balloon from the eyes of the girl at any
instant is 600. After some time, the angle of elevation reduces to 300 (see figure). Find the
distance travelled by the balloon during the interval.
5 6 cm O;kl dk ,d xksyk ikuh okys csyukdkj esa Mkyk x;kA bl crZu dk O;kl 12 cm gSA ;fn
xksyk iwjh rjg ls ikuh esa Mqck;k tk, rks Kkr dhft, fd ikuh dk Lrj fdruk c<+ tk;sxk
A sphere of diameter 6cm is dropped into a cylindrical vessel partly filled with water. The
diameter of the vessel is 12cm. If the sphere is completely submerged, how much will the
surface of water be raised?
-o0o0o0o-

More Related Content

PDF
Class 10 Cbse Maths Sample Paper Term 2 2012
PDF
Arithmetic Series
PDF
357402584 242463893-pt3-trial-mathematics-pdf
PDF
Geometric Series and Finding the Sum of Finite Geometric Sequence
PDF
2.2 Circles
PPT
Geo chapter01power point
PDF
Patterns in Series
PDF
Geometric Sequence
Class 10 Cbse Maths Sample Paper Term 2 2012
Arithmetic Series
357402584 242463893-pt3-trial-mathematics-pdf
Geometric Series and Finding the Sum of Finite Geometric Sequence
2.2 Circles
Geo chapter01power point
Patterns in Series
Geometric Sequence

What's hot (20)

PDF
Summation Notation
PPTX
Alg2 lesson 3-5
DOCX
Sequence function
PDF
Mathematics
DOCX
Pmr.mathematical formulae
KEY
1107 ch 11 day 7
PPT
Jeopardy review
PDF
Establishing Relations among Various Measures by Using Well Known Inequalities
DOCX
Logarithma
PDF
CAT 2008 Previous Year Question Paper with Answer Key
PPTX
Zeros or roots of a polynomial if a greater than1
PPTX
Solving Quadratic Equations by Completing the Square
PPTX
Polynomials
DOCX
PPTX
Mult div rational exp
PPTX
3 more on algebra of radicals
DOC
Topic 14 algebra
PPT
1.2. l1. sol of quadratic eq by factorization
PDF
Class 10 Cbse Maths 2010 Sample Paper Model 3
PDF
Bellman-Ford-Moore Algorithm and Dijkstra’s Algorithm
Summation Notation
Alg2 lesson 3-5
Sequence function
Mathematics
Pmr.mathematical formulae
1107 ch 11 day 7
Jeopardy review
Establishing Relations among Various Measures by Using Well Known Inequalities
Logarithma
CAT 2008 Previous Year Question Paper with Answer Key
Zeros or roots of a polynomial if a greater than1
Solving Quadratic Equations by Completing the Square
Polynomials
Mult div rational exp
3 more on algebra of radicals
Topic 14 algebra
1.2. l1. sol of quadratic eq by factorization
Class 10 Cbse Maths 2010 Sample Paper Model 3
Bellman-Ford-Moore Algorithm and Dijkstra’s Algorithm
Ad

Similar to Mathematics x (20)

PDF
Mathematics Question bank Class Seventh Multiple papers
PDF
Mathematics x 2013
PDF
Class 10 Cbse Maths 2010 Sample Paper Model 2
PDF
02 question-paper-maths-x
DOCX
Upcat math 2014 original
PDF
HIGHSCHOOL MATH REVIEWER
PDF
SET-1 of CBSE Maths question paper 2017
PDF
Cbse class-10-mathematics-question-paper-2017
PDF
Class 10 Cbse Maths 2010 Sample Paper Model 1
PPTX
Blue print with question paper preparation.pptx
PPTX
Blue print with question paper preparation.pptx
PDF
Class 10 Cbse Maths Question Paper Term 1 2011
PDF
0580 s13 qp_42
PDF
Class 10 Cbse Maths Sample Paper Term 2 Model 1
PDF
Class 10 Cbse Maths Sample Paper Term 2 Model 3
PDF
10th maths unsolved_sample_papers_-_2-min
PDF
MATHEMATICS MODEL QUESTION PAPER FOR CBSE CLASS 10
PDF
Sample Paper Solutions 1 CBSE all good.pdf
 
PDF
Review math grade 7(abcxyzehfoendheiemci)
PDF
Delhi math sample paper set 1
Mathematics Question bank Class Seventh Multiple papers
Mathematics x 2013
Class 10 Cbse Maths 2010 Sample Paper Model 2
02 question-paper-maths-x
Upcat math 2014 original
HIGHSCHOOL MATH REVIEWER
SET-1 of CBSE Maths question paper 2017
Cbse class-10-mathematics-question-paper-2017
Class 10 Cbse Maths 2010 Sample Paper Model 1
Blue print with question paper preparation.pptx
Blue print with question paper preparation.pptx
Class 10 Cbse Maths Question Paper Term 1 2011
0580 s13 qp_42
Class 10 Cbse Maths Sample Paper Term 2 Model 1
Class 10 Cbse Maths Sample Paper Term 2 Model 3
10th maths unsolved_sample_papers_-_2-min
MATHEMATICS MODEL QUESTION PAPER FOR CBSE CLASS 10
Sample Paper Solutions 1 CBSE all good.pdf
 
Review math grade 7(abcxyzehfoendheiemci)
Delhi math sample paper set 1
Ad

Mathematics x

  • 1. Unfiled Notes Page 9 SYLLABUS MATHEMATICS SUMMATIVE ASSESSMENT-II (2013-14) Class-X THE QUESTION PAPER WILL INCLUDE VALUE BASED QUESTION(S) TO THE EXTENT OF 3-5 MARKS. ANNEXURE 'E'
  • 3. Design of Question Paper Mathematics (041) Summative Assessment-II (2013-2014) Class X Type of Question Marks per question Total no. of Questions Total Marks M.C.Q 1 8 8 SA-I 2 6 12 SA-II 3 10 30 LA-I 4 10 40 TOTAL 34 90 The Question Paper will include value based question(s) to the extent of 3-5 marks Weightage S.No. Unit No. Topic Weightage 1 II Algebra 23 2 III Geometry 17 3 IV Trigonometry 08 4 V Probability 08 5 VI Coordinate Geometry 11 6 VII Mensuration 23 Total 90
  • 4. SAMPLE QUESTIONS MATHEMATICS SA II (March-2014) CLASS-X Multiple Choice type (1 mark) questions 1. f}?kkr lehdj.k 2x2-kx+k = 0, ds ewy leku gSaA k dk eku gS% (A) dsoy 0 (B) 4 (C) dsoy 8 (D) 0, 8 Values of k for which the quadratic equation 2x2-kx+k = 0 has equal roots is: (A) 0 only (B) 4 (C) 8 only (D) 0, 8 2. ,d 5lseh- dh f=T;k okys o`r ds fcUnq P ij ,d Li”kZ js[kk [khaph xbZ tks fd dsUnz ls [khaph xbZ js[kk dks Q ij izfrPNsfnr djrh gSA OQ = 12cm rks PQ dh yEckbZ gS% (A) 12cm (B) 13cm (C) 8.5cm (D) √ cm A tangent PQ at a point of P of a circle of radius 5cm meets a line through the center O at a point Q, such that OQ = 12cm. Length of PQ is: (A) 12cm (B) 13cm (C) 8.5cm (D) √ cm 3. 1 ls 52 rd la[;k ds dkMksZa esa ls ,d dkMZ ;kn`PN;k fy;k x;kA dkMZa ij ,d iw.kZ oxZ la[;k ds vkus dh izkf;drk gS% (A) (B) (C) (D) A card is drawn from a deck of cards numbered 1 to 52. The probability that the number on the card is a perfect square is: (A) (B) (C) (D) 4. fcUnq P(2, 3) dh x- v{k ls nwjh gS% (A) 2bdkbZ (B) 3bdkbZ (C) 1bdkbZ (D) 5bdkbZ The distance of the point P(2, 3) from the x-axis is: (A) 2units (B) 3units (C) 1unit (D) 5units 5. 6cm Hkqtk ds oxZ ds vUr% o`r dk {ks=Qy gS% (A) 36 cm2 (B) 18 cm2 (C) 12 cm2 (D) 9 cm2 The area of the circle that can be inscribed in a square of side 6cm is: (A) 36 cm2 (B) 18 cm2 (C) 12 cm2 (D) 9 cm2 Short Answer-I type (2 mark) questions 1 f}?kkr lehdj.k 3x2 - 4√ x+4 = 0 ds ewy®a dh izd`fr Kkr dhft,A Find the nature of the roots of the quadratic equation: 3x2 - 4√ x+4 = 0 2 k ds fdl eku ds fy, 2k, k+10 rFkk 3k+2 lekUrj Js.kh esa gS
  • 5. For what value of k are 2k, k+10 and 3k+2 in AP? 3 fl) dhft, fd o`r ds O;kl ds Nksj fcUnqvksa ij [khapha xbZ Li”kZ js[kk,a lekUrj gksrh gSaA Prove that tangents drawn at the ends of a diameter of a circle are parallel. 4 fl) dhft, fd ,d o`r ds ifjXkr lekUrj prqHkqZt leprqHkqZt gSA Prove that the parallelogram circumscribing a circle is a rhombus. 5 किसी िारण 132 vPNs isuksa ds lkFk 12 [kjkc isu fey x, िेवल देखिर यह नहीं बताया जा सिता है कि िोई पेन खराब है या अच्छा A इसमें से ,d isu ;kn`PN;k ls fudkyk x;kA izkf;drk Kkr dhft, fd fudkyk x;k isu vPNk isu gSA 12 defective pens are accidently mixed with 132 good ones. It is not possible to just look at a pen and tell whether or not it is defective. One pen is taken out at random from this lot. Determine the probability that the pen taken out is a good one. Short Answer-II type (3 mark) questions 1 fuEu f}?kkrh lehdj.k ds ewy xq.ku[k.M fof/k ls Kkr dhft,: √ x2 - 7x+5√ = 0 Find the roots of the following quadratic equation by factorization: √ x2 - 7x+5√ = 0 2 ,d lekUrj Js.kh esa izFke in 5] lkoZ vUrj 3 rFkk noka in 50 gSA bl lekUrj Js.kh esa n dk eku rFkk izFke n inksa dk ;ksx Kkr dhft,A In an A.P., first term is 5, common difference is 3 and nth term is 50. Find the value of n and sum of its first n terms. 3 ,d Bsdsnkj us ikdZ esa cPpksa ds fy, nks fQlyus okyh fQly iêh yxkuh gSA 5o’kZ ls de vk;q ds cPpksa ds fy, fQlyu iêh ds fljs dh Å¡pkbZ 1-5ehVj rFkk bldk xzkm.M ds lkFk >qdko 300 dk gSA cM+s cPpksa ds fy, अधिि ढाल िी fQlyu iêh लगानी है धजसिी Å¡pkbZ 3ehVj rFkk xzkm.M ds lkFk >qdko 600 dk gSA izR;sd voLFkk esa fQlyu iêh dh yEckbZ Kkr dhft,A A contractor plans to install two slides for the children to play in a park. For the children below the age of 5years, she prefers to have a slide whose top is at a height of 1.5m, and is inclined at an angle of 300 to the ground, whereas for elder children, she wants to have a steep slide at a height of 3m and inclined at an angle of 600 to the ground. What should be the length of the slide in each case? 4 12 cm f=T;k okys o`r esa ,d thok dsUnz ij 1200 dk dks.k cukrh gSA bl o`r[k.M dk {ks=Qy Kkr dhft,A ¼ = 3.14 rFkk √ = 1.73 dk iz;ksx dhft,½ A chord of a circle of radius 12cm subtends an angle of 1200 at the centre. Find the area of the segment of the circle. (Use = 3.14 and √ = 1.73) 5 ,d ldZl dk rEcw 3m- dh Å¡pkbZ rd csyukdkj rFkk mlls Åij “kaDokdkj gSA ;fn vk/kkj dk O;kl 105m rFkk “kaDokdkj Hkkx dh frjNh Å¡pkbZ 53m gS तो bl VSUV dks cukus esa iz;ksx esa ykbZ xbZ dSuol dk {ks=Qy Kkr dhft,A A circus tent is cylindrical upto a height of 3m and conical above it. If the diameter of the
  • 6. base is 105m and the slant height of the conical part is 53m, find the area of canvas used in making the tent. Long Answer-I type (4 mark) questions 1 ,d fHké dk va”k gj ls 2 de gSA ;fn va”k rFkk gj nksuksa esa 1 tksM+k tk, rks ubZ fHké rFkk ewy fHké dk ;ksx gS rks ewy fHké Kkr dhft,A The numerator of a fraction is 2 less than the denominator. If 1 is added to both numerator and denominator, the sum of the new and original fraction is . Find the original fraction. 2 ,d lekUrj Js.kh ds izFke n inksa dk ;ksx Sn = 3n2 – 4n gSA lekUrj Js.kh rFkk bldk 12oka in Kkr dhft,A The sum of the first n terms of an AP is given by Sn = 3n2 – 4n. Determine the AP and the 12th term. 3 ,d o`r ds ifjxr prqHkqZt dh lEeq[k Hkqtk,a o`r ds dsUnz ij laiwjd dks.k varfjr djrh gSaA fl) dhft,A Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle. 4 1.2 m yEch yM+dh ,d xqCckjs dks gok ds lkFk {kSfrt fn”kk esa 88-2 m dh Å¡pkbZ ij mM+rk ns[krh gSA xqCckjs dk yM+dh dh vk¡[k ij mé;u dks.k 600 dk gSA dqN le; i”pkr~ mé;u dks.k घटिर 300 हो जाता है ¼vkd`fr ns[ksa½A bl vof/k esa xqCckjs }kjk fdruh nwjh r; dh xbZ A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 600. After some time, the angle of elevation reduces to 300 (see figure). Find the distance travelled by the balloon during the interval. 5 6 cm O;kl dk ,d xksyk ikuh okys csyukdkj esa Mkyk x;kA bl crZu dk O;kl 12 cm gSA ;fn xksyk iwjh rjg ls ikuh esa Mqck;k tk, rks Kkr dhft, fd ikuh dk Lrj fdruk c<+ tk;sxk A sphere of diameter 6cm is dropped into a cylindrical vessel partly filled with water. The diameter of the vessel is 12cm. If the sphere is completely submerged, how much will the surface of water be raised? -o0o0o0o-