UNIT-I
Single Degree of
Freedom Systems –
Free Vibration
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 1
Introduction to Vibration
 When any elastic body such as spring, shaft, or beam is displaced from the
equilibrium position by the application of external force and released, it
commences cyclic motion.
 Such cyclic motion of a body or a system , due to elastic deformation under
the action of external forces, is known as vibration.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 2
Phenomenon of Vibration
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 3
Causes of Vibration
 Unbalance forces and couples
 External excitation forces
 Dry friction between two mating surfaces
 Wind load may cause vibration in certain systems such as telephone lines,
electric lines, etc
 Earthquakes
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 4
Disadvantages of Vibration
 Excessive Stresses
 Loosening of Assembled parts
 Failure of machine parts
 Undesirable noise
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 5
Advantages of Vibration
 All musical instrument
 Vibrating screen, Shakers and conveyors
 Stress relieving equipment
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 6
Terminology and Basic Concept
 Simple Harmonic Motion
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 7
Let
x- displacement of point from mean position after time ‘t’
X- maximum displacement of point from mean position
• Type equation here.Displacement of point
x=Xsin 𝜃=Xsin ω𝑡 ...………………………………………..(1)
• Velocity of point
𝑥=
𝑑𝑥
𝑑𝑡
𝑥= 𝜔X cos ωt
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 8
• Acceleration of point
𝑥 =
𝑑2 𝑥
𝑑𝑡2
𝑥= -ω2
sin ω𝑡
𝑥= -ω2
x
A motion , whose acceleration is
proportional to displacement
from mean position and is
directed towards the mean
position, is known as SHM
𝑥 + ω2x = 0…………………fundamental equation of SHM
 Time Period(𝒕 𝒑)
is the timerequired to complete one cycle (2𝜋 ).
Mathematically,
𝑡 𝑝 =
2 𝜋
𝜔
 Frequency (f)
The number of cycles per unit time is known as frequency. It is reciprocal of
time period.
f=
1
𝑡 𝑝
 Amplitude (X)
It is the maximum displacement of a vibrating body from its mean position.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 9
 Stiffness of spring (K)
It is the force required to produce unit displacement in the direction of applied force.
K=
𝐹
𝛿
, N/m
Where, K= Stiffness of spring , N/m
F= force applied on spring, N
𝛿= deflection of spring, m
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 10
 Degree of Freedom ( D.O.F)
The minimum number of independent co-ordinates required to specify
the motion or configuration of a system at any instant is known as DOF
Ex.
 Damping
Is the resistance to the motion of a vibrating body , which causes a
vibrating body to come to rest position.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 11
 Damping coefficient (C)
Is the damping force or resisting force developed per unit velocity.
Mathematically
c=
𝐹
𝑣
, N-sec/m
Where, F= Force applied on damper
v= Velocity of viscous fluid
 Resonance
When the frequency of external excitation force acting on a body is
equal to the frequency of a vibrating body, the body starts vibrating
with excessively large amplitude. Such state is known as resonance.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 12
Elements of Vibratory System
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 13
Equvalent Springs
Equivalent
Spring
Springs in
Series
Springs in
Parallel
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 14
Spring in Series
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 15
Deflection of Equivalent Spring=Deflection of Spring 1 + Deflection of Spring 2
𝛿 = 𝛿1 + 𝛿2 ……………….(a)
Force on Equivalent Spring=Force on Spring 1 + Force on Spring 2
mg = 𝑚1g = 𝑚2g
The system of two springs in series is to be replaced by an equivalent spring
having stiffness 𝐾𝑒
Deflection of Equivalent Spring= 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 1 + 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 2
𝛿 = 𝛿1 + 𝛿2
∴
mg
𝐾 𝑒
=
𝑚1g
𝐾1
+
𝑚2g
𝐾2
…….(b)
But, mg = 𝑚1g = 𝑚2g … … … . (c)
Substituting Equation ( C ) in equation (b), we get
1
𝐾𝑒
=
1
𝐾1
+
1
𝐾2
mg
𝐾𝑒
=
mg
𝐾1
+
mg
𝐾2
=
Spring in Parallel
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 16
Deflection of Equivalent Spring=Deflection of Spring 1 = Deflection of Spring 2
𝛿 = 𝛿1 = 𝛿2 ……………….(d)
Force on Equivalent Spring=Force on Spring 1 + Force on Spring 2
mg = 𝑚1g + 𝑚2g … … … … … … … … … … … . . (e)
The system of two springs in series is to be replaced by an equivalent spring
having stiffness 𝐾𝑒
Deflection of Equivalent Spring= 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 1 + 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 2
𝛿 = 𝛿1 = 𝛿2
But, 𝛿 = 𝛿1 = 𝛿2
Substituting Equation ( d ) in equation (f), we get
Ke 𝛿 = 𝐾1 𝛿1 + 𝐾2 𝛿2 ……(f) Ke 𝛿 = 𝐾1 𝛿 + 𝐾2 𝛿
𝐾𝑒= 𝐾1 + 𝐾2
Equvalent Damper
Equivalent
Damper
Dampers
in Series
Dampers
in Parallel
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 17
Dampers in Series Dampers in Parallel
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 18
1
𝐶𝑒
=
1
𝐶1
+
1
𝐶2
𝐶𝑒= 𝐶1 + 𝐶2
Introduction to Modeling
 Physical Modeling
 Geometric Modeling
 Mathematical Modeling
 Combination of Geometric and Mathematical Modeling
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 19
Practical Example of Mathematical Modeling
Motor Bike
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 20
Practical Example of Mathematical Modeling
Bicycle
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 21
Types of Vibration
Types of
Vibration
According to
actuating force
Free vibration
Forced Vibration
According to
external
resistsance
Undamped
Vibration
Damped Vibration
According to
motion of system
Longitudinal
Transverse
Torsional
According to
behavior of
vibrating system
Linear Vibration
Non Linear
Vibration
According to
magnitude of
actuating force at
a given time
Deterministic
Random
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 22
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 23
Examples of Vibration
Longitudinal Transverse TorsionalFree Vibration
Forced Vibration
Damped Vibration
Examples of Vibration
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 24
Linear Vibration Non- Linear Vibration
Deterministic Vibration Random Vibration
Determination of Natural Frequency
 Equilibrium Method
 Energy Method
 Rayleighs Method
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 25
Equilibrium Method( D’Alembert
Principal)
• A body or structure which is not in static equilibrium
due to acceleration it possesses can be brought to static
equilibrium by introducing the inertia force on it.
• The inertia force is equal to the mass times the
acceleration direction is opposite to that of acceleration.
• The principle is used for developing the equation of
motion for vibrating system which is further used to
find the natural frequency of the vibrating system.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 26
Equilibrium Method( D’Alembert
Principal)
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 27
Equilibrium Method( D’Alembert
Principal)
• The gravitational force must be equal to zero.
 mg=kδ
------- (1)
 The force acting on the mass are :
1. inertia force : mẍ(upwards)
2. spring force : K(x+δ) (upwards)
3. gravitational force : mg
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 28
According to D’Alembert’s principle ,
𝑚 𝑥 + K x + δ − 𝑚𝑔 = 0
𝑚 𝑥 + Kx + Kδ − 𝑚𝑔 = 0
……..(Since 𝑚𝑔 = 𝐾𝛿)
∴ 𝑚 𝑥 + K𝑥 = 0
∴ 𝑥 +
𝐾
𝑚
x=0 ………………………..(2)
We know that the fundamental equation of SHM
𝑥 + ω2
x = 0 ………………………(3)
Comparing equation of (2) and (3)
ω2
=
𝐾
𝑚
rad/s………………….................(4)
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 29
 The natural frequency f of vibration is ,
𝑓 =
𝜔
2𝜋
or 𝑓 =
1
2𝜋
𝐾
𝑚
Hz……………(5)
Or from equation (1)
𝑚𝑔 = 𝐾𝛿
∴
𝐾
𝑚
=
𝑔
𝛿
Substitute in equation (5)
𝑓 =
1
2𝜋
𝑔
𝛿
Hz
and time period 𝑡 𝑝=
1
𝑓
s
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 30
Energy Method
 According to law of conservation of energy, energy can neither be created nor
be destroyed, but it can be converted from one form to another form.
 According to law of conservation of energy,
 Total Energy= Constant
 K.E+P.E= Constant
𝑑
𝑑𝑡
K. E + P. E = 0………………………………………(a)
Considering Spring mass system
K.E=
1
2
𝑚 𝑥2
P.E is in the form of strain energy stored in the spring. The strain
Energy is given by the area under the force vs deflection diagram.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 31
 PE= Strain Energy=Area under force-deflection
diagram
 PE=
1
2
𝐹𝑥
∴ PE=
1
2
(𝐾𝑥)𝑥
(Since we know that ,Spring force (F)=Kx )
=
1
2
𝐾𝑥2
Substitute in equation (a)
∴
𝑑
𝑑𝑡
(
1
2
𝑚 𝑥2
+
1
2
𝐾𝑥2
)=0
∴
1
2
m(2x 𝑥)+
1
2
K(2x 𝑥)=0
∴ 𝑚 𝑥 𝑥+(Kx) 𝑥 = 0
∴ 𝑚 𝑥 + K𝑥 = 0
∴ 𝑥 +
𝐾
𝑚
x=0
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 32
x
F
Strain Energy
SpringForce
Deflection
We know that the fundamental equation of SHM
𝑥 + ω2
x = 0
Comparing above equation with equation of SHM
ω2 =
𝐾
𝑚
rad/s
 The natural frequency f of vibration is ,
𝑓 =
𝜔
2𝜋
or 𝑓 =
1
2𝜋
𝐾
𝑚
Hz
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 33
Rayleigh’s Method
 This is the extension of energy method , which is developed by Lord Rayleigh
 According to principal of conservation of energy
TE= Constant
(𝑇𝐸) 𝑎𝑡 𝑚𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛= 𝑇𝐸 𝑎𝑡 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛
∴ (𝐾𝐸) 𝑚𝑎𝑥= 𝑃𝐸 𝑚𝑎𝑥 ………………………………………………..(a)
Let body having mass m is moving with SHM , therefore the displacement of the body is given by
𝒙 = 𝑿 𝒔𝒊𝒏 𝝎 𝒏 𝒕
x = Displacement of a body from the mean position after time t sec.
X= Maximum displacement of a body from mean positon
𝜔 𝑛= Circular natural frequency
𝒙=
𝒅𝒙
𝒅𝒕
=𝝎 𝒏X𝐜𝐨𝐬 𝝎 𝒏 𝒕
𝒙 𝒎𝒂𝒙= 𝝎 𝒏 𝐗 (at t=0)
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 34
 At mean position , the maximum KE is
(𝑲𝑬) 𝒎𝒂𝒙=
𝟏
𝟐
𝒎( 𝒙 𝒎𝒂𝒙
𝟐
) or (𝑲𝑬) 𝒎𝒂𝒙=
𝟏
𝟐
𝒎𝝎 𝒏
𝟐
𝑿 𝟐
And PE is ,
PE =
𝟏
𝟐
𝑲𝒙 𝟐
At extreme position ( at x=X) , the max PE is
𝑷𝑬 𝒎𝒂𝒙=
𝟏
𝟐
𝑲𝑿 𝟐
Substituting in equation (a)
𝟏
𝟐
𝒎𝝎 𝒏
𝟐 𝑿 𝟐=
𝟏
𝟐
𝑲𝑿 𝟐
𝝎 𝟐
=
𝑲
𝒎
rad/s
 The natural frequency f of vibration is ,
𝒇 =
𝝎
𝟐𝝅
or 𝒇 =
𝟏
𝟐𝝅
𝑲
𝒎
Hz
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 35
Undamped Free Transverse Vibration
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 36
Consider a cantilever beam of negligible mass carrying a concentrated
mass “m” at the free end, as shown in fig,
• The gravitational force must be equal to zero.
 mg=kδ
------- (1)
 The force acting on the mass are :
1. inertia force : mẍ(upwards)
2. spring force : K(x+δ) (upwards)
3. gravitational force : mg
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 37
According to D’Alembert’s principle ,
𝑚 𝑥 + K x + δ − 𝑚𝑔 = 0
𝑚 𝑥 + Kx + Kδ − 𝑚𝑔 = 0
……..(Since 𝑚𝑔 = 𝐾𝛿)
∴ 𝑚 𝑥 + K𝑥 = 0
∴ 𝑥 +
𝐾
𝑚
x=0 ………………………..(2)
We know that the fundamental equation of SHM
𝑥 + ω2
x = 0 ………………………(3)
Comparing equation of (2) and (3)
ω2
=
𝐾
𝑚
rad/s………………….................(4)
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 38
 The natural frequency f of vibration is ,
𝑓 =
𝜔
2𝜋
or 𝑓 =
1
2𝜋
𝐾
𝑚
Hz……………(5)
Or from equation (1)
𝑚𝑔 = 𝐾𝛿
∴
𝐾
𝑚
=
𝑔
𝛿
Substitute in equation (5)
𝑓 =
1
2𝜋
𝑔
𝛿
Hz
and time period 𝑡 𝑝=
1
𝑓
s
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 39
Torsional Stiffness
 Torsional Stiffness of Shaft (𝐾𝑡) is defined as the torque required to produce
unit angular deflection in the direction of applied torque.
 Mathematically,
𝐾𝑡=
𝑇
𝜃
𝐾𝑡=
𝐺𝐽
𝐿
G=Modulus of rigidity N/𝑚𝑚2
J= Polar Moment of Inertia (
𝜋
32
𝑑4
) = 𝑚𝑚4
l= Length of Shaft
D = Diameter of the shaft
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 40
Parameters for linear & torsional
vibration
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 41
Undamped free torsional vibration
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 42
Consider a disc having mass moment of inertia ‘I’
suspended on a
shaft with negligible mass, as shown in fig,
For angular displacement of disc ‘θ’ in clockwise
direction, the torques acting on the disc are :
Inertia torque
Restoring troque
 Therefor according to D’Alembert’s priciple,
∑ (Inertia Torque + External Torque)= 0
∴ 𝐼 𝜃 + 𝐾𝑡 𝜃 = 0
𝜃+
𝐾𝑡
𝐼
𝜃 = 0……………………(1)
We know that the fundamental equation of SHM
𝜃 + ω2
θ = 0……………….(2)
Comparing eqn (1) and (2)
𝜔 𝑛=
𝐾𝑡
𝐼
𝑓 =
𝜔 𝑛
2𝜋
=
1
2𝜋
𝐾𝑡
𝐼
=
1
2𝜋
𝐺𝐽
𝐿
Hz.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 43
Problem 1)
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 44
Find W such that the system has natural frequency 10 cps.
Solution: If 𝑘 𝑒1 is the effective spring stiffness of the top
three springs in series, then
1
𝑘 𝑒1
=
1
𝑘1
+
1
𝑘2
+
1
𝑘3
=
1
2.0
+
1
1.5
+
1
3.0
= 1.5
Or
𝑘 𝑒1=0.667 kg/cm.
If 𝑘 𝑒2 is the effective spring stiffness of the lower two springs in
parallel, then
𝑘 𝑒2 = 𝑘4 + 𝑘5 = 0.5 + 0.5 = 1.0
Or
𝑘 𝑒2 =1.0 kg/cm
Now 𝑘 𝑒1 and 𝑘 𝑒2 are two springs in parallel, therefore effective
stiffness
𝑘 𝑒= 𝑘 𝑒1+𝑘 𝑒2 = 0.667 + 1.0 = 1.667 𝑘𝑔/𝑐𝑚
𝑓𝑛 =
𝜔
2𝜋
=
1
2𝜋
𝑘 𝑒 𝑔
𝑊
= 10 𝑐𝑝𝑠 𝑔𝑖𝑣𝑒𝑛
Therefore 𝑊 =
𝑘 𝑒 𝑔
4𝜋2×102 =
1.667×980
4𝜋2×102 = 0.414 𝑘𝑔.
𝑊 = 0.414 𝑘𝑔 … … … … 𝐴𝑛𝑠
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 45
Problem no. 2) Find natural frequency for the mathematical model as shown in
figure K=𝟐 × 𝟏𝟎 𝟓
N/m , M=20 kg.
Solution :K=2 × 105
N/m
M=20 kg.
We know that when two springs are in
parallel 𝑘 𝑒 = 𝑘1 + 𝑘2 and when in series
1
𝑘 𝑒1
=
1
𝑘1
+
1
𝑘2
From Fig (g)
𝑓 =
1
2𝜋
𝐾
𝑚
Hz
=
1
2𝜋
13
21
𝐾
𝑚
=
1
2𝜋
13 × 2 × 102
21 × 20
= 𝟏𝟐. 𝟓𝟐 𝑯𝒛. Ans
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 46
Problem no. 3 ) A mass of 1 kg is suspended by a spring passing over the pulley , as shown in fig.
The system is supported horizontally by a spring of stiffness 1 KN/m. Determine the natural
frequency of vibration of a system . Using following data
Mass of pulley M= 10 kg
Radius of pulley R= 50 mm
Distance of spring from centre of pulley r= 35 mm
Solution: The mass and spring K are not attached on one cord or string. Therefore ,
consider 𝑥1 be the displacement of mass in downward direction & 𝑥2 be the deflection of
spring. The pulley will rotate through an angle 𝜃 .
Angular displacement of pulley = 𝜃
Linear displacement of mass = 𝑥1= 𝑅𝜃
Linear velocity of mass = 𝑥1= 𝑅 𝜃
Linear acceleration of mass = 𝑥1= 𝑟𝜃
Deflection of spring = 𝑥2= 𝑟𝜃
Energy Method
K.E of the mass =
𝟏
𝟐
𝒎 𝒙 𝟏
𝟐
=
𝟏
𝟐
𝒎𝑹 𝟐 𝜽 𝟐
K.E of the pulley =
𝟏
𝟐
𝑰 𝟎 𝝎 𝟐
=
𝟏
𝟐
𝑰 𝟎 𝜽 𝟐
=
𝟏
𝟒
𝑴𝑹 𝟐
𝜽 𝟐
PE of the spring =
𝟏
𝟐
𝑲𝒙 𝟐
𝟐
=
𝟏
𝟐
𝑲𝒓 𝟐
𝜽 𝟐
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 47
Total K.E =
𝟏
𝟐
𝒎𝑹 𝟐
𝜽 𝟐
+
𝟏
𝟒
𝑴𝑹 𝟐
𝜽 𝟐
Total P.E =
𝟏
𝟐
𝑲𝒓 𝟐
𝜽 𝟐
According to Energy Method
𝑑
𝑑𝑡
K. E + P. E = 0
∴
𝑑
𝑑𝑡
𝟏
𝟐
𝒎𝑹 𝟐
𝜽 𝟐
+
𝟏
𝟒
𝑴𝑹 𝟐
𝜽 𝟐
+
𝟏
𝟐
𝑲𝒓 𝟐
𝜽 𝟐
= 𝟎
∴
1
2
2𝑚𝑅2
𝜃 𝜃 +
1
4
2𝑀𝑅2
𝜃 𝜃 +
1
2
2𝐾𝑟2
𝜃 𝜃 = 0
∴ 𝑚𝑅2
𝜃 +
1
2
𝑀𝑅2
𝜃 + 𝐾𝑟2
𝜃 = 0
∴ 𝑚𝑅2
+
𝑀𝑅2
2
𝜃 + 𝐾𝑟2 𝜃 = 0
∴ 𝜃 +
𝐾𝑟2
𝑀𝑅2
2
+ 𝑚𝑅2
𝜃 = 0
Comparing this with SHM Equation
𝜔 𝑛 =
𝐾𝑟2
𝑀
2
+ 𝑚 𝑅2
∴ 𝜔 𝑛 =
𝑟
𝑅
𝐾
𝑀
2
+ 𝑚
𝑓𝑛 =
1
2𝜋
×
𝑟
𝑅
𝐾
𝑀
2
+ 𝑚
, Hz
∴ 𝑓𝑛 =
0.035
2𝜋 × 0.05
×
1000
10
2
+ 1
𝑓𝑛 = 1.4382 𝐻𝑧
𝑡 𝑝 = 0.69 𝑠
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 48
Problem no. 4 Determine the natural frequency of oscillation of the simple
pendulum shown in fig.
Solution:
Let, 𝐼0 = 𝑚𝑎𝑠𝑠 𝑀. 𝐼. 𝑜𝑓 𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 𝑎𝑏𝑜𝑢𝑡 𝑂
𝐼0 = 𝑚𝐿2
, kg-𝑚2
Equilibrium Method
Angular motion about O:
𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑡𝑜𝑟𝑞𝑢𝑒 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑇𝑜𝑟𝑞𝑢𝑒 = 0
∴ 𝐼0 𝜃 + 𝑚𝑔 sin 𝜃 × 𝐿 = 0
∴ 𝐼0 𝜃 + 𝑚𝑔𝐿𝜃 = 0
(𝑠𝑖𝑛𝑐𝑒 𝜃 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙, sin 𝜃 ≅ 𝜃)
∴ 𝜃 +
𝑚𝑔𝐿
𝐼0
𝜃 = 0
……………………..(a)
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 49
 Natural circular frequency
comparing equation (a) with the equation of SHM
𝜔 𝑛
2 =
𝑚𝑔𝐿
𝐼0
∴ 𝜔 𝑛 =
𝑚𝑔𝐿
𝐼0
𝜔 𝑛 =
𝑚𝑔𝐿
𝑚𝐿2
Or
𝜔 𝑛=
𝑔
𝐿
, rad/s
Natural Frequency :
𝒇 𝒏 =
𝟏
𝟐𝝅
×
𝒈
𝑳
……………………………….Ans.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 50
Damped Free Vibration
 Damping Vibration: In a vibratory system , if an external resistance is
provided so as to reduce the amplitude of vibrations, the vibration is known
as damped vibration
 Damping : The external resistance which is provided to reduce the amplitude
of vibrations is known as damping.
 Damper : The damper is a unit which absorbs the energy of vibratory system,
thereby reducing the amplitude of vibration.
 Important Parameter :
1. Frequency of damped vibration
2. Rate of decay of amplitude
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 51
Types of damping
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 52
Types of damping
Viscous Damping
Fluid Dashpot
Damping
Eddy Current
Damping
Coulomb or Dry
Friction Damping
Material or Solid or
Structural or
Hysteresis Damping
Viscous Damping
 When the system is allowed to vibrate in a viscous medium , the damping is
called as viscous damping.
 Viscosity is the property of a fluid by virtue of which it offers resistance to
the motion of one layer over the adjacent one.
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 53
t
Moving plate u= 𝒙
Fixed Plate
It can be explained from fig. where two plates are seperateed by fluid film
of thickness (t) . The upper plate is allowed to move parallel to the fixed
plate with a velocity ( 𝒙).The next force (F) required for maintaining the
velocity ( 𝒙) is
𝐹 =
𝜇𝐴
𝑡
𝑥
 The force can also be written as
𝐹 = 𝐶 𝑥
𝐶 =
𝜇𝐴
𝑡
Where C= Viscous Damping Coefficient
Fluid Dashpot
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 54
 Eddy Current Damping
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 55
Coulomb Damping or Dry Friction
Damping
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 56
𝐹𝑟 = 𝜇𝑅 𝑛
𝜇 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
𝑅 𝑛 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛
Material or Solid or Structural or
Hysteresis Damping
Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 57

More Related Content

PDF
Solutions manual for mechanical vibrations 6th edition by rao ibsn 9780134361307
PPT
PPT
Single degree freedom free vibration
PDF
Dynamics of Machines - Unit III - Longitudinal Vibration
PDF
ICSE Physics Class X Handwritten Notes
PPTX
Ductile detailing IS 13920
PDF
single degree of freedom systems forced vibrations
PPTX
Unit 3 free vibration
Solutions manual for mechanical vibrations 6th edition by rao ibsn 9780134361307
Single degree freedom free vibration
Dynamics of Machines - Unit III - Longitudinal Vibration
ICSE Physics Class X Handwritten Notes
Ductile detailing IS 13920
single degree of freedom systems forced vibrations
Unit 3 free vibration

What's hot (20)

PPTX
Stiffness Matrix
PPTX
Shear centre
PPTX
Principal stresses and strains (Mos)
PPT
PPT
Sdof
PPTX
Some basics of Strength Of Materials..
PPTX
Undamped Free Vibration
PDF
Structural dynamics good notes
PPTX
Damping & types
PDF
Lecture 5 castigliono's theorem
PPTX
theory of elasticity
PPT
Shear stresses in beams
PPTX
Forced vibrations unit 4
PPT
Vibration and damping
PDF
Engineering Mechanics
PPT
Bending stresses
PDF
Unit 4 Forced Vibration
PPTX
Equilibrium, Energy and Rayleigh’s Method
PDF
Lecture 4 3 d stress tensor and equilibrium equations
PDF
Unit 6- Plate Bending Theory.pdf
Stiffness Matrix
Shear centre
Principal stresses and strains (Mos)
Sdof
Some basics of Strength Of Materials..
Undamped Free Vibration
Structural dynamics good notes
Damping & types
Lecture 5 castigliono's theorem
theory of elasticity
Shear stresses in beams
Forced vibrations unit 4
Vibration and damping
Engineering Mechanics
Bending stresses
Unit 4 Forced Vibration
Equilibrium, Energy and Rayleigh’s Method
Lecture 4 3 d stress tensor and equilibrium equations
Unit 6- Plate Bending Theory.pdf
Ad

Similar to Single degree of freedom system free vibration part -i and ii (20)

PPTX
singledegreeoffreedomsystem-freevibrationpart-iandii-200824161124.pptx
PPTX
singledegreeoffreedomsystem-freevibrationpart-iandii-200824161124.pptx
PPTX
Survey of the elementary principles
PDF
Engineering Physics
PPTX
Microteaching simple harmonic motion.pptx
PDF
Control system mathematical modelling of a system
PDF
Chapter 07 - Vibration and damping of structure
PPSX
Module 7 -phys_13___11a_application_of__newtons_law (1)
PPTX
Module-2.pptx
PPTX
bcsd-161121142232.pptx
PPTX
Unit1 lectbyvrk dynofmachinery
PPTX
Centrifugal force, inertia force and inertia torque
PDF
Vibtraion notes
PDF
unit-4 wave optics new_unit 5 physic.pdf
PPTX
7. jul 09 2025 wednesday Ch 13 (1-2) Tue Kinetics of Particles Equation o...
PDF
Notes on Applied Mechanics of Happiness and success in your long life me kuch...
DOCX
Learning Object #1 Energy in a Mass Spring System
PPTX
Statics of particle
PDF
Lecture 02- DVA Spectra and Generalized SDOF Systems.pdf
PDF
Structural dynamics and earthquake engineering
singledegreeoffreedomsystem-freevibrationpart-iandii-200824161124.pptx
singledegreeoffreedomsystem-freevibrationpart-iandii-200824161124.pptx
Survey of the elementary principles
Engineering Physics
Microteaching simple harmonic motion.pptx
Control system mathematical modelling of a system
Chapter 07 - Vibration and damping of structure
Module 7 -phys_13___11a_application_of__newtons_law (1)
Module-2.pptx
bcsd-161121142232.pptx
Unit1 lectbyvrk dynofmachinery
Centrifugal force, inertia force and inertia torque
Vibtraion notes
unit-4 wave optics new_unit 5 physic.pdf
7. jul 09 2025 wednesday Ch 13 (1-2) Tue Kinetics of Particles Equation o...
Notes on Applied Mechanics of Happiness and success in your long life me kuch...
Learning Object #1 Energy in a Mass Spring System
Statics of particle
Lecture 02- DVA Spectra and Generalized SDOF Systems.pdf
Structural dynamics and earthquake engineering
Ad

Recently uploaded (20)

PPTX
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
PPTX
Information Storage and Retrieval Techniques Unit III
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
ai_satellite_crop_management_20250815030350.pptx
PDF
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
PPTX
Principal presentation for NAAC (1).pptx
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PPTX
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
PPTX
Measurement Uncertainty and Measurement System analysis
PPTX
Module 8- Technological and Communication Skills.pptx
PDF
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
PDF
Applications of Equal_Area_Criterion.pdf
PDF
distributed database system" (DDBS) is often used to refer to both the distri...
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
PDF
MLpara ingenieira CIVIL, meca Y AMBIENTAL
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
Unit1 - AIML Chapter 1 concept and ethics
PDF
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
A Brief Introduction to IoT- Smart Objects: The "Things" in IoT
Information Storage and Retrieval Techniques Unit III
Soil Improvement Techniques Note - Rabbi
ai_satellite_crop_management_20250815030350.pptx
Unit I -OPERATING SYSTEMS_SRM_KATTANKULATHUR.pptx.pdf
Principal presentation for NAAC (1).pptx
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Chapter 2 -Technology and Enginerring Materials + Composites.pptx
Measurement Uncertainty and Measurement System analysis
Module 8- Technological and Communication Skills.pptx
UEFA_Carbon_Footprint_Calculator_Methology_2.0.pdf
Applications of Equal_Area_Criterion.pdf
distributed database system" (DDBS) is often used to refer to both the distri...
Abrasive, erosive and cavitation wear.pdf
UEFA_Embodied_Carbon_Emissions_Football_Infrastructure.pdf
MLpara ingenieira CIVIL, meca Y AMBIENTAL
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Unit1 - AIML Chapter 1 concept and ethics
LOW POWER CLASS AB SI POWER AMPLIFIER FOR WIRELESS MEDICAL SENSOR NETWORK
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf

Single degree of freedom system free vibration part -i and ii

  • 1. UNIT-I Single Degree of Freedom Systems – Free Vibration Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 1
  • 2. Introduction to Vibration  When any elastic body such as spring, shaft, or beam is displaced from the equilibrium position by the application of external force and released, it commences cyclic motion.  Such cyclic motion of a body or a system , due to elastic deformation under the action of external forces, is known as vibration. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 2
  • 3. Phenomenon of Vibration Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 3
  • 4. Causes of Vibration  Unbalance forces and couples  External excitation forces  Dry friction between two mating surfaces  Wind load may cause vibration in certain systems such as telephone lines, electric lines, etc  Earthquakes Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 4
  • 5. Disadvantages of Vibration  Excessive Stresses  Loosening of Assembled parts  Failure of machine parts  Undesirable noise Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 5
  • 6. Advantages of Vibration  All musical instrument  Vibrating screen, Shakers and conveyors  Stress relieving equipment Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 6
  • 7. Terminology and Basic Concept  Simple Harmonic Motion Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 7 Let x- displacement of point from mean position after time ‘t’ X- maximum displacement of point from mean position • Type equation here.Displacement of point x=Xsin 𝜃=Xsin ω𝑡 ...………………………………………..(1)
  • 8. • Velocity of point 𝑥= 𝑑𝑥 𝑑𝑡 𝑥= 𝜔X cos ωt Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 8 • Acceleration of point 𝑥 = 𝑑2 𝑥 𝑑𝑡2 𝑥= -ω2 sin ω𝑡 𝑥= -ω2 x A motion , whose acceleration is proportional to displacement from mean position and is directed towards the mean position, is known as SHM 𝑥 + ω2x = 0…………………fundamental equation of SHM
  • 9.  Time Period(𝒕 𝒑) is the timerequired to complete one cycle (2𝜋 ). Mathematically, 𝑡 𝑝 = 2 𝜋 𝜔  Frequency (f) The number of cycles per unit time is known as frequency. It is reciprocal of time period. f= 1 𝑡 𝑝  Amplitude (X) It is the maximum displacement of a vibrating body from its mean position. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 9
  • 10.  Stiffness of spring (K) It is the force required to produce unit displacement in the direction of applied force. K= 𝐹 𝛿 , N/m Where, K= Stiffness of spring , N/m F= force applied on spring, N 𝛿= deflection of spring, m Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 10  Degree of Freedom ( D.O.F) The minimum number of independent co-ordinates required to specify the motion or configuration of a system at any instant is known as DOF Ex.
  • 11.  Damping Is the resistance to the motion of a vibrating body , which causes a vibrating body to come to rest position. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 11  Damping coefficient (C) Is the damping force or resisting force developed per unit velocity. Mathematically c= 𝐹 𝑣 , N-sec/m Where, F= Force applied on damper v= Velocity of viscous fluid
  • 12.  Resonance When the frequency of external excitation force acting on a body is equal to the frequency of a vibrating body, the body starts vibrating with excessively large amplitude. Such state is known as resonance. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 12
  • 13. Elements of Vibratory System Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 13
  • 14. Equvalent Springs Equivalent Spring Springs in Series Springs in Parallel Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 14
  • 15. Spring in Series Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 15 Deflection of Equivalent Spring=Deflection of Spring 1 + Deflection of Spring 2 𝛿 = 𝛿1 + 𝛿2 ……………….(a) Force on Equivalent Spring=Force on Spring 1 + Force on Spring 2 mg = 𝑚1g = 𝑚2g The system of two springs in series is to be replaced by an equivalent spring having stiffness 𝐾𝑒 Deflection of Equivalent Spring= 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 1 + 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 2 𝛿 = 𝛿1 + 𝛿2 ∴ mg 𝐾 𝑒 = 𝑚1g 𝐾1 + 𝑚2g 𝐾2 …….(b) But, mg = 𝑚1g = 𝑚2g … … … . (c) Substituting Equation ( C ) in equation (b), we get 1 𝐾𝑒 = 1 𝐾1 + 1 𝐾2 mg 𝐾𝑒 = mg 𝐾1 + mg 𝐾2 =
  • 16. Spring in Parallel Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 16 Deflection of Equivalent Spring=Deflection of Spring 1 = Deflection of Spring 2 𝛿 = 𝛿1 = 𝛿2 ……………….(d) Force on Equivalent Spring=Force on Spring 1 + Force on Spring 2 mg = 𝑚1g + 𝑚2g … … … … … … … … … … … . . (e) The system of two springs in series is to be replaced by an equivalent spring having stiffness 𝐾𝑒 Deflection of Equivalent Spring= 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 1 + 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑠𝑝𝑟𝑖𝑛𝑔 2 𝛿 = 𝛿1 = 𝛿2 But, 𝛿 = 𝛿1 = 𝛿2 Substituting Equation ( d ) in equation (f), we get Ke 𝛿 = 𝐾1 𝛿1 + 𝐾2 𝛿2 ……(f) Ke 𝛿 = 𝐾1 𝛿 + 𝐾2 𝛿 𝐾𝑒= 𝐾1 + 𝐾2
  • 17. Equvalent Damper Equivalent Damper Dampers in Series Dampers in Parallel Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 17
  • 18. Dampers in Series Dampers in Parallel Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 18 1 𝐶𝑒 = 1 𝐶1 + 1 𝐶2 𝐶𝑒= 𝐶1 + 𝐶2
  • 19. Introduction to Modeling  Physical Modeling  Geometric Modeling  Mathematical Modeling  Combination of Geometric and Mathematical Modeling Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 19
  • 20. Practical Example of Mathematical Modeling Motor Bike Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 20
  • 21. Practical Example of Mathematical Modeling Bicycle Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 21
  • 22. Types of Vibration Types of Vibration According to actuating force Free vibration Forced Vibration According to external resistsance Undamped Vibration Damped Vibration According to motion of system Longitudinal Transverse Torsional According to behavior of vibrating system Linear Vibration Non Linear Vibration According to magnitude of actuating force at a given time Deterministic Random Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 22
  • 23. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 23 Examples of Vibration Longitudinal Transverse TorsionalFree Vibration Forced Vibration Damped Vibration
  • 24. Examples of Vibration Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 24 Linear Vibration Non- Linear Vibration Deterministic Vibration Random Vibration
  • 25. Determination of Natural Frequency  Equilibrium Method  Energy Method  Rayleighs Method Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 25
  • 26. Equilibrium Method( D’Alembert Principal) • A body or structure which is not in static equilibrium due to acceleration it possesses can be brought to static equilibrium by introducing the inertia force on it. • The inertia force is equal to the mass times the acceleration direction is opposite to that of acceleration. • The principle is used for developing the equation of motion for vibrating system which is further used to find the natural frequency of the vibrating system. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 26
  • 27. Equilibrium Method( D’Alembert Principal) Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 27
  • 28. Equilibrium Method( D’Alembert Principal) • The gravitational force must be equal to zero.  mg=kδ ------- (1)  The force acting on the mass are : 1. inertia force : mẍ(upwards) 2. spring force : K(x+δ) (upwards) 3. gravitational force : mg Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 28
  • 29. According to D’Alembert’s principle , 𝑚 𝑥 + K x + δ − 𝑚𝑔 = 0 𝑚 𝑥 + Kx + Kδ − 𝑚𝑔 = 0 ……..(Since 𝑚𝑔 = 𝐾𝛿) ∴ 𝑚 𝑥 + K𝑥 = 0 ∴ 𝑥 + 𝐾 𝑚 x=0 ………………………..(2) We know that the fundamental equation of SHM 𝑥 + ω2 x = 0 ………………………(3) Comparing equation of (2) and (3) ω2 = 𝐾 𝑚 rad/s………………….................(4) Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 29
  • 30.  The natural frequency f of vibration is , 𝑓 = 𝜔 2𝜋 or 𝑓 = 1 2𝜋 𝐾 𝑚 Hz……………(5) Or from equation (1) 𝑚𝑔 = 𝐾𝛿 ∴ 𝐾 𝑚 = 𝑔 𝛿 Substitute in equation (5) 𝑓 = 1 2𝜋 𝑔 𝛿 Hz and time period 𝑡 𝑝= 1 𝑓 s Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 30
  • 31. Energy Method  According to law of conservation of energy, energy can neither be created nor be destroyed, but it can be converted from one form to another form.  According to law of conservation of energy,  Total Energy= Constant  K.E+P.E= Constant 𝑑 𝑑𝑡 K. E + P. E = 0………………………………………(a) Considering Spring mass system K.E= 1 2 𝑚 𝑥2 P.E is in the form of strain energy stored in the spring. The strain Energy is given by the area under the force vs deflection diagram. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 31
  • 32.  PE= Strain Energy=Area under force-deflection diagram  PE= 1 2 𝐹𝑥 ∴ PE= 1 2 (𝐾𝑥)𝑥 (Since we know that ,Spring force (F)=Kx ) = 1 2 𝐾𝑥2 Substitute in equation (a) ∴ 𝑑 𝑑𝑡 ( 1 2 𝑚 𝑥2 + 1 2 𝐾𝑥2 )=0 ∴ 1 2 m(2x 𝑥)+ 1 2 K(2x 𝑥)=0 ∴ 𝑚 𝑥 𝑥+(Kx) 𝑥 = 0 ∴ 𝑚 𝑥 + K𝑥 = 0 ∴ 𝑥 + 𝐾 𝑚 x=0 Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 32 x F Strain Energy SpringForce Deflection
  • 33. We know that the fundamental equation of SHM 𝑥 + ω2 x = 0 Comparing above equation with equation of SHM ω2 = 𝐾 𝑚 rad/s  The natural frequency f of vibration is , 𝑓 = 𝜔 2𝜋 or 𝑓 = 1 2𝜋 𝐾 𝑚 Hz Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 33
  • 34. Rayleigh’s Method  This is the extension of energy method , which is developed by Lord Rayleigh  According to principal of conservation of energy TE= Constant (𝑇𝐸) 𝑎𝑡 𝑚𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛= 𝑇𝐸 𝑎𝑡 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ∴ (𝐾𝐸) 𝑚𝑎𝑥= 𝑃𝐸 𝑚𝑎𝑥 ………………………………………………..(a) Let body having mass m is moving with SHM , therefore the displacement of the body is given by 𝒙 = 𝑿 𝒔𝒊𝒏 𝝎 𝒏 𝒕 x = Displacement of a body from the mean position after time t sec. X= Maximum displacement of a body from mean positon 𝜔 𝑛= Circular natural frequency 𝒙= 𝒅𝒙 𝒅𝒕 =𝝎 𝒏X𝐜𝐨𝐬 𝝎 𝒏 𝒕 𝒙 𝒎𝒂𝒙= 𝝎 𝒏 𝐗 (at t=0) Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 34
  • 35.  At mean position , the maximum KE is (𝑲𝑬) 𝒎𝒂𝒙= 𝟏 𝟐 𝒎( 𝒙 𝒎𝒂𝒙 𝟐 ) or (𝑲𝑬) 𝒎𝒂𝒙= 𝟏 𝟐 𝒎𝝎 𝒏 𝟐 𝑿 𝟐 And PE is , PE = 𝟏 𝟐 𝑲𝒙 𝟐 At extreme position ( at x=X) , the max PE is 𝑷𝑬 𝒎𝒂𝒙= 𝟏 𝟐 𝑲𝑿 𝟐 Substituting in equation (a) 𝟏 𝟐 𝒎𝝎 𝒏 𝟐 𝑿 𝟐= 𝟏 𝟐 𝑲𝑿 𝟐 𝝎 𝟐 = 𝑲 𝒎 rad/s  The natural frequency f of vibration is , 𝒇 = 𝝎 𝟐𝝅 or 𝒇 = 𝟏 𝟐𝝅 𝑲 𝒎 Hz Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 35
  • 36. Undamped Free Transverse Vibration Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 36 Consider a cantilever beam of negligible mass carrying a concentrated mass “m” at the free end, as shown in fig,
  • 37. • The gravitational force must be equal to zero.  mg=kδ ------- (1)  The force acting on the mass are : 1. inertia force : mẍ(upwards) 2. spring force : K(x+δ) (upwards) 3. gravitational force : mg Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 37
  • 38. According to D’Alembert’s principle , 𝑚 𝑥 + K x + δ − 𝑚𝑔 = 0 𝑚 𝑥 + Kx + Kδ − 𝑚𝑔 = 0 ……..(Since 𝑚𝑔 = 𝐾𝛿) ∴ 𝑚 𝑥 + K𝑥 = 0 ∴ 𝑥 + 𝐾 𝑚 x=0 ………………………..(2) We know that the fundamental equation of SHM 𝑥 + ω2 x = 0 ………………………(3) Comparing equation of (2) and (3) ω2 = 𝐾 𝑚 rad/s………………….................(4) Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 38
  • 39.  The natural frequency f of vibration is , 𝑓 = 𝜔 2𝜋 or 𝑓 = 1 2𝜋 𝐾 𝑚 Hz……………(5) Or from equation (1) 𝑚𝑔 = 𝐾𝛿 ∴ 𝐾 𝑚 = 𝑔 𝛿 Substitute in equation (5) 𝑓 = 1 2𝜋 𝑔 𝛿 Hz and time period 𝑡 𝑝= 1 𝑓 s Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 39
  • 40. Torsional Stiffness  Torsional Stiffness of Shaft (𝐾𝑡) is defined as the torque required to produce unit angular deflection in the direction of applied torque.  Mathematically, 𝐾𝑡= 𝑇 𝜃 𝐾𝑡= 𝐺𝐽 𝐿 G=Modulus of rigidity N/𝑚𝑚2 J= Polar Moment of Inertia ( 𝜋 32 𝑑4 ) = 𝑚𝑚4 l= Length of Shaft D = Diameter of the shaft Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 40
  • 41. Parameters for linear & torsional vibration Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 41
  • 42. Undamped free torsional vibration Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 42 Consider a disc having mass moment of inertia ‘I’ suspended on a shaft with negligible mass, as shown in fig, For angular displacement of disc ‘θ’ in clockwise direction, the torques acting on the disc are : Inertia torque Restoring troque
  • 43.  Therefor according to D’Alembert’s priciple, ∑ (Inertia Torque + External Torque)= 0 ∴ 𝐼 𝜃 + 𝐾𝑡 𝜃 = 0 𝜃+ 𝐾𝑡 𝐼 𝜃 = 0……………………(1) We know that the fundamental equation of SHM 𝜃 + ω2 θ = 0……………….(2) Comparing eqn (1) and (2) 𝜔 𝑛= 𝐾𝑡 𝐼 𝑓 = 𝜔 𝑛 2𝜋 = 1 2𝜋 𝐾𝑡 𝐼 = 1 2𝜋 𝐺𝐽 𝐿 Hz. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 43
  • 44. Problem 1) Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 44 Find W such that the system has natural frequency 10 cps. Solution: If 𝑘 𝑒1 is the effective spring stiffness of the top three springs in series, then 1 𝑘 𝑒1 = 1 𝑘1 + 1 𝑘2 + 1 𝑘3 = 1 2.0 + 1 1.5 + 1 3.0 = 1.5 Or 𝑘 𝑒1=0.667 kg/cm. If 𝑘 𝑒2 is the effective spring stiffness of the lower two springs in parallel, then 𝑘 𝑒2 = 𝑘4 + 𝑘5 = 0.5 + 0.5 = 1.0 Or 𝑘 𝑒2 =1.0 kg/cm Now 𝑘 𝑒1 and 𝑘 𝑒2 are two springs in parallel, therefore effective stiffness 𝑘 𝑒= 𝑘 𝑒1+𝑘 𝑒2 = 0.667 + 1.0 = 1.667 𝑘𝑔/𝑐𝑚 𝑓𝑛 = 𝜔 2𝜋 = 1 2𝜋 𝑘 𝑒 𝑔 𝑊 = 10 𝑐𝑝𝑠 𝑔𝑖𝑣𝑒𝑛 Therefore 𝑊 = 𝑘 𝑒 𝑔 4𝜋2×102 = 1.667×980 4𝜋2×102 = 0.414 𝑘𝑔. 𝑊 = 0.414 𝑘𝑔 … … … … 𝐴𝑛𝑠
  • 45. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 45 Problem no. 2) Find natural frequency for the mathematical model as shown in figure K=𝟐 × 𝟏𝟎 𝟓 N/m , M=20 kg. Solution :K=2 × 105 N/m M=20 kg. We know that when two springs are in parallel 𝑘 𝑒 = 𝑘1 + 𝑘2 and when in series 1 𝑘 𝑒1 = 1 𝑘1 + 1 𝑘2 From Fig (g) 𝑓 = 1 2𝜋 𝐾 𝑚 Hz = 1 2𝜋 13 21 𝐾 𝑚 = 1 2𝜋 13 × 2 × 102 21 × 20 = 𝟏𝟐. 𝟓𝟐 𝑯𝒛. Ans
  • 46. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 46 Problem no. 3 ) A mass of 1 kg is suspended by a spring passing over the pulley , as shown in fig. The system is supported horizontally by a spring of stiffness 1 KN/m. Determine the natural frequency of vibration of a system . Using following data Mass of pulley M= 10 kg Radius of pulley R= 50 mm Distance of spring from centre of pulley r= 35 mm Solution: The mass and spring K are not attached on one cord or string. Therefore , consider 𝑥1 be the displacement of mass in downward direction & 𝑥2 be the deflection of spring. The pulley will rotate through an angle 𝜃 . Angular displacement of pulley = 𝜃 Linear displacement of mass = 𝑥1= 𝑅𝜃 Linear velocity of mass = 𝑥1= 𝑅 𝜃 Linear acceleration of mass = 𝑥1= 𝑟𝜃 Deflection of spring = 𝑥2= 𝑟𝜃 Energy Method K.E of the mass = 𝟏 𝟐 𝒎 𝒙 𝟏 𝟐 = 𝟏 𝟐 𝒎𝑹 𝟐 𝜽 𝟐 K.E of the pulley = 𝟏 𝟐 𝑰 𝟎 𝝎 𝟐 = 𝟏 𝟐 𝑰 𝟎 𝜽 𝟐 = 𝟏 𝟒 𝑴𝑹 𝟐 𝜽 𝟐 PE of the spring = 𝟏 𝟐 𝑲𝒙 𝟐 𝟐 = 𝟏 𝟐 𝑲𝒓 𝟐 𝜽 𝟐
  • 47. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 47 Total K.E = 𝟏 𝟐 𝒎𝑹 𝟐 𝜽 𝟐 + 𝟏 𝟒 𝑴𝑹 𝟐 𝜽 𝟐 Total P.E = 𝟏 𝟐 𝑲𝒓 𝟐 𝜽 𝟐 According to Energy Method 𝑑 𝑑𝑡 K. E + P. E = 0 ∴ 𝑑 𝑑𝑡 𝟏 𝟐 𝒎𝑹 𝟐 𝜽 𝟐 + 𝟏 𝟒 𝑴𝑹 𝟐 𝜽 𝟐 + 𝟏 𝟐 𝑲𝒓 𝟐 𝜽 𝟐 = 𝟎 ∴ 1 2 2𝑚𝑅2 𝜃 𝜃 + 1 4 2𝑀𝑅2 𝜃 𝜃 + 1 2 2𝐾𝑟2 𝜃 𝜃 = 0 ∴ 𝑚𝑅2 𝜃 + 1 2 𝑀𝑅2 𝜃 + 𝐾𝑟2 𝜃 = 0 ∴ 𝑚𝑅2 + 𝑀𝑅2 2 𝜃 + 𝐾𝑟2 𝜃 = 0 ∴ 𝜃 + 𝐾𝑟2 𝑀𝑅2 2 + 𝑚𝑅2 𝜃 = 0 Comparing this with SHM Equation 𝜔 𝑛 = 𝐾𝑟2 𝑀 2 + 𝑚 𝑅2
  • 48. ∴ 𝜔 𝑛 = 𝑟 𝑅 𝐾 𝑀 2 + 𝑚 𝑓𝑛 = 1 2𝜋 × 𝑟 𝑅 𝐾 𝑀 2 + 𝑚 , Hz ∴ 𝑓𝑛 = 0.035 2𝜋 × 0.05 × 1000 10 2 + 1 𝑓𝑛 = 1.4382 𝐻𝑧 𝑡 𝑝 = 0.69 𝑠 Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 48
  • 49. Problem no. 4 Determine the natural frequency of oscillation of the simple pendulum shown in fig. Solution: Let, 𝐼0 = 𝑚𝑎𝑠𝑠 𝑀. 𝐼. 𝑜𝑓 𝑠𝑖𝑚𝑝𝑙𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 𝑎𝑏𝑜𝑢𝑡 𝑂 𝐼0 = 𝑚𝐿2 , kg-𝑚2 Equilibrium Method Angular motion about O: 𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑡𝑜𝑟𝑞𝑢𝑒 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑇𝑜𝑟𝑞𝑢𝑒 = 0 ∴ 𝐼0 𝜃 + 𝑚𝑔 sin 𝜃 × 𝐿 = 0 ∴ 𝐼0 𝜃 + 𝑚𝑔𝐿𝜃 = 0 (𝑠𝑖𝑛𝑐𝑒 𝜃 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙, sin 𝜃 ≅ 𝜃) ∴ 𝜃 + 𝑚𝑔𝐿 𝐼0 𝜃 = 0 ……………………..(a) Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 49
  • 50.  Natural circular frequency comparing equation (a) with the equation of SHM 𝜔 𝑛 2 = 𝑚𝑔𝐿 𝐼0 ∴ 𝜔 𝑛 = 𝑚𝑔𝐿 𝐼0 𝜔 𝑛 = 𝑚𝑔𝐿 𝑚𝐿2 Or 𝜔 𝑛= 𝑔 𝐿 , rad/s Natural Frequency : 𝒇 𝒏 = 𝟏 𝟐𝝅 × 𝒈 𝑳 ……………………………….Ans. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 50
  • 51. Damped Free Vibration  Damping Vibration: In a vibratory system , if an external resistance is provided so as to reduce the amplitude of vibrations, the vibration is known as damped vibration  Damping : The external resistance which is provided to reduce the amplitude of vibrations is known as damping.  Damper : The damper is a unit which absorbs the energy of vibratory system, thereby reducing the amplitude of vibration.  Important Parameter : 1. Frequency of damped vibration 2. Rate of decay of amplitude Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 51
  • 52. Types of damping Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 52 Types of damping Viscous Damping Fluid Dashpot Damping Eddy Current Damping Coulomb or Dry Friction Damping Material or Solid or Structural or Hysteresis Damping
  • 53. Viscous Damping  When the system is allowed to vibrate in a viscous medium , the damping is called as viscous damping.  Viscosity is the property of a fluid by virtue of which it offers resistance to the motion of one layer over the adjacent one. Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 53 t Moving plate u= 𝒙 Fixed Plate It can be explained from fig. where two plates are seperateed by fluid film of thickness (t) . The upper plate is allowed to move parallel to the fixed plate with a velocity ( 𝒙).The next force (F) required for maintaining the velocity ( 𝒙) is 𝐹 = 𝜇𝐴 𝑡 𝑥
  • 54.  The force can also be written as 𝐹 = 𝐶 𝑥 𝐶 = 𝜇𝐴 𝑡 Where C= Viscous Damping Coefficient Fluid Dashpot Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 54
  • 55.  Eddy Current Damping Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 55
  • 56. Coulomb Damping or Dry Friction Damping Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 56 𝐹𝑟 = 𝜇𝑅 𝑛 𝜇 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑅 𝑛 = 𝑁𝑜𝑟𝑚𝑎𝑙 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛
  • 57. Material or Solid or Structural or Hysteresis Damping Prof. S. S. Patil (ME DESIGN) TSSM’s PVPIT Bavdhan Pune 57