SlideShare a Scribd company logo
Mechanical Department
COURSE NAME: MECHANICAL VIBRATIONS
Prepared By:
MD ATEEQUE KHAN
(Assistant Professor)
Mechanical Engineering Department
JIT,Barabanki,U.P. INDIA
12/31/2016 1NME-013 MA KHAN
Table of Contents
Unit-1.2
1. Single Degree Freedom System
2. Equation of motion, Newton’s method
3. D’Alembert’s principle
4. Energy method
5. Free vibration, Natural frequency
6. Equivalent systems
7. Displacement, Velocity and acceleration
8. Response to an initial disturbance
9. Torsional vibrations
10.Damped vibrations
11.Vibrations of systems with viscous damping
12.Logarithmic decrement
13.Energy dissipation in viscous damping.
14.Objective Questions
12/31/2016 2NME-013 MA KHAN
Unit-1.2: Mechanical Vibrations
Single Degree Freedom System
Degree of Freedom: Degree of freedom may be defined as the minimum number of
independent coordinates required to determine completely the position of all parts of a system
at any instant of time.
Examples of single degree of freedom systems:
Fig(1) Fig(2)
Spring mass system Torsional System
k
x
m

12/31/2016 3NME-013 MA KHAN
Unit-1.2: Mechanical Vibrations
Equation of motion: Newton’s method
Statement: Rate of change of momentum in any direction is equal to net force applied in that direction.
Free Body Diagram:
ts
k
mo o
x
Free length
ksFs 
m
mg
mgks
kx
..
xm
m
0
..
 kxxm
12/31/2016 4NME-013 MA KHAN
Unit-1: Mechanical Vibrations
D’Alembert’s principle
12/31/2016 5NME-013 MA KHAN
Unit-1: Mechanical Vibrations
Energy method
Statement: In case of undamped free vibration, sum of kinetic energy and potential energy is
constant only transformation of energy takes place.
Putting this value in equation-1 and after differentiation we get:
This is known as differential equation of motion. It is homogeneous, second order, ordinary
differential equation of motion.
cUT 
)1..(....................0)( 


UT
t
2
.
2
2.
2
1
)(
2
1
2
1
)(
2
1
kxxmUT
kxU
xmT



kxxm 
..
12/31/2016 6NME-013 MA KHAN
Unit-1.2: Mechanical Vibrations
Solution of Differential equation of Motion: Natural Frequency;
Dividing by m:
This is a homogeneous, second order equation with constant coefficient, so we
can assume the solution as below:
By substituting for x we get:
By solving the above equation:
0
..
 kxxm
0
..
 x
m
k
x
st
Cex 
m
k
is
m
k
s
Ce
Ce
m
k
s
st
st
















0
0
0
2
2
t
m
k
it
m
k
i
eCeCx
)(
2
)(
1

































t
m
k
Xx
XB
XA
Let
t
m
k
Bt
m
k
Ax
sin
cos
sin
:
sincos
m
k
n 
12/31/2016 7NME-013 MA KHAN
Unit-1: Mechanical Vibrations
Equivalent systems
1k
2k
m
m
1k 2k
m
1k
2k
21
111
kkkeq
 21 kkkeq  21 kkkeq 
12/31/2016 8NME-013 MA KHAN
Unit-1.2: Mechanical Vibrations
Torsional vibrations
Torsional vibration is angular vibration of an object, commonly it is related to
the shaft along its axis of rotation. Torsional vibration is often a concern in
power transmission systems using rotating shafts or couplings where it can
cause failures if not controlled as per design requirement.
12/31/2016 9NME-013 MA KHAN
Unit-1.2: Mechanical Vibrations
Damped vibrations: Viscous damping
Damped vibration system FBD
k c
m m
..
xk
.
xc
12/31/2016 10NME-013 MA KHAN
Unit-1: Mechanical Vibrations
Logarithmic decrement
Logarithmic decrement
Logarithmic Decrement as a function of damping ratio
t
x
1X
2X
)sin( 
 
tXex d
tn
tn
Xex 








2
1
log
x
x
e
12/31/2016 11NME-013 MA KHAN

More Related Content

PPTX
Me mv-16-17 unit-2
PPTX
Me mv-16-17 unit-4
PPTX
Me mv-16-17 unit-5
PPTX
Me mv-16-17 unit-3
PPT
Introduction to mechanical vibration
PDF
Mechanical Vibrations Lecture
PPT
Mechanical Vibrations all slides
PDF
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Me mv-16-17 unit-2
Me mv-16-17 unit-4
Me mv-16-17 unit-5
Me mv-16-17 unit-3
Introduction to mechanical vibration
Mechanical Vibrations Lecture
Mechanical Vibrations all slides
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems

What's hot (20)

DOCX
4 forced vibration of damped
PDF
Dom unit 3 slides
PPTX
Me mv-16-17 unit-1.1
PPTX
Mechanical vibration - Eccentric force vibration
PDF
Research on the synchronous vibration of the non-integral mechanism under the...
PPT
mechanic of machine-Mechanical Vibrations
PDF
F05113439
PPT
160123119012 2161901
PDF
Control system mathematical modelling of a system
PPTX
Introduction to vibration
PPT
Control Engineering "Force Voltage Analogy"
PDF
Introduction in mechanical vibration
DOCX
Fourth unittheory
PDF
Linear non linear
PPT
Vibration and damping
PPTX
Analogous system 4
PDF
Basics of ac drives
PPTX
Piezoelectric accelerometer
PPTX
Mechanical system
PPTX
Induction type measuring instrument (energy meter)
4 forced vibration of damped
Dom unit 3 slides
Me mv-16-17 unit-1.1
Mechanical vibration - Eccentric force vibration
Research on the synchronous vibration of the non-integral mechanism under the...
mechanic of machine-Mechanical Vibrations
F05113439
160123119012 2161901
Control system mathematical modelling of a system
Introduction to vibration
Control Engineering "Force Voltage Analogy"
Introduction in mechanical vibration
Fourth unittheory
Linear non linear
Vibration and damping
Analogous system 4
Basics of ac drives
Piezoelectric accelerometer
Mechanical system
Induction type measuring instrument (energy meter)
Ad

Viewers also liked (20)

DOC
Web technologies quiz questions - unit1,2
PPTX
Manajer Sebagai Pembuat Keputusan
PDF
Compit 2013 - Torsional Vibrations under Ice Impact
PDF
keputusan
PPTX
New Headway Intermediate - Unit12 Lifes great events !
PPT
2 backlash simulation
PDF
Basic vibration dynamics
PPTX
Backlash on machines
PPTX
Dampers used in electrical transmission lines
PPT
Bab 6 MANAJEMEN manajer sebagai pembuat keputusan.ppt
PPTX
Dynamics of Machinery Unit III
PDF
20140414111323 topik 9 pembuatan keputusan
PPTX
Kemahiran komunikasi 3
PDF
Mechanical Vibrations
PPTX
Kemahiran komunikasi 2
PPTX
Vibration and Chatter in Machining Operation
PDF
Vibration Analysis of Drivelines using MBD
PDF
1 introduction to mechanical vibrations (eng. ahmed abd el aleem amin)
DOC
Unit12 : pembuat keputusan
PPTX
Kemahiran komunikasi 1
Web technologies quiz questions - unit1,2
Manajer Sebagai Pembuat Keputusan
Compit 2013 - Torsional Vibrations under Ice Impact
keputusan
New Headway Intermediate - Unit12 Lifes great events !
2 backlash simulation
Basic vibration dynamics
Backlash on machines
Dampers used in electrical transmission lines
Bab 6 MANAJEMEN manajer sebagai pembuat keputusan.ppt
Dynamics of Machinery Unit III
20140414111323 topik 9 pembuatan keputusan
Kemahiran komunikasi 3
Mechanical Vibrations
Kemahiran komunikasi 2
Vibration and Chatter in Machining Operation
Vibration Analysis of Drivelines using MBD
1 introduction to mechanical vibrations (eng. ahmed abd el aleem amin)
Unit12 : pembuat keputusan
Kemahiran komunikasi 1
Ad

Similar to Me mv-16-17 unit-1.2 (20)

PDF
Lecture 1 on mechanical vibration- Single Degree of Freedom.pdf
PPTX
Single degree of freedom system free vibration part -i and ii
PPTX
Undamped Free Vibration
PPTX
Chapter 2 Single Degree of Freedom System.pptx
PPTX
singledegreeoffreedomsystem-freevibrationpart-iandii-200824161124.pptx
PDF
Mechanical Vibration, Free Vibration,Mechanical Vibration, Resonance, Natural...
PPTX
singledegreeoffreedomsystem-freevibrationpart-iandii-200824161124.pptx
PDF
Vibtraion notes
PDF
Chapter 07 - Vibration and damping of structure
PDF
Ae6602 vibrations & elments of aeroelasticity 2 marks
PDF
single degree of freedom systems forced vibrations
PDF
Unit-1_Theory of vibrations.pdf
DOCX
Mv syllabus
PPTX
TOM UNIT-V Vibrations.pptx
PDF
Chapter 2 lecture 1 mechanical vibration
PPTX
two degree of freddom system
PDF
Vibrations
PPTX
Mechanical Vibration
PDF
ME421 The Single Degree of Freedom System (Undamped).pdf
Lecture 1 on mechanical vibration- Single Degree of Freedom.pdf
Single degree of freedom system free vibration part -i and ii
Undamped Free Vibration
Chapter 2 Single Degree of Freedom System.pptx
singledegreeoffreedomsystem-freevibrationpart-iandii-200824161124.pptx
Mechanical Vibration, Free Vibration,Mechanical Vibration, Resonance, Natural...
singledegreeoffreedomsystem-freevibrationpart-iandii-200824161124.pptx
Vibtraion notes
Chapter 07 - Vibration and damping of structure
Ae6602 vibrations & elments of aeroelasticity 2 marks
single degree of freedom systems forced vibrations
Unit-1_Theory of vibrations.pdf
Mv syllabus
TOM UNIT-V Vibrations.pptx
Chapter 2 lecture 1 mechanical vibration
two degree of freddom system
Vibrations
Mechanical Vibration
ME421 The Single Degree of Freedom System (Undamped).pdf

More from MD ATEEQUE KHAN (10)

PPT
Unit 2.2 thm
PPT
Unit 2.1 thm
PPT
Unit 1.2 thm
PPT
Unit 1.1 thm
PPTX
Ppt unit 3 4 thm
PPT
Ppt unit 2
PPTX
Fm unit 3
PPTX
Fm unit 1.1
PPTX
Fm ppt unit 4
PPTX
Fm ppt unit 5
Unit 2.2 thm
Unit 2.1 thm
Unit 1.2 thm
Unit 1.1 thm
Ppt unit 3 4 thm
Ppt unit 2
Fm unit 3
Fm unit 1.1
Fm ppt unit 4
Fm ppt unit 5

Recently uploaded (20)

PPTX
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
PDF
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Design Guidelines and solutions for Plastics parts
PPTX
Feature types and data preprocessing steps
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
Soil Improvement Techniques Note - Rabbi
PDF
Abrasive, erosive and cavitation wear.pdf
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
introduction to high performance computing
PDF
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
PPTX
Fundamentals of Mechanical Engineering.pptx
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
III.4.1.2_The_Space_Environment.p pdffdf
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
Current and future trends in Computer Vision.pptx
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
Software Engineering and software moduleing
Chemical Technological Processes, Feasibility Study and Chemical Process Indu...
EXPLORING LEARNING ENGAGEMENT FACTORS INFLUENCING BEHAVIORAL, COGNITIVE, AND ...
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Design Guidelines and solutions for Plastics parts
Feature types and data preprocessing steps
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
Soil Improvement Techniques Note - Rabbi
Abrasive, erosive and cavitation wear.pdf
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
introduction to high performance computing
PREDICTION OF DIABETES FROM ELECTRONIC HEALTH RECORDS
Fundamentals of Mechanical Engineering.pptx
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
III.4.1.2_The_Space_Environment.p pdffdf
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Current and future trends in Computer Vision.pptx
distributed database system" (DDBS) is often used to refer to both the distri...
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Software Engineering and software moduleing

Me mv-16-17 unit-1.2

  • 1. Mechanical Department COURSE NAME: MECHANICAL VIBRATIONS Prepared By: MD ATEEQUE KHAN (Assistant Professor) Mechanical Engineering Department JIT,Barabanki,U.P. INDIA 12/31/2016 1NME-013 MA KHAN
  • 2. Table of Contents Unit-1.2 1. Single Degree Freedom System 2. Equation of motion, Newton’s method 3. D’Alembert’s principle 4. Energy method 5. Free vibration, Natural frequency 6. Equivalent systems 7. Displacement, Velocity and acceleration 8. Response to an initial disturbance 9. Torsional vibrations 10.Damped vibrations 11.Vibrations of systems with viscous damping 12.Logarithmic decrement 13.Energy dissipation in viscous damping. 14.Objective Questions 12/31/2016 2NME-013 MA KHAN
  • 3. Unit-1.2: Mechanical Vibrations Single Degree Freedom System Degree of Freedom: Degree of freedom may be defined as the minimum number of independent coordinates required to determine completely the position of all parts of a system at any instant of time. Examples of single degree of freedom systems: Fig(1) Fig(2) Spring mass system Torsional System k x m  12/31/2016 3NME-013 MA KHAN
  • 4. Unit-1.2: Mechanical Vibrations Equation of motion: Newton’s method Statement: Rate of change of momentum in any direction is equal to net force applied in that direction. Free Body Diagram: ts k mo o x Free length ksFs  m mg mgks kx .. xm m 0 ..  kxxm 12/31/2016 4NME-013 MA KHAN
  • 5. Unit-1: Mechanical Vibrations D’Alembert’s principle 12/31/2016 5NME-013 MA KHAN
  • 6. Unit-1: Mechanical Vibrations Energy method Statement: In case of undamped free vibration, sum of kinetic energy and potential energy is constant only transformation of energy takes place. Putting this value in equation-1 and after differentiation we get: This is known as differential equation of motion. It is homogeneous, second order, ordinary differential equation of motion. cUT  )1..(....................0)(    UT t 2 . 2 2. 2 1 )( 2 1 2 1 )( 2 1 kxxmUT kxU xmT    kxxm  .. 12/31/2016 6NME-013 MA KHAN
  • 7. Unit-1.2: Mechanical Vibrations Solution of Differential equation of Motion: Natural Frequency; Dividing by m: This is a homogeneous, second order equation with constant coefficient, so we can assume the solution as below: By substituting for x we get: By solving the above equation: 0 ..  kxxm 0 ..  x m k x st Cex  m k is m k s Ce Ce m k s st st                 0 0 0 2 2 t m k it m k i eCeCx )( 2 )( 1                                  t m k Xx XB XA Let t m k Bt m k Ax sin cos sin : sincos m k n  12/31/2016 7NME-013 MA KHAN
  • 8. Unit-1: Mechanical Vibrations Equivalent systems 1k 2k m m 1k 2k m 1k 2k 21 111 kkkeq  21 kkkeq  21 kkkeq  12/31/2016 8NME-013 MA KHAN
  • 9. Unit-1.2: Mechanical Vibrations Torsional vibrations Torsional vibration is angular vibration of an object, commonly it is related to the shaft along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings where it can cause failures if not controlled as per design requirement. 12/31/2016 9NME-013 MA KHAN
  • 10. Unit-1.2: Mechanical Vibrations Damped vibrations: Viscous damping Damped vibration system FBD k c m m .. xk . xc 12/31/2016 10NME-013 MA KHAN
  • 11. Unit-1: Mechanical Vibrations Logarithmic decrement Logarithmic decrement Logarithmic Decrement as a function of damping ratio t x 1X 2X )sin(    tXex d tn tn Xex          2 1 log x x e 12/31/2016 11NME-013 MA KHAN