1. Transfer Function of a Mechanical
Translational System
• Two-mass Spring-Damper System with
External Force
• (Insert diagram of the system)
2. System Overview
• - Two masses: M1, M2
• - Springs: K1 (wall to M1), K (M1 to M2)
• - Dampers: B1 (M1 to ground), B (between M1
and M2), B2 (M2 to ground)
• - Force f(t) applied on M2
3. Define Variables
• - x1(t): Displacement of M1
• - x2(t): Displacement of M2
• - F(t): External force applied to M2
• - X1(s), X2(s), F(s): Laplace transforms
4. Equation of Motion for M1
• M1 * x1'' = -K1 * x1 - B1 * x1' + K(x2 - x1) +
B(x2' - x1')
• => M1 * x1'' + (B1 + B) * x1' + (K1 + K)x1 = B *
x2' + K * x2
5. Equation of Motion for M2
• M2 * x2'' = -K(x2 - x1) - B(x2' - x1') - B2 * x2' +
f(t)
• => M2 * x2'' + (B + B2) * x2' + K * x2 = B * x1' +
K * x1 + f(t)
8. Substitute into M2 Equation
• X2(s) * [M2 s^2 + (B + B2) s + K - ((B s + K)^2 /
[M1 s^2 + (B1 + B)s + (K1 + K)])] = F(s)
9. Final Transfer Function
• X2(s)/F(s) = 1 / [M2 s^2 + (B + B2) s + K - (B s +
K)^2 / (M1 s^2 + (B1 + B)s + (K1 + K))]
10. Summary and Applications
• - Transfer function derived using Newton's
laws and Laplace Transform
• - System represents real-world systems:
vehicles, robotics, etc.
• - Useful for simulation and control design
11. Mechanical Rotational System -
Free Body Diagram
• System Components:
• - Disk with J = 2 kg-m²/rad
• - B = 4 N-m/(rad/s)
• - K = 8 N-m/rad
• - External torque T(t)
• (Insert Free Body Diagram showing torque,
damping opposing , and spring opposing θ)
θ̇
12. Rotational System Equation
• Using Newton’s Second Law:
• J (t) + B (t) + K θ(t) = T(t)
θ̈ θ̇
• Where:
• J: Moment of inertia
• B: Damping coefficient
• K: Spring stiffness
• T(t): Input torque
• θ(t): Angular displacement
13. Summary
• - Free-body diagram models rotational
dynamics
• - Equation from torque balance
• - Analogous to translational systems