SlideShare a Scribd company logo
Program 1:
clear all;close all;clc;clf;
t=0:0.01*pi:4*pi;
x=sin(t);
y=x;
z=x;
n=length(y);
for i=1:n
if (x(i)<0)
y(i)=0;
z(i)=-1*z(i);
end
end
u=figure(1);
set(u,'color','w')
subplot 221
plot(t,x)
title('input:sinusoidal wave')
subplot 222
plot(t,y)
title('half wave rectifier')
subplot 223
plot(t,z)
title('full wave rectifier')
subplot 224
plot(t,z,'--')
hold on
line([pi/2 3*(pi/2)-0.5],[1 -1*sin(3*(pi/2)-
0.5)]);
line([3*pi/2 5*(pi/2)-0.5],[1 1*sin(5*(pi/2)-
0.5)]);
line([5*pi/2 7*(pi/2)-0.5],[1 -1*sin(7*(pi/2)-
0.5)]);
title('smoothed rectifier signal')
Program 2:
clc;close all;clear all;
t=0:0.1*pi:2*pi;
n=length(t);
r=0.5*ones(1,n);
r1=ones(1,n);
[x y]=pol2cart(t,r);
[x1 y1]=pol2cart(t,r1);
x2=x1+1;
e=figure(1)
set(e,'color','w');
subplot 221
plot(x,y)
title('radius=0.5m')
axis([-3 3 -3 3]);
subplot 222
plot(x1,y1)
title('radius=1m')
0 5 10 15
-1
-0.5
0
0.5
1
input:sinusoidal wave
0 5 10 15
0
0.5
1
half wave rectifier
0 5 10 15
0
0.5
1
full wave rectifier
0 5 10 15
0
0.5
1
smoothed rectifier signal
axis([-3 3 -3 3]);
subplot 223
plot(x2,y1)
title('radius=1m,shifted')
axis([-3 3 -3 3]);
for i=1:2:4
for j=1:2:4
x2=x+i;
y2=y+j;
subplot 224
plot(x2,y2)
text(1.7,2,'core')
title('pcf')
hold on;
end
end
-2 0 2
-2
0
2
radius=0.5m
-2 0 2
-2
0
2
radius=1m
-2 0 2
-2
0
2
radius=1m,shifted
0 1 2 3 4
0
1
2
3
4
core
pcf
corecorecore
Program 3:
clear all;close all;clc;
[x,y,z]=cylinder(5);
[x1,y1,z1]=cylinder;
figure(1)
subplot 221
surf(x1,y1,z1)
subplot 222
surf(x,y,z)
subplot 223
axis square
surf(x,y,z)
hold on
surf(x1,y1,z1)
-1
0
1
-1
0
1
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
Program 4:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 221
cylinder(cos(t))
subplot 222
cylinder(sin(t))
subplot 223
cylinder(exp(t))
subplot 224
cylinder(log(t))
colormap gray
-1
0
1
-1
0
1
0
0.5
1
-1
0
1
-1
0
1
0
0.5
1
-1000
0
1000
-1000
0
1000
0
0.5
1
-2
0
2
-2
0
2
0
0.5
1
Program 5:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 221
cylinder(cos(t))
subplot 222
cylinder(sin(t))
subplot 223
cylinder(exp(t))
subplot 224
cylinder(log(t))
colormap spring
-1
0
1
-1
0
1
0
0.5
1
-1
0
1
-1
0
1
0
0.5
1
-1000
0
1000
-1000
0
1000
0
0.5
1
-2
0
2
-2
0
2
0
0.5
1
Program 6:
clear all;close all;clc;
t=0:0.1*pi:2*pi;
subplot 321
cylinder(2+sin(t))
subplot 322
cylinder(2+cos(t))
subplot 323
cylinder(t.^4)
subplot 324
cylinder(t.^2)
subplot 325
cylinder(exp(-t)+2)
subplot 326
cylinder(t.^2)
hold on
cylinder(t)
-5
0
5
-5
0
5
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-2000
0
2000
-2000
0
2000
0
0.5
1
-50
0
50
-50
0
50
0
0.5
1
-5
0
5
-5
0
5
0
0.5
1
-50
0
50
-50
0
50
0
0.5
1
Program 7:
clear all;close all;clc;
syms x;
y=sin(x);
subplot 211
ezplot(y)
grid on
subplot 212
ezplot(y,[0:4*pi])
-6 -4 -2 0 2 4 6
-1
-0.5
0
0.5
1
x
sin(x)
0 2 4 6 8 10 12
-1
-0.5
0
0.5
1
x
sin(x)
Program 8:
clear all;close all;clc;
syms t;
y=sin(t);
figure(1)
subplot 221
ezsurf(y,[-pi pi])
subplot 222
ezsurf(y)
z=sin(t)*cos(3*t);
subplot 223
ezpolar(z)
subplot 224
ezpolar(z,[0 pi]);
-2
0
2
-2
0
2
-1
0
1
t
sin(t)
y -5
0
5
-5
0
5
-1
0
1
t
sin(t)
y
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
r = cos(3 t) sin(t)
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
r = cos(3 t) sin(t)
Program 9:
clear all;close all;clc;
syms t;
y=t^3;
subplot 221
ezplot(y)
y1=diff(y);
y2=diff(y,2);
y3=diff(y,3);
subplot 222
ezplot(y1)
subplot 223
ezplot(y2)
subplot 224
ezplot(y3)
-5 0 5
-200
-100
0
100
200
t
t3
-5 0 5
0
50
100
t
3 t2
-5 0 5
-40
-20
0
20
40
t
6 t
-5 0 5
5
5.5
6
6.5
7
x
6
Program 10:
clear all;close all;clc;
t=1:0.1:5;
y=t.^2;
dy1=diff(y)./diff(t);
td1=t(2:length(t));
figure(1)
subplot 121
plot(t,y)
grid on
title('using numerical')
subplot 122
plot(td1,dy1)
title('numerical diff')
1 2 3 4 5
0
5
10
15
20
25
using numerical
1 2 3 4 5
2
3
4
5
6
7
8
9
10
numerical diff
Program 11:
clear all;close all;clc;
t=1:0.1:5;
y=rand(1,length(t));
dy1=diff(y)./diff(t);
td1=t(2:length(t));
subplot 211
plot(t,y)
title('noise signal over 5 second')
subplot 212
plot(td1,dy1)
title('the rate of change of the noise w.r.t
time')
1 1.5 2 2.5 3 3.5 4 4.5 5
0
0.5
1
noise signal over 5 second
1 1.5 2 2.5 3 3.5 4 4.5 5
-10
-5
0
5
10
the rate of change of the noise w.r.t time
:12Program
clear all;close all;clc;
x=0:0.1:10;
y=0:0.1:10;
[x1 y1]=meshgrid(x,y);
for i=1:length(x)
for j=1:length(y)
if (y1(i,j)>=0 && y1(i,j)<2)
z1(i,j)=0;
elseif (y1(i,j)>=2 && y1(i,j)<4)
z1(i,j)=2;
elseif (y1(i,j)>=4 && y1(i,j)<6)
z1(i,j)=4;
elseif (y1(i,j)>=6 && y1(i,j)<8)
z1(i,j)=6;
else
z1(i,j)=8;
end
end
end
surf(x1,y1,z1)
0
2
4
6
8
10
0
5
10
0
2
4
6
8
:13Program
clear all;close all;clc;
phi=0:0.01*pi:2*pi;
n=length(phi);
r=ones(1,n);
a=figure(1);
set(a,'color','g')
subplot 121
e=polar(phi,r);
set(e,'linewidth',4)
subplot 122
[x y]=pol2cart(phi,r);
plot(x,y,'k')
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
:14Program
clear all;close all;clc;
phi=0:0.01*pi:2*pi;
n=length(phi);
r=ones(1,n);
a=figure(1);
set(a,'color','g')
subplot 121
e=polar(phi,r);
set(e,'linewidth',4)
subplot 122
[x y]=pol2cart(phi,r);
plot(x,y,'k')
hold on
for i=1:length(x)/4;
if (sqrt(x(i).^2+y(i).^2)<=1)
line([ 0 x(i)],[0 y(i)])
end
end
0.5
1
30
210
60
240
90
270
120
300
150
330
180 0
-1 -0.5 0 0.5 1
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
:15Program
clear all;close all;clc;
a=[50 0;0 50];
b=repmat(a,[3 3]);
e=figure(1)
set(e,'color','m')
image(b)
colormap gray
axis off
Program 16:
clear all;close all;clc;
t=0:0.1*pi:4*pi;
y=sin(t);
n=length(t);
noise=0.1*randn(1,n);
ynoise=y+noise;
r=figure(1);
set(r,'color','g')
subplot 221
plot(t,y,'r')
title('signal')
subplot 222
plot(t,noise,'k')
title('noise')
subplot 223
plot(t,ynoise,'color','b')
title('ynoise')
0 5 10 15
-1
-0.5
0
0.5
1
signal
0 5 10 15
-0.4
-0.2
0
0.2
0.4
noise
0 5 10 15
-2
-1
0
1
2
ynoise
:17Program
clear all;close all;clc;
t=0:0.1*pi:4*pi;
n=length(t);
y1=2*sin(0.5*t);%first input
y2=2*cos(0.5*t);%second input
y3=cos(5*t); %carrier
ya=y1.*y3;
yb=y2.*y3;
subplot 221
plot(t,y1,'-.',t,y2,'-')
subplot 222
plot(t,y3)
title('carrier')
subplot 223
plot(t,ya)
title('carrier * sin')
subplot 224
plot(t,yb)
title('carrier *cos')
0 5 10 15
-2
-1
0
1
2
0 5 10 15
-1
-0.5
0
0.5
1
carrier
0 5 10 15
-2
-1
0
1
2
carrier * sin
0 5 10 15
-2
-1
0
1
2
carrier *cos
Program 18:
clear all;close all;clc;
t=0:0.01*pi:4*pi;
x=cos(4*pi*t)+cos(8*pi*t)+cos(12*pi*t);
fx=fft(x,512);
w=1/(0.01*pi*2)*linspace(0,1,256);
subplot 421
plot(t,x)
xlabel('time')
ylabel('amplitude')
subplot 422
plot(w,abs(fx(1:256)))
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 200])
filter=ones(1,256);
filter(1,90:256)=0;
subplot 423
plot(w,filter)
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 2])
subplot 424
result=abs(fx(1:256)).*filter;
plot(w,result)
xlabel('frequency HZ')
ylabel('amplitude')
axis([0 20 0 200])
subplot 413
plot(w,result)
xlabel('frequency')
ylabel('amplitude')
axis([0 16 0 200])
iresult=ifft((fx),length(t));
subplot 414
plot(t,iresult)
xlabel('time')
ylabel('amplitude')
axis([0 14 -2 2])
Program 19:
z=[10 4 6 9 3];
subplot 221
pie(z)
subplot 222
pie(z,[0 0 0 1 0]);
subplot 223
pie(z,[1 1 1 1 1])
subplot 224
pie3(z,[0 0 0 1 0]);
0 2 4 6 8 10 12 14
-2
0
2
4
time
amplitude
0 5 10 15 20
0
100
200
frequency HZ
amplitude
0 5 10 15 20
0
1
2
frequency HZ
amplitude
0 5 10 15 20
0
100
200
frequency HZ
amplitude
0 2 4 6 8 10 12 14 16
0
100
200
frequency
amplitude
0 2 4 6 8 10 12 14
-2
0
2
time
amplitude
Program 20:
clear all ;close all; clc
x=-3:3;
y=x.^2;
bar(x,y)
31%
13%
19%
28%
9%
31%
13%
19%
28%
9%
31%
13%
19%
28%
9%
28%
19%
13%
9%
31%
Program 21:
clear all ;close all; clc
y=round(rand(2,3)*10);
subplot 221
bar(y)
subplot 222
barh(y)
subplot 223
bar(y,'stacked')
subplot 224
bar(y,1)
-3 -2 -1 0 1 2 3
0
1
2
3
4
5
6
7
8
9
Program 22:
clear all;close all;clc
t=0:0.1*pi:2*pi;
x=sin(t);
subplot 221
plot(t,x,'*r')
subplot 222
stem(t,x)
subplot 223
stairs(t,x)
subplot 224
fill(t,x,'g')
1 2
0
2
4
6
8
10
0 5 10
1
2
1 2
0
5
10
15
20
25
1 2
0
2
4
6
8
10
Program 23:
clear all ;close all;clc;
syms x t w a
f1=heaviside(x);
f2=heaviside(x-2);
f3=heaviside(x+2);
f4=heaviside(x+2)-heaviside(x-2);
subplot 221
ezplot(f1,[-5 5])
subplot 222
ezplot(f2,[-5 5])
subplot 223
ezplot(f3,[-5 5])
subplot 224
ezplot(f4,[-5 5])
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
0 2 4 6 8
-1
-0.5
0
0.5
1
Program 24:
clear all ;close all;clc;clf
t=0:0.01*pi:4*pi;
vint=cos(2*pi*4*t);
fvint=fft(vint,512);
w=1/(0.01*pi*2)*linspace(0,1,256);
subplot 211
plot(t,vint)
xlabel('time')
ylabel('amplitude')
subplot 212
plot(w,abs(fvint(1:256)))
xlabel('frequency')
ylabel('magnitude')
-5 0 5
0
0.5
1
x
heaviside(x)
-5 0 5
0
0.5
1
x
heaviside(x - 2)
-5 0 5
0
0.5
1
x
heaviside(x + 2)
-5 0 5
0
0.5
1
x
heaviside(x + 2) - heaviside(x - 2)
Program 25:
clear all ;close all;clc;clf
t=0:0.01*pi:4*pi;
x=cos(t);
y=sin(t);
plot(t,x,'-r',t,y,'.g')
legend('cos','sin')
title('sinusoidal signals')
xlabel('time')
ylabel('amplitude')
0 2 4 6 8 10 12 14
-1
-0.5
0
0.5
1
time
amplitude
0 2 4 6 8 10 12 14 16
0
50
100
150
200
frequency
magnitude
0 2 4 6 8 10 12 14
-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
time
amplitude
sinusoidal signals
cos
sin
Program 26:
z=magic(3);
subplot 221
bar(z)
subplot 222
bar(z,'stacked')
subplot 223
bar(z,'grouped')
subplot 224
barh(z,'stacked')
1 2 3
0
2
4
6
8
10
1 2 3
0
5
10
15
1 2 3
0
2
4
6
8
10
0 5 10 15
1
2
3
Program 27:
z=magic(2);
subplot 221
bar(z)
subplot 222
bar(z,'c')
subplot 223
bar(z,'histic')
subplot 224
barh(z,'histic')
1 2
0
1
2
3
4
1 2
0
1
2
3
4
1 2
0
1
2
3
4
0 1 2 3 4
1
2
Program 28:
z=round(10.*rand(1,10));
figure(4)
subplot 211
hist(z,5)
subplot 212
hist(z,7)
1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
0 2 4 6 8 10 12
0
1
2
3
4
Program 29:
t=0:0.01*pi:2*pi;
y=sin(2*t).*cos(2*t);
figure(8)
subplot 221
polar(t,y,'--g')
subplot 222
polar(t,y,'bs')
subplot 223
polar(t,y,'dr')
subplot 224
f=polar(t,y);
set(f,'color','m')
set(f,'linewidth',2)
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
0.25
0.5
30
210
60
240
90
270
120
300
150
330
180 0
Program 30:
x=[1:10];
y=2.*rand(1,10);
figure(1)
set(figure(1),'color','yellow');
subplot 221
scatter(x,y)
subplot 222
scatter(x,y,'r')
subplot 223
scatter(x,y,3,'g')
subplot 224
stem(x,y)
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
0 5 10
0
0.5
1
1.5
2
Program 31:
clear all;close all;clc
[x,y,z]=sphere(100);
x1=x(:);
y1=y(:);
z1=z(:);
figure(1)
set(figure(1),'color','y')
scatter3(x1,y1,z1)
-1
-0.5
0
0.5
1
-1
-0.5
0
0.5
1
-1
-0.5
0
0.5
1
Program 32:
clear all;close all;clc
[x,y,z]=sphere(100);
x1=x(:);
y1=y(:);
z1=z(:);
figure(1)
set(figure(1),'color','y')
subplot 211
scatter3(x1,y1,z1,2,'k')
subplot 212
scatter3(x1,y1,z1,10,'g')
-1
-0.5
0 0.5
1
-1
-0.5
0
0.5
1
-1
0
1
-1
-0.5
0 0.5
1
-1
-0.5
0
0.5
1
-1
0
1
Program 32:
x=0:10;
y=0:10;
[xm ym]=meshgrid(x,y);
z=xm.^2/2+ym.^2/4;
figure(1)
subplot 221
mesh(z)
subplot 222
contour(x,y,z)
subplot 223
surf(x,y,z)
subplot 224
surfc(x,y,z)
0
10
20
0
10
20
0
50
100
0 5 10
0
2
4
6
8
10
0
5
10
0
5
10
0
50
100
0
5
10
0
5
10
0
50
100
Program 33:
%system of linear equation
%cramer method
a=[1 2 3;2 3 4;4 2 5];
b=[4;5;1];
d1=a;
d1(:,1)=b;
x(1)=det(d1)/det(a)
d2=a;
d2(:,2)=b;
x(2)=det(d2)/det(a)
d3=a;
d3(:,3)=b;
x(3)=det(d3)/det(a)
command window:
x =
-1.4000 1.8000 0.6000
Program 34:
%system of linear equation
%Gass elimination
a=[1 2 3;2 3 4;4 2 5];
b=[4;5;1];
x=inv(a)*b
x =
-1.4000
1.8000
0.6000
x=ab
x =
-1.4000
1.8000
0.6000
Program 35:
Program 36:
>> y=logspace(1,5);
>> size(y)
ans =
1 50
>> plot(y)
>> z=logspace(1,5,5);
>> area(z)
1 1.5 2 2.5 3 3.5 4 4.5 5
0
1
2
3
4
5
6
7
8
9
10
x 10
4
0 5 10 15 20 25 30 35 40 45 50
0
1
2
3
4
5
6
7
8
9
10
x 10
4
Program 37:
x=ones(10,10);
x(3,3)=10;
x(3,7)=10;
x(6,5)=10;
x(8,4:6)=10;
image(x)
colormap copper(2)
%colormap spring(2)
%colormap hsv
%colormap summer
1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
8
9
10
Matlab plotting

More Related Content

PPTX
Laplace transform
PDF
Income tax
PPTX
Importance & Application of Laplace Transform
PPTX
EM3 mini project Laplace Transform
PPTX
Applications of Differential Equations of First order and First Degree
PPTX
Laplace Transform And Its Applications
PPT
Lecture7 Signal and Systems
PDF
Presentation of Supertech [Sent by my friend, Luigi]
Laplace transform
Income tax
Importance & Application of Laplace Transform
EM3 mini project Laplace Transform
Applications of Differential Equations of First order and First Degree
Laplace Transform And Its Applications
Lecture7 Signal and Systems
Presentation of Supertech [Sent by my friend, Luigi]

What's hot (13)

PPTX
Laplace Transform and its applications
PPTX
Divergence and curl
PPTX
Dirac – Delta Function
PDF
Phy351 ch 4
PPTX
PDF
Laplace transforms
PPT
03 open methods
PPT
Vector calculus
PPT
MGT-Ch07.ppt
PPTX
Half range sine cosine fourier series
PPTX
Laplace transformation
PDF
基本電學II(劉版)隨堂講義
Laplace Transform and its applications
Divergence and curl
Dirac – Delta Function
Phy351 ch 4
Laplace transforms
03 open methods
Vector calculus
MGT-Ch07.ppt
Half range sine cosine fourier series
Laplace transformation
基本電學II(劉版)隨堂講義
Ad

Viewers also liked (6)

PDF
Manual for the MATLAB program to solve the 2D truss
PDF
solution for 2D truss1
PDF
Fem in matlab
PDF
Isoparametric mapping
PDF
MATLAB Programs For Beginners. | Abhi Sharma
PPTX
Matlab Introduction
Manual for the MATLAB program to solve the 2D truss
solution for 2D truss1
Fem in matlab
Isoparametric mapping
MATLAB Programs For Beginners. | Abhi Sharma
Matlab Introduction
Ad

Similar to Matlab plotting (20)

DOCX
Matlab code for comparing two microphone files
DOCX
Matlab code for comparing two microphone files
PPTX
final matlabمتعدل.pptxggggffyhhggghhhggggh
DOCX
Basic simulation lab manual1
PDF
EE443 - Communications 1 - Lab 1 - Loren Schwappach.pdf
PDF
PDF
DIGITAL SIGNAL PROCESSING BASED ON MATLAB
PDF
Matlab 2
PPT
Matlab dsp examples
PDF
Matlab 3
PDF
Matlab task1
DOCX
Question I Part (a) 1.SOURCE CODE LISTING for numb.docx
PDF
Matlab kod taslağı
PDF
Adv. Digital Signal Processing LAB MANUAL.pdf
DOC
LABEX2-_1_.doc sfsdfsdfsdfsdfsdfdddddddddddd
PDF
Graph for Coulomb damped oscillation
PDF
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
PDF
Matlab Señales Discretas
PDF
That assignment had 2 part. I already complated part 1. and collecte.pdf
PDF
Gilat_ch05.pdf
Matlab code for comparing two microphone files
Matlab code for comparing two microphone files
final matlabمتعدل.pptxggggffyhhggghhhggggh
Basic simulation lab manual1
EE443 - Communications 1 - Lab 1 - Loren Schwappach.pdf
DIGITAL SIGNAL PROCESSING BASED ON MATLAB
Matlab 2
Matlab dsp examples
Matlab 3
Matlab task1
Question I Part (a) 1.SOURCE CODE LISTING for numb.docx
Matlab kod taslağı
Adv. Digital Signal Processing LAB MANUAL.pdf
LABEX2-_1_.doc sfsdfsdfsdfsdfsdfdddddddddddd
Graph for Coulomb damped oscillation
EE443 - Communications 1 - Lab 3 - Loren Schwappach.pdf
Matlab Señales Discretas
That assignment had 2 part. I already complated part 1. and collecte.pdf
Gilat_ch05.pdf

More from Amr Rashed (20)

PDF
Introduction to Deep Learning: Concepts, Architectures, and Applications
PPTX
Introduction to Autoencoders: Types and Applications
PPTX
Introduction to the Fundamentals of Computer Networks
PPTX
Introduction to analog communication system
PPTX
introduction to embedded system presentation
PPT
Discrete Math Ch5 counting + proofs
PPTX
Discrete Math Chapter: 8 Relations
PPTX
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
PPTX
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
PPTX
Introduction to deep learning
PPTX
Discrete Structure Mathematics lecture 1
PPTX
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
PPTX
امن نظم المعلومات وامن الشبكات
PPTX
Machine learning workshop using Orange datamining framework
PPTX
مقدمة عن الفيجوال بيسك 9-2019
PPTX
Deep learning tutorial 9/2019
PPTX
Deep Learning Tutorial
PPT
License Plate Recognition
PDF
Introduction to FPGA, VHDL
PDF
Introduction to Matlab
Introduction to Deep Learning: Concepts, Architectures, and Applications
Introduction to Autoencoders: Types and Applications
Introduction to the Fundamentals of Computer Networks
Introduction to analog communication system
introduction to embedded system presentation
Discrete Math Ch5 counting + proofs
Discrete Math Chapter: 8 Relations
Discrete Math Chapter 1 :The Foundations: Logic and Proofs
Discrete Math Chapter 2: Basic Structures: Sets, Functions, Sequences, Sums, ...
Introduction to deep learning
Discrete Structure Mathematics lecture 1
Implementation of DNA sequence alignment algorithms using Fpga ,ML,and CNN
امن نظم المعلومات وامن الشبكات
Machine learning workshop using Orange datamining framework
مقدمة عن الفيجوال بيسك 9-2019
Deep learning tutorial 9/2019
Deep Learning Tutorial
License Plate Recognition
Introduction to FPGA, VHDL
Introduction to Matlab

Recently uploaded (20)

PPT
Mechanical Engineering MATERIALS Selection
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Geodesy 1.pptx...............................................
PPTX
Welding lecture in detail for understanding
PDF
Digital Logic Computer Design lecture notes
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Construction Project Organization Group 2.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
web development for engineering and engineering
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
Mechanical Engineering MATERIALS Selection
Embodied AI: Ushering in the Next Era of Intelligent Systems
bas. eng. economics group 4 presentation 1.pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Geodesy 1.pptx...............................................
Welding lecture in detail for understanding
Digital Logic Computer Design lecture notes
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
UNIT 4 Total Quality Management .pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
CYBER-CRIMES AND SECURITY A guide to understanding
Construction Project Organization Group 2.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Internet of Things (IOT) - A guide to understanding
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
web development for engineering and engineering
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx

Matlab plotting

  • 1. Program 1: clear all;close all;clc;clf; t=0:0.01*pi:4*pi; x=sin(t); y=x; z=x; n=length(y); for i=1:n if (x(i)<0) y(i)=0; z(i)=-1*z(i); end end u=figure(1); set(u,'color','w') subplot 221 plot(t,x) title('input:sinusoidal wave') subplot 222 plot(t,y) title('half wave rectifier') subplot 223 plot(t,z) title('full wave rectifier') subplot 224 plot(t,z,'--') hold on line([pi/2 3*(pi/2)-0.5],[1 -1*sin(3*(pi/2)- 0.5)]); line([3*pi/2 5*(pi/2)-0.5],[1 1*sin(5*(pi/2)- 0.5)]); line([5*pi/2 7*(pi/2)-0.5],[1 -1*sin(7*(pi/2)- 0.5)]); title('smoothed rectifier signal')
  • 2. Program 2: clc;close all;clear all; t=0:0.1*pi:2*pi; n=length(t); r=0.5*ones(1,n); r1=ones(1,n); [x y]=pol2cart(t,r); [x1 y1]=pol2cart(t,r1); x2=x1+1; e=figure(1) set(e,'color','w'); subplot 221 plot(x,y) title('radius=0.5m') axis([-3 3 -3 3]); subplot 222 plot(x1,y1) title('radius=1m') 0 5 10 15 -1 -0.5 0 0.5 1 input:sinusoidal wave 0 5 10 15 0 0.5 1 half wave rectifier 0 5 10 15 0 0.5 1 full wave rectifier 0 5 10 15 0 0.5 1 smoothed rectifier signal
  • 3. axis([-3 3 -3 3]); subplot 223 plot(x2,y1) title('radius=1m,shifted') axis([-3 3 -3 3]); for i=1:2:4 for j=1:2:4 x2=x+i; y2=y+j; subplot 224 plot(x2,y2) text(1.7,2,'core') title('pcf') hold on; end end -2 0 2 -2 0 2 radius=0.5m -2 0 2 -2 0 2 radius=1m -2 0 2 -2 0 2 radius=1m,shifted 0 1 2 3 4 0 1 2 3 4 core pcf corecorecore
  • 4. Program 3: clear all;close all;clc; [x,y,z]=cylinder(5); [x1,y1,z1]=cylinder; figure(1) subplot 221 surf(x1,y1,z1) subplot 222 surf(x,y,z) subplot 223 axis square surf(x,y,z) hold on surf(x1,y1,z1) -1 0 1 -1 0 1 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1
  • 5. Program 4: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 221 cylinder(cos(t)) subplot 222 cylinder(sin(t)) subplot 223 cylinder(exp(t)) subplot 224 cylinder(log(t)) colormap gray -1 0 1 -1 0 1 0 0.5 1 -1 0 1 -1 0 1 0 0.5 1 -1000 0 1000 -1000 0 1000 0 0.5 1 -2 0 2 -2 0 2 0 0.5 1
  • 6. Program 5: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 221 cylinder(cos(t)) subplot 222 cylinder(sin(t)) subplot 223 cylinder(exp(t)) subplot 224 cylinder(log(t)) colormap spring -1 0 1 -1 0 1 0 0.5 1 -1 0 1 -1 0 1 0 0.5 1 -1000 0 1000 -1000 0 1000 0 0.5 1 -2 0 2 -2 0 2 0 0.5 1
  • 7. Program 6: clear all;close all;clc; t=0:0.1*pi:2*pi; subplot 321 cylinder(2+sin(t)) subplot 322 cylinder(2+cos(t)) subplot 323 cylinder(t.^4) subplot 324 cylinder(t.^2) subplot 325 cylinder(exp(-t)+2) subplot 326 cylinder(t.^2) hold on cylinder(t) -5 0 5 -5 0 5 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -2000 0 2000 -2000 0 2000 0 0.5 1 -50 0 50 -50 0 50 0 0.5 1 -5 0 5 -5 0 5 0 0.5 1 -50 0 50 -50 0 50 0 0.5 1
  • 8. Program 7: clear all;close all;clc; syms x; y=sin(x); subplot 211 ezplot(y) grid on subplot 212 ezplot(y,[0:4*pi]) -6 -4 -2 0 2 4 6 -1 -0.5 0 0.5 1 x sin(x) 0 2 4 6 8 10 12 -1 -0.5 0 0.5 1 x sin(x)
  • 9. Program 8: clear all;close all;clc; syms t; y=sin(t); figure(1) subplot 221 ezsurf(y,[-pi pi]) subplot 222 ezsurf(y) z=sin(t)*cos(3*t); subplot 223 ezpolar(z) subplot 224 ezpolar(z,[0 pi]); -2 0 2 -2 0 2 -1 0 1 t sin(t) y -5 0 5 -5 0 5 -1 0 1 t sin(t) y 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 r = cos(3 t) sin(t) 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 r = cos(3 t) sin(t)
  • 10. Program 9: clear all;close all;clc; syms t; y=t^3; subplot 221 ezplot(y) y1=diff(y); y2=diff(y,2); y3=diff(y,3); subplot 222 ezplot(y1) subplot 223 ezplot(y2) subplot 224 ezplot(y3) -5 0 5 -200 -100 0 100 200 t t3 -5 0 5 0 50 100 t 3 t2 -5 0 5 -40 -20 0 20 40 t 6 t -5 0 5 5 5.5 6 6.5 7 x 6
  • 11. Program 10: clear all;close all;clc; t=1:0.1:5; y=t.^2; dy1=diff(y)./diff(t); td1=t(2:length(t)); figure(1) subplot 121 plot(t,y) grid on title('using numerical') subplot 122 plot(td1,dy1) title('numerical diff') 1 2 3 4 5 0 5 10 15 20 25 using numerical 1 2 3 4 5 2 3 4 5 6 7 8 9 10 numerical diff
  • 12. Program 11: clear all;close all;clc; t=1:0.1:5; y=rand(1,length(t)); dy1=diff(y)./diff(t); td1=t(2:length(t)); subplot 211 plot(t,y) title('noise signal over 5 second') subplot 212 plot(td1,dy1) title('the rate of change of the noise w.r.t time') 1 1.5 2 2.5 3 3.5 4 4.5 5 0 0.5 1 noise signal over 5 second 1 1.5 2 2.5 3 3.5 4 4.5 5 -10 -5 0 5 10 the rate of change of the noise w.r.t time
  • 13. :12Program clear all;close all;clc; x=0:0.1:10; y=0:0.1:10; [x1 y1]=meshgrid(x,y); for i=1:length(x) for j=1:length(y) if (y1(i,j)>=0 && y1(i,j)<2) z1(i,j)=0; elseif (y1(i,j)>=2 && y1(i,j)<4) z1(i,j)=2; elseif (y1(i,j)>=4 && y1(i,j)<6) z1(i,j)=4; elseif (y1(i,j)>=6 && y1(i,j)<8) z1(i,j)=6; else z1(i,j)=8; end end end surf(x1,y1,z1) 0 2 4 6 8 10 0 5 10 0 2 4 6 8
  • 14. :13Program clear all;close all;clc; phi=0:0.01*pi:2*pi; n=length(phi); r=ones(1,n); a=figure(1); set(a,'color','g') subplot 121 e=polar(phi,r); set(e,'linewidth',4) subplot 122 [x y]=pol2cart(phi,r); plot(x,y,'k') 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 15. :14Program clear all;close all;clc; phi=0:0.01*pi:2*pi; n=length(phi); r=ones(1,n); a=figure(1); set(a,'color','g') subplot 121 e=polar(phi,r); set(e,'linewidth',4) subplot 122 [x y]=pol2cart(phi,r); plot(x,y,'k') hold on for i=1:length(x)/4; if (sqrt(x(i).^2+y(i).^2)<=1) line([ 0 x(i)],[0 y(i)]) end end 0.5 1 30 210 60 240 90 270 120 300 150 330 180 0 -1 -0.5 0 0.5 1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
  • 16. :15Program clear all;close all;clc; a=[50 0;0 50]; b=repmat(a,[3 3]); e=figure(1) set(e,'color','m') image(b) colormap gray axis off
  • 17. Program 16: clear all;close all;clc; t=0:0.1*pi:4*pi; y=sin(t); n=length(t); noise=0.1*randn(1,n); ynoise=y+noise; r=figure(1); set(r,'color','g') subplot 221 plot(t,y,'r') title('signal') subplot 222 plot(t,noise,'k') title('noise') subplot 223 plot(t,ynoise,'color','b') title('ynoise') 0 5 10 15 -1 -0.5 0 0.5 1 signal 0 5 10 15 -0.4 -0.2 0 0.2 0.4 noise 0 5 10 15 -2 -1 0 1 2 ynoise
  • 18. :17Program clear all;close all;clc; t=0:0.1*pi:4*pi; n=length(t); y1=2*sin(0.5*t);%first input y2=2*cos(0.5*t);%second input y3=cos(5*t); %carrier ya=y1.*y3; yb=y2.*y3; subplot 221 plot(t,y1,'-.',t,y2,'-') subplot 222 plot(t,y3) title('carrier') subplot 223 plot(t,ya) title('carrier * sin') subplot 224 plot(t,yb) title('carrier *cos') 0 5 10 15 -2 -1 0 1 2 0 5 10 15 -1 -0.5 0 0.5 1 carrier 0 5 10 15 -2 -1 0 1 2 carrier * sin 0 5 10 15 -2 -1 0 1 2 carrier *cos
  • 19. Program 18: clear all;close all;clc; t=0:0.01*pi:4*pi; x=cos(4*pi*t)+cos(8*pi*t)+cos(12*pi*t); fx=fft(x,512); w=1/(0.01*pi*2)*linspace(0,1,256); subplot 421 plot(t,x) xlabel('time') ylabel('amplitude') subplot 422 plot(w,abs(fx(1:256))) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 200]) filter=ones(1,256); filter(1,90:256)=0; subplot 423 plot(w,filter) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 2]) subplot 424 result=abs(fx(1:256)).*filter; plot(w,result) xlabel('frequency HZ') ylabel('amplitude') axis([0 20 0 200]) subplot 413 plot(w,result) xlabel('frequency') ylabel('amplitude') axis([0 16 0 200]) iresult=ifft((fx),length(t)); subplot 414
  • 20. plot(t,iresult) xlabel('time') ylabel('amplitude') axis([0 14 -2 2]) Program 19: z=[10 4 6 9 3]; subplot 221 pie(z) subplot 222 pie(z,[0 0 0 1 0]); subplot 223 pie(z,[1 1 1 1 1]) subplot 224 pie3(z,[0 0 0 1 0]); 0 2 4 6 8 10 12 14 -2 0 2 4 time amplitude 0 5 10 15 20 0 100 200 frequency HZ amplitude 0 5 10 15 20 0 1 2 frequency HZ amplitude 0 5 10 15 20 0 100 200 frequency HZ amplitude 0 2 4 6 8 10 12 14 16 0 100 200 frequency amplitude 0 2 4 6 8 10 12 14 -2 0 2 time amplitude
  • 21. Program 20: clear all ;close all; clc x=-3:3; y=x.^2; bar(x,y) 31% 13% 19% 28% 9% 31% 13% 19% 28% 9% 31% 13% 19% 28% 9% 28% 19% 13% 9% 31%
  • 22. Program 21: clear all ;close all; clc y=round(rand(2,3)*10); subplot 221 bar(y) subplot 222 barh(y) subplot 223 bar(y,'stacked') subplot 224 bar(y,1) -3 -2 -1 0 1 2 3 0 1 2 3 4 5 6 7 8 9
  • 23. Program 22: clear all;close all;clc t=0:0.1*pi:2*pi; x=sin(t); subplot 221 plot(t,x,'*r') subplot 222 stem(t,x) subplot 223 stairs(t,x) subplot 224 fill(t,x,'g') 1 2 0 2 4 6 8 10 0 5 10 1 2 1 2 0 5 10 15 20 25 1 2 0 2 4 6 8 10
  • 24. Program 23: clear all ;close all;clc; syms x t w a f1=heaviside(x); f2=heaviside(x-2); f3=heaviside(x+2); f4=heaviside(x+2)-heaviside(x-2); subplot 221 ezplot(f1,[-5 5]) subplot 222 ezplot(f2,[-5 5]) subplot 223 ezplot(f3,[-5 5]) subplot 224 ezplot(f4,[-5 5]) 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1 0 2 4 6 8 -1 -0.5 0 0.5 1
  • 25. Program 24: clear all ;close all;clc;clf t=0:0.01*pi:4*pi; vint=cos(2*pi*4*t); fvint=fft(vint,512); w=1/(0.01*pi*2)*linspace(0,1,256); subplot 211 plot(t,vint) xlabel('time') ylabel('amplitude') subplot 212 plot(w,abs(fvint(1:256))) xlabel('frequency') ylabel('magnitude') -5 0 5 0 0.5 1 x heaviside(x) -5 0 5 0 0.5 1 x heaviside(x - 2) -5 0 5 0 0.5 1 x heaviside(x + 2) -5 0 5 0 0.5 1 x heaviside(x + 2) - heaviside(x - 2)
  • 26. Program 25: clear all ;close all;clc;clf t=0:0.01*pi:4*pi; x=cos(t); y=sin(t); plot(t,x,'-r',t,y,'.g') legend('cos','sin') title('sinusoidal signals') xlabel('time') ylabel('amplitude') 0 2 4 6 8 10 12 14 -1 -0.5 0 0.5 1 time amplitude 0 2 4 6 8 10 12 14 16 0 50 100 150 200 frequency magnitude
  • 27. 0 2 4 6 8 10 12 14 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 time amplitude sinusoidal signals cos sin
  • 28. Program 26: z=magic(3); subplot 221 bar(z) subplot 222 bar(z,'stacked') subplot 223 bar(z,'grouped') subplot 224 barh(z,'stacked') 1 2 3 0 2 4 6 8 10 1 2 3 0 5 10 15 1 2 3 0 2 4 6 8 10 0 5 10 15 1 2 3
  • 29. Program 27: z=magic(2); subplot 221 bar(z) subplot 222 bar(z,'c') subplot 223 bar(z,'histic') subplot 224 barh(z,'histic') 1 2 0 1 2 3 4 1 2 0 1 2 3 4 1 2 0 1 2 3 4 0 1 2 3 4 1 2
  • 30. Program 28: z=round(10.*rand(1,10)); figure(4) subplot 211 hist(z,5) subplot 212 hist(z,7) 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 0 2 4 6 8 10 12 0 1 2 3 4
  • 31. Program 29: t=0:0.01*pi:2*pi; y=sin(2*t).*cos(2*t); figure(8) subplot 221 polar(t,y,'--g') subplot 222 polar(t,y,'bs') subplot 223 polar(t,y,'dr') subplot 224 f=polar(t,y); set(f,'color','m') set(f,'linewidth',2) 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0 0.25 0.5 30 210 60 240 90 270 120 300 150 330 180 0
  • 32. Program 30: x=[1:10]; y=2.*rand(1,10); figure(1) set(figure(1),'color','yellow'); subplot 221 scatter(x,y) subplot 222 scatter(x,y,'r') subplot 223 scatter(x,y,3,'g') subplot 224 stem(x,y) 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2 0 5 10 0 0.5 1 1.5 2
  • 33. Program 31: clear all;close all;clc [x,y,z]=sphere(100); x1=x(:); y1=y(:); z1=z(:); figure(1) set(figure(1),'color','y') scatter3(x1,y1,z1) -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
  • 34. Program 32: clear all;close all;clc [x,y,z]=sphere(100); x1=x(:); y1=y(:); z1=z(:); figure(1) set(figure(1),'color','y') subplot 211 scatter3(x1,y1,z1,2,'k') subplot 212 scatter3(x1,y1,z1,10,'g') -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 0 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 0 1
  • 35. Program 32: x=0:10; y=0:10; [xm ym]=meshgrid(x,y); z=xm.^2/2+ym.^2/4; figure(1) subplot 221 mesh(z) subplot 222 contour(x,y,z) subplot 223 surf(x,y,z) subplot 224 surfc(x,y,z) 0 10 20 0 10 20 0 50 100 0 5 10 0 2 4 6 8 10 0 5 10 0 5 10 0 50 100 0 5 10 0 5 10 0 50 100
  • 36. Program 33: %system of linear equation %cramer method a=[1 2 3;2 3 4;4 2 5]; b=[4;5;1]; d1=a; d1(:,1)=b; x(1)=det(d1)/det(a) d2=a; d2(:,2)=b; x(2)=det(d2)/det(a) d3=a; d3(:,3)=b; x(3)=det(d3)/det(a) command window: x = -1.4000 1.8000 0.6000 Program 34: %system of linear equation %Gass elimination a=[1 2 3;2 3 4;4 2 5]; b=[4;5;1]; x=inv(a)*b x = -1.4000 1.8000 0.6000
  • 38. Program 36: >> y=logspace(1,5); >> size(y) ans = 1 50 >> plot(y) >> z=logspace(1,5,5); >> area(z) 1 1.5 2 2.5 3 3.5 4 4.5 5 0 1 2 3 4 5 6 7 8 9 10 x 10 4 0 5 10 15 20 25 30 35 40 45 50 0 1 2 3 4 5 6 7 8 9 10 x 10 4
  • 39. Program 37: x=ones(10,10); x(3,3)=10; x(3,7)=10; x(6,5)=10; x(8,4:6)=10; image(x) colormap copper(2) %colormap spring(2) %colormap hsv %colormap summer 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10