SlideShare a Scribd company logo
Transfer Function of a Mechanical
Translational System
• Two-mass Spring-Damper System with
External Force
• (Insert diagram of the system)
System Overview
• - Two masses: M1, M2
• - Springs: K1 (wall to M1), K (M1 to M2)
• - Dampers: B1 (M1 to ground), B (between M1
and M2), B2 (M2 to ground)
• - Force f(t) applied on M2
Define Variables
• - x1(t): Displacement of M1
• - x2(t): Displacement of M2
• - F(t): External force applied to M2
• - X1(s), X2(s), F(s): Laplace transforms
Equation of Motion for M1
• M1 * x1'' = -K1 * x1 - B1 * x1' + K(x2 - x1) +
B(x2' - x1')
• => M1 * x1'' + (B1 + B) * x1' + (K1 + K)x1 = B *
x2' + K * x2
Equation of Motion for M2
• M2 * x2'' = -K(x2 - x1) - B(x2' - x1') - B2 * x2' +
f(t)
• => M2 * x2'' + (B + B2) * x2' + K * x2 = B * x1' +
K * x1 + f(t)
Laplace Transforms
• For M1:
• [M1 s^2 + (B1 + B)s + (K1 + K)] X1(s) = (B s + K)
X2(s)
• For M2:
• [M2 s^2 + (B + B2)s + K] X2(s) = (B s + K) X1(s)
+ F(s)
Solve for X1(s)
• X1(s) = [(B s + K) X2(s)] / [M1 s^2 + (B1 + B)s +
(K1 + K)]
Substitute into M2 Equation
• X2(s) * [M2 s^2 + (B + B2) s + K - ((B s + K)^2 /
[M1 s^2 + (B1 + B)s + (K1 + K)])] = F(s)
Final Transfer Function
• X2(s)/F(s) = 1 / [M2 s^2 + (B + B2) s + K - (B s +
K)^2 / (M1 s^2 + (B1 + B)s + (K1 + K))]
Summary and Applications
• - Transfer function derived using Newton's
laws and Laplace Transform
• - System represents real-world systems:
vehicles, robotics, etc.
• - Useful for simulation and control design
Mechanical Rotational System -
Free Body Diagram
• System Components:
• - Disk with J = 2 kg-m²/rad
• - B = 4 N-m/(rad/s)
• - K = 8 N-m/rad
• - External torque T(t)
• (Insert Free Body Diagram showing torque,
damping opposing , and spring opposing θ)
θ̇
Rotational System Equation
• Using Newton’s Second Law:
• J (t) + B (t) + K θ(t) = T(t)
θ̈ θ̇
• Where:
• J: Moment of inertia
• B: Damping coefficient
• K: Spring stiffness
• T(t): Input torque
• θ(t): Angular displacement
Summary
• - Free-body diagram models rotational
dynamics
• - Equation from torque balance
• - Analogous to translational systems

More Related Content

PPTX
Effect_of_Friction_Transfer_Function.pptx
PPTX
modeling of MECHANICAL system (translational), Basic Elements Modeling-Spring...
PPTX
Mass Spring Damper system.pptx
PDF
Chapter 1_Lect_3 System Modeling_144875f87dacff21abd64f918872013c Copy.pdf
DOCX
Suspension system modeling buss
PPTX
Csl3 19 j15
PPTX
4_5958551478569274735.pptx
PDF
lecture-3-intro_to_modelling_mechanical.pdf
Effect_of_Friction_Transfer_Function.pptx
modeling of MECHANICAL system (translational), Basic Elements Modeling-Spring...
Mass Spring Damper system.pptx
Chapter 1_Lect_3 System Modeling_144875f87dacff21abd64f918872013c Copy.pdf
Suspension system modeling buss
Csl3 19 j15
4_5958551478569274735.pptx
lecture-3-intro_to_modelling_mechanical.pdf

Similar to Mechanical_System_Transfer_Functions.pptx (20)

PPTX
modelling_of_mechanical_systems.pptx
PPTX
lecture-3-4_5_intro_to_modelling_mechanical.pptx
PPTX
modelling_mechanical.pptx
PPTX
system modeling and identification .pptx
PPT
LCDF3_Chap_02_P2.ppt Digital Login Design
PPTX
Modelling_of_Mechanical_Systems1.pptx
PPTX
Conversion of transfer function to canonical state variable models
PDF
Introduction to FEM
PPTX
som control system ppt.pptx
PDF
Introduction to control systems lecture 3 slides
PPTX
DSM.pptx
PDF
Design of a Lift Mechanism for Disabled People
PDF
Modeling of mechanical_systems
PPTX
5-Mathematical Modeling of Mechanical translational Systems-23-07-2024.pptx
PPT
Admission in india 2015
PDF
E33018021
PPT
Admissions in india 2015
PDF
DSP- Module -5.pdf
PPT
PDF
1.3428190.pdf
modelling_of_mechanical_systems.pptx
lecture-3-4_5_intro_to_modelling_mechanical.pptx
modelling_mechanical.pptx
system modeling and identification .pptx
LCDF3_Chap_02_P2.ppt Digital Login Design
Modelling_of_Mechanical_Systems1.pptx
Conversion of transfer function to canonical state variable models
Introduction to FEM
som control system ppt.pptx
Introduction to control systems lecture 3 slides
DSM.pptx
Design of a Lift Mechanism for Disabled People
Modeling of mechanical_systems
5-Mathematical Modeling of Mechanical translational Systems-23-07-2024.pptx
Admission in india 2015
E33018021
Admissions in india 2015
DSP- Module -5.pdf
1.3428190.pdf
Ad

More from ravikumarsrnivasaKal (7)

PPTX
final_review_overall PPT goodone pl .pptx
PPT
cs ppt good one as well containg everyting .ppt
PPTX
ELECTRIC VEHICLE ENERGY STORAGE XCLUSTER 3.pptx
PPTX
CLUSTER 1FUNDAMENTS OF ELECTRIC VEHICLES .pptx
PPT
ch2 - computer system unit 32 structures.ppt
PPTX
Control_Systems_Unit13_Presentation.pptx
PPT
Introduction to principles of feedback .ppt
final_review_overall PPT goodone pl .pptx
cs ppt good one as well containg everyting .ppt
ELECTRIC VEHICLE ENERGY STORAGE XCLUSTER 3.pptx
CLUSTER 1FUNDAMENTS OF ELECTRIC VEHICLES .pptx
ch2 - computer system unit 32 structures.ppt
Control_Systems_Unit13_Presentation.pptx
Introduction to principles of feedback .ppt
Ad

Recently uploaded (20)

PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
introduction to high performance computing
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PPTX
Artificial Intelligence
PPT
Total quality management ppt for engineering students
PPTX
Nature of X-rays, X- Ray Equipment, Fluoroscopy
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
737-MAX_SRG.pdf student reference guides
PPTX
Fundamentals of Mechanical Engineering.pptx
PPT
Occupational Health and Safety Management System
PPTX
Software Engineering and software moduleing
PPTX
Current and future trends in Computer Vision.pptx
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PDF
Soil Improvement Techniques Note - Rabbi
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
introduction to high performance computing
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Artificial Intelligence
Total quality management ppt for engineering students
Nature of X-rays, X- Ray Equipment, Fluoroscopy
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Abrasive, erosive and cavitation wear.pdf
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
737-MAX_SRG.pdf student reference guides
Fundamentals of Mechanical Engineering.pptx
Occupational Health and Safety Management System
Software Engineering and software moduleing
Current and future trends in Computer Vision.pptx
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
Exploratory_Data_Analysis_Fundamentals.pdf
Soil Improvement Techniques Note - Rabbi

Mechanical_System_Transfer_Functions.pptx

  • 1. Transfer Function of a Mechanical Translational System • Two-mass Spring-Damper System with External Force • (Insert diagram of the system)
  • 2. System Overview • - Two masses: M1, M2 • - Springs: K1 (wall to M1), K (M1 to M2) • - Dampers: B1 (M1 to ground), B (between M1 and M2), B2 (M2 to ground) • - Force f(t) applied on M2
  • 3. Define Variables • - x1(t): Displacement of M1 • - x2(t): Displacement of M2 • - F(t): External force applied to M2 • - X1(s), X2(s), F(s): Laplace transforms
  • 4. Equation of Motion for M1 • M1 * x1'' = -K1 * x1 - B1 * x1' + K(x2 - x1) + B(x2' - x1') • => M1 * x1'' + (B1 + B) * x1' + (K1 + K)x1 = B * x2' + K * x2
  • 5. Equation of Motion for M2 • M2 * x2'' = -K(x2 - x1) - B(x2' - x1') - B2 * x2' + f(t) • => M2 * x2'' + (B + B2) * x2' + K * x2 = B * x1' + K * x1 + f(t)
  • 6. Laplace Transforms • For M1: • [M1 s^2 + (B1 + B)s + (K1 + K)] X1(s) = (B s + K) X2(s) • For M2: • [M2 s^2 + (B + B2)s + K] X2(s) = (B s + K) X1(s) + F(s)
  • 7. Solve for X1(s) • X1(s) = [(B s + K) X2(s)] / [M1 s^2 + (B1 + B)s + (K1 + K)]
  • 8. Substitute into M2 Equation • X2(s) * [M2 s^2 + (B + B2) s + K - ((B s + K)^2 / [M1 s^2 + (B1 + B)s + (K1 + K)])] = F(s)
  • 9. Final Transfer Function • X2(s)/F(s) = 1 / [M2 s^2 + (B + B2) s + K - (B s + K)^2 / (M1 s^2 + (B1 + B)s + (K1 + K))]
  • 10. Summary and Applications • - Transfer function derived using Newton's laws and Laplace Transform • - System represents real-world systems: vehicles, robotics, etc. • - Useful for simulation and control design
  • 11. Mechanical Rotational System - Free Body Diagram • System Components: • - Disk with J = 2 kg-m²/rad • - B = 4 N-m/(rad/s) • - K = 8 N-m/rad • - External torque T(t) • (Insert Free Body Diagram showing torque, damping opposing , and spring opposing θ) θ̇
  • 12. Rotational System Equation • Using Newton’s Second Law: • J (t) + B (t) + K θ(t) = T(t) θ̈ θ̇ • Where: • J: Moment of inertia • B: Damping coefficient • K: Spring stiffness • T(t): Input torque • θ(t): Angular displacement
  • 13. Summary • - Free-body diagram models rotational dynamics • - Equation from torque balance • - Analogous to translational systems