SlideShare a Scribd company logo
Verifying	
  Multimedia	
  Use	
  at	
  MediaEval	
  2016
Christina	
  Boididou1,	
  Stuart	
  E.	
  Middleton5,	
  Symeon Papadopoulos1, Duc-­‐Tien	
  
Dang-­‐Nguyen2,3,	
  Giulia	
  Boato2,	
  Michael	
  Riegler4 &	
  Yiannis	
  Kompatsiaris1
1	
  Information	
  Technologies	
  Institute	
  (ITI),	
  CERTH,	
  Greece
2 University	
  of	
  Trento,	
  Italy.
3	
  Insight	
  Centre	
  for	
  Data	
  Analytics	
  at	
  Dublin	
  City	
  University,	
  Ireland.
4 Simula Research	
  Lab,	
  Norway.
5	
  University	
  of	
  Southampton	
  IT	
  Innovation	
  Centre,	
  UK.
REAL OR FAKE
The verification problem
1
Real photo
Captured in Dublin’s
Olympia Theatre
A photo of Eagles of Death Metal in concert
But
Mislabeled on social
media as showing the
crowd at the Bataclan
theatre just before
gunmen began firing.
A TYPOLOGY OF FAKE: REPOSTING OF REAL
Photos from past events reposted as being associated to current
event
‘Eiffel Tower lights up in
solidarity with Pakistan’
‘Syrian refugee girl selling
gum in Jordan’
A TYPOLOGY OF FAKE: PHOTOSHOPPING
Digitally manipulated photos / Tampered
‘Sharks in New York during
Hurricane Sandy’
‘Sikh man is a suspect of
Paris attacks’
TASK DEFINITION2
MAIN TASK
POST
IMAGE
MEDIAEVAL
SYSTEM
FAKE
REAL
AUTHOR
(PROFILE)
‘Given a post (image+metadata), return a
decision (fake, real, unknown) on whether the
information presented by the post reflects the
reality’
SUB-TASK
Given an image, return a decision
(tampered, non-tampered, unknown) on
whether the image has been digitally
modified or not.
IMAGE
MEDIAEVAL	
  
SYSTEM
TAMPERED
NON	
  
TAMPERED
VERIFICATION CORPUS3
GROUND TRUTH GENERATION
Multimedia cases were labeled as fake/real after consulting online
reports (articles, blogs)
Data (post) collection associated to these cases performed using
Topsy (historic events) or using streaming and search API (real-time
events)
Post set expansion: Near-duplicate image search + journalist
debunking reports + human inspection was used to increase the number
of associated posts
Crowdsourcing campaign carried out with microWorkers
platform; each worker asked to provide three cases of multimedia
misuse
DEVELOPMENT SET
Event
Fake Real
Multimedia Posts Multimedia Posts
Hurricane Sandy 62 5,559 148 4,664
Boston Marathon bombing 35 189 28 344
Sochi Olympics 26 274 - -
MH370 Flight 29 501 - -
Bring Back Our Girls 7 131 - -
Columbian Chemicals 15 185 - -
Passport hoax 2 44 - -
Rock Elephant 1 13 - -
Underwater bedroom 3 113 - -
Livr mobile app 4 9 - -
Pig fish 1 14 - -
Solar Eclipse 6 137 4 140
Samurai with girl 4 218 - -
Nepal Earthquake 21 356 11 1004
Garissa Attack 2 6 2 73
Syrian boy 1 1786 - -
Varoufakis 1 61 - -
Total 220 9596 193 6225
TEST SET
Event
Fake Real
Multime
dia
Posts
Multime
dia
Posts
American Soldier
Quran
1 17 - -
Airstrikes 1 24 - -
Attacks in Paris 3 44 22 536
Ankara Explosions - - 3 19
Bush book 1 27 - -
Black Lion 1 7 - -
Boko Haram 1 31 - -
Bowie David 2 24 4 48
Brussels Car Metro 3 41 - -
Brussels Explosions 3 69 1 9
Burst in KFC 1 25 - -
Convoy Explosion
Turkey
- - 3 13
Donald Trump
Attacker
1 25 - -
Eagle Kid 1 334 - -
Five Headed Snake 5 6 - -
Fuji Lenticular
Clouds
1 123 1 53
Total 66 1230 64 998
Event
Fake Real
Multime
dia
Posts
Multimed
ia
Posts
Gandhi Dancing 1 29 - -
Half of Everything 9 39 - -
Hubble Telescope 1 18 - -
Immigrants’ fear 5 33 3 18
ISIS children 2 3 - -
John Guevara 1 33 - -
Mc Donalds’ Fee 1 6 - -
Nazi Submarine 2 11 - -
North Korea 2 10 - -
Not Afraid 2 32 3 35
Pakistan Explosion 1 53 - -
Pope Francis 1 29 - -
Protest 1 30 10 34
Refugees 4 35 13 33
Rio Moon 1 33 - -
Snowboard Girl 2 14 - -
Soldier Stealing 1 1 - -
Syrian Children 1 12 1 200
Ukrainian Nazi 1 1 - -
Woman 14 children 2 11 - -
EVALUATION & RESULTS4
Main task
Target class: Fake
TASK EVALUATION
Sub-task
Target class: Tampered
Classic IR metrics
Precision
Recall
F1-score -> main evaluation metric
Participants were allowed to mark a case as
“unknown” (expected to result in reduced recall)
TASK SUBMISSIONS
10 submissions for the main task
2 submissions for the sub-task (just one
team)
3 teams submitted
(+1 the organizers)
TRENDS IN APPROACHES
Features being used
- Text features (most common)
- Post and user metadata
- Image forensics
- Video quality metadata
- Topics of post
- Text similarity of posts (per image case)
- Trusted sources attributed in text
- Mentioned online external sources
RESULTS: MAIN TASK
Team Run Recall Precision F1-Score
Linkmedia
run1TextKnn 0.9227 0.6397 0.7556
run2CBIR1 0.3406 0.4917 0.4024
run3Sources 0.9463 0.9030 0.9241
run4Fusion 0.9121 0.7525 0.8246
MMLAB@DIS
I
RUN1 0.5487 0.7060 0.6175
RUN2 0.9365 0.8135 0.8707
RUN3 0.9398 0.7405 0.8283
MCGICT
hybrid 0.6097 0.7637 0.6781
image 0.5138 0.6975 0.5917
text 0.6292 0.7471 0.6831
VMU
Run1 0.8512 0.9812 0.9116
Run2 0.9056 0.7709 0.8328
Run3 0.8869 0.9882 0.9348
Run4 0.8739 0.9799 0.9239
Run5 0.9951 0.5873 0.7386
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  and  organizers  F1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  F1
RESULTS: MAIN TASK
Team Run Recall Precision F1-Score
Linkmedia
run1TextKnn 0.9227 0.6397 0.7556
run2CBIR1 0.3406 0.4917 0.4024
run3Sources 0.9463 0.9030 0.9241
run4Fusion 0.9121 0.7525 0.8246
MMLAB@DIS
I
RUN1 0.5487 0.7060 0.6175
RUN2 0.9365 0.8135 0.8707
RUN3 0.9398 0.7405 0.8283
MCGICT
hybrid 0.6097 0.7637 0.6781
image 0.5138 0.6975 0.5917
text 0.6292 0.7471 0.6831
VMU
Run1 0.8512 0.9812 0.9116
Run2 0.9056 0.7709 0.8328
Run3 0.8869 0.9882 0.9348
Run4 0.8739 0.9799 0.9239
Run5 0.9951 0.5873 0.7386
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  and  organizers  F1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  F1
RESULTS: MAIN TASK
Team Run Recall Precision F1-Score
Linkmedia
run1TextKnn 0.9227 0.6397 0.7556
run2CBIR1 0.3406 0.4917 0.4024
run3Sources 0.9463 0.9030 0.9241
run4Fusion 0.9121 0.7525 0.8246
MMLAB@DIS
I
RUN1 0.5487 0.7060 0.6175
RUN2 0.9365 0.8135 0.8707
RUN3 0.9398 0.7405 0.8283
MCGICT
hybrid 0.6097 0.7637 0.6781
image 0.5138 0.6975 0.5917
text 0.6292 0.7471 0.6831
VMU
Run1 0.8512 0.9812 0.9116
Run2 0.9056 0.7709 0.8328
Run3 0.8869 0.9882 0.9348
Run4 0.8739 0.9799 0.9239
Run5 0.9951 0.5873 0.7386
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  and  organizers  F1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  F1
RESULTS: MAIN TASK
Team Run Recall Precision F1-Score
Linkmedia
run1TextKnn 0.9227 0.6397 0.7556
run2CBIR1 0.3406 0.4917 0.4024
run3Sources 0.9463 0.9030 0.9241
run4Fusion 0.9121 0.7525 0.8246
MMLAB@DIS
I
RUN1 0.5487 0.7060 0.6175
RUN2 0.9365 0.8135 0.8707
RUN3 0.9398 0.7405 0.8283
MCGICT
hybrid 0.6097 0.7637 0.6781
image 0.5138 0.6975 0.5917
text 0.6292 0.7471 0.6831
VMU
Run1 0.8512 0.9812 0.9116
Run2 0.9056 0.7709 0.8328
Run3 0.8869 0.9882 0.9348
Run4 0.8739 0.9799 0.9239
Run5 0.9951 0.5873 0.7386
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  and  organizers  F1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  F1
RESULTS: MAIN TASK
Team Run Recall Precision F1-Score
Linkmedia
run1TextKnn 0.9227 0.6397 0.7556
run2CBIR1 0.3406 0.4917 0.4024
run3Sources 0.9463 0.9030 0.9241
run4Fusion 0.9121 0.7525 0.8246
MMLAB@DIS
I
RUN1 0.5487 0.7060 0.6175
RUN2 0.9365 0.8135 0.8707
RUN3 0.9398 0.7405 0.8283
MCGICT
hybrid 0.6097 0.7637 0.6781
image 0.5138 0.6975 0.5917
text 0.6292 0.7471 0.6831
VMU
Run1 0.8512 0.9812 0.9116
Run2 0.9056 0.7709 0.8328
Run3 0.8869 0.9882 0.9348
Run4 0.8739 0.9799 0.9239
Run5 0.9951 0.5873 0.7386
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  and  organizers  F1
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Participants  F1
RESULTS: SUB-TASK
Team Run Recall Precision F1-Score
MMLAB@DIS
I
RUN1 0.5 0.4827 0.4912
RUN2 0.9285 0.4906 0.6420
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
FUTURE PLANS
Reconsider the fake/real distinction
Think about different evaluation metrics
Use posts from other social media
Thanks for your attention!
ANY QUESTIONS?
Get in touch at
boididou@iti.gr
www.revealproject.eu
@RevealEU

More Related Content

PPTX
Verifying Multimedia Use at MediaEval 2016
PDF
MediaEval 2016 - LAPI @ 2016 Retrieving Diverse Social Images Task: A Pseudo-...
PDF
MediaEval 2016 - Simula Team @ Context of Experience Task
PDF
MediaEval 2015 - Synchronization of Multi-User Event Media at MediaEval 2015:...
PPTX
Media REVEALr: A social multimedia monitoring and intelligence system for Web...
PDF
MediaEval 2016 - Placing Images with Refined Language Models and Similarity S...
PDF
MediaEval 2016 - COSMIR and the OpenMIC Challenge: A Plan for Sustainable Mus...
PDF
MediaEval 2015 - Verifying Multimedia Use at MediaEval 2015
Verifying Multimedia Use at MediaEval 2016
MediaEval 2016 - LAPI @ 2016 Retrieving Diverse Social Images Task: A Pseudo-...
MediaEval 2016 - Simula Team @ Context of Experience Task
MediaEval 2015 - Synchronization of Multi-User Event Media at MediaEval 2015:...
Media REVEALr: A social multimedia monitoring and intelligence system for Web...
MediaEval 2016 - Placing Images with Refined Language Models and Similarity S...
MediaEval 2016 - COSMIR and the OpenMIC Challenge: A Plan for Sustainable Mus...
MediaEval 2015 - Verifying Multimedia Use at MediaEval 2015

Viewers also liked (12)

PDF
MediaEval 2016 - TUD-MMC Predicting media Interestingness Task
PDF
MediaEval 2016 - IR Evaluation: Putting the User Back in the Loop
PDF
MediaEval 2015 - CERTH at MediaEval 2015 Synchronization of Multi-User Event ...
PDF
MediaEval 2016: A Multimodal System for the Verifying Multimedia Use Task
PPTX
Video Retrieval for Multimedia Verification of Breaking News on Social Networks
PDF
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
PDF
MediaEval 2016 - BUT Zero-Cost Speech Recognition
PDF
The InVID Plug-in: Web Video Verification on the Browser
PDF
MediaEval 2016: LAPI at Predicting Media Interestingness Task
PDF
MediaEval 2016 - Emotion in Music Task: Lessons Learned
PDF
MediaEval 2015 - JRS at Synchronization of Multi-user Event Media Task
PDF
MediaEval 2015 - GTM-UVigo Systems for Person Discovery Task at MediaEval 2015
MediaEval 2016 - TUD-MMC Predicting media Interestingness Task
MediaEval 2016 - IR Evaluation: Putting the User Back in the Loop
MediaEval 2015 - CERTH at MediaEval 2015 Synchronization of Multi-User Event ...
MediaEval 2016: A Multimodal System for the Verifying Multimedia Use Task
Video Retrieval for Multimedia Verification of Breaking News on Social Networks
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
MediaEval 2016 - BUT Zero-Cost Speech Recognition
The InVID Plug-in: Web Video Verification on the Browser
MediaEval 2016: LAPI at Predicting Media Interestingness Task
MediaEval 2016 - Emotion in Music Task: Lessons Learned
MediaEval 2015 - JRS at Synchronization of Multi-user Event Media Task
MediaEval 2015 - GTM-UVigo Systems for Person Discovery Task at MediaEval 2015
Ad

Similar to MediaEval 2016 - Verifying Multimedia Use Task Overview (20)

PPTX
Verifying Multimedia Use at MediaEval 2015
PPTX
Verifying Multimedia Use at MediaEval 2015
PPTX
Fake news detection using machine learning
PDF
Fake news Detection using Machine Learning
PDF
IRJET- Fake Message Deduction using Machine Learining
DOCX
22003279003 sehrash (1) (1).docx
PDF
Fake News Detection Using Machine Learning
PPTX
Reed_NAR_PPT_160922.pptx
PPTX
Major project.pptx
PDF
IRJET- Milestones and Challenges of Fake News Detection using Digital Forensi...
PDF
IRJET- Detecting Fake News
PPTX
GEETHAhshansbbsbsbhshnsnsn_INTERNSHIP.pptx
PPTX
fake news detection pdf for users to use
PDF
IRJET - Fake News Detection using Machine Learning
PPTX
Computational Verification Challenges in Social Media
PDF
Fake News Analyzer
PDF
Fake News and Message Detection
PPTX
ppt_fak_newshhhhhhjjjjjjjhhjjjsjjsjjsj.pptx
PDF
Learning to read for automated fact checking
PDF
20574-38941-1-PB.pdf
Verifying Multimedia Use at MediaEval 2015
Verifying Multimedia Use at MediaEval 2015
Fake news detection using machine learning
Fake news Detection using Machine Learning
IRJET- Fake Message Deduction using Machine Learining
22003279003 sehrash (1) (1).docx
Fake News Detection Using Machine Learning
Reed_NAR_PPT_160922.pptx
Major project.pptx
IRJET- Milestones and Challenges of Fake News Detection using Digital Forensi...
IRJET- Detecting Fake News
GEETHAhshansbbsbsbhshnsnsn_INTERNSHIP.pptx
fake news detection pdf for users to use
IRJET - Fake News Detection using Machine Learning
Computational Verification Challenges in Social Media
Fake News Analyzer
Fake News and Message Detection
ppt_fak_newshhhhhhjjjjjjjhhjjjsjjsjjsj.pptx
Learning to read for automated fact checking
20574-38941-1-PB.pdf
Ad

More from multimediaeval (20)

PPTX
Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal...
PDF
HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table...
PDF
Sports Video Classification: Classification of Strokes in Table Tennis for Me...
PDF
Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention...
PPTX
Essex-NLIP at MediaEval Predicting Media Memorability 2020 Task
PDF
Overview of MediaEval 2020 Predicting Media Memorability task: What Makes a V...
PDF
Fooling an Automatic Image Quality Estimator
PDF
Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable C...
PDF
Pixel Privacy: Quality Camouflage for Social Images
PDF
HCMUS at MediaEval 2020:Image-Text Fusion for Automatic News-Images Re-Matching
PPTX
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
PDF
HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ ...
PDF
Depth-wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Int...
PPTX
Deep Conditional Adversarial learning for polyp Segmentation
PPTX
A Temporal-Spatial Attention Model for Medical Image Detection
PPTX
HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Netw...
PDF
Fine-tuning for Polyp Segmentation with Attention
PPTX
Bigger Networks are not Always Better: Deep Convolutional Neural Networks for...
PPTX
Insights for wellbeing: Predicting Personal Air Quality Index using Regressio...
PDF
Use Visual Features From Surrounding Scenes to Improve Personal Air Quality ...
Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal...
HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table...
Sports Video Classification: Classification of Strokes in Table Tennis for Me...
Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention...
Essex-NLIP at MediaEval Predicting Media Memorability 2020 Task
Overview of MediaEval 2020 Predicting Media Memorability task: What Makes a V...
Fooling an Automatic Image Quality Estimator
Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable C...
Pixel Privacy: Quality Camouflage for Social Images
HCMUS at MediaEval 2020:Image-Text Fusion for Automatic News-Images Re-Matching
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ ...
Depth-wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Int...
Deep Conditional Adversarial learning for polyp Segmentation
A Temporal-Spatial Attention Model for Medical Image Detection
HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Netw...
Fine-tuning for Polyp Segmentation with Attention
Bigger Networks are not Always Better: Deep Convolutional Neural Networks for...
Insights for wellbeing: Predicting Personal Air Quality Index using Regressio...
Use Visual Features From Surrounding Scenes to Improve Personal Air Quality ...

Recently uploaded (20)

PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PDF
An interstellar mission to test astrophysical black holes
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PDF
lecture 2026 of Sjogren's syndrome l .pdf
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
Microbiology with diagram medical studies .pptx
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PDF
The scientific heritage No 166 (166) (2025)
PDF
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
An interstellar mission to test astrophysical black holes
Introduction to Cardiovascular system_structure and functions-1
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
lecture 2026 of Sjogren's syndrome l .pdf
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
neck nodes and dissection types and lymph nodes levels
Taita Taveta Laboratory Technician Workshop Presentation.pptx
. Radiology Case Scenariosssssssssssssss
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
Microbiology with diagram medical studies .pptx
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
The scientific heritage No 166 (166) (2025)
Cosmic Outliers: Low-spin Halos Explain the Abundance, Compactness, and Redsh...
INTRODUCTION TO EVS | Concept of sustainability
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...

MediaEval 2016 - Verifying Multimedia Use Task Overview

  • 1. Verifying  Multimedia  Use  at  MediaEval  2016 Christina  Boididou1,  Stuart  E.  Middleton5,  Symeon Papadopoulos1, Duc-­‐Tien   Dang-­‐Nguyen2,3,  Giulia  Boato2,  Michael  Riegler4 &  Yiannis  Kompatsiaris1 1  Information  Technologies  Institute  (ITI),  CERTH,  Greece 2 University  of  Trento,  Italy. 3  Insight  Centre  for  Data  Analytics  at  Dublin  City  University,  Ireland. 4 Simula Research  Lab,  Norway. 5  University  of  Southampton  IT  Innovation  Centre,  UK.
  • 2. REAL OR FAKE The verification problem 1
  • 3. Real photo Captured in Dublin’s Olympia Theatre A photo of Eagles of Death Metal in concert But Mislabeled on social media as showing the crowd at the Bataclan theatre just before gunmen began firing.
  • 4. A TYPOLOGY OF FAKE: REPOSTING OF REAL Photos from past events reposted as being associated to current event ‘Eiffel Tower lights up in solidarity with Pakistan’ ‘Syrian refugee girl selling gum in Jordan’
  • 5. A TYPOLOGY OF FAKE: PHOTOSHOPPING Digitally manipulated photos / Tampered ‘Sharks in New York during Hurricane Sandy’ ‘Sikh man is a suspect of Paris attacks’
  • 7. MAIN TASK POST IMAGE MEDIAEVAL SYSTEM FAKE REAL AUTHOR (PROFILE) ‘Given a post (image+metadata), return a decision (fake, real, unknown) on whether the information presented by the post reflects the reality’
  • 8. SUB-TASK Given an image, return a decision (tampered, non-tampered, unknown) on whether the image has been digitally modified or not. IMAGE MEDIAEVAL   SYSTEM TAMPERED NON   TAMPERED
  • 10. GROUND TRUTH GENERATION Multimedia cases were labeled as fake/real after consulting online reports (articles, blogs) Data (post) collection associated to these cases performed using Topsy (historic events) or using streaming and search API (real-time events) Post set expansion: Near-duplicate image search + journalist debunking reports + human inspection was used to increase the number of associated posts Crowdsourcing campaign carried out with microWorkers platform; each worker asked to provide three cases of multimedia misuse
  • 11. DEVELOPMENT SET Event Fake Real Multimedia Posts Multimedia Posts Hurricane Sandy 62 5,559 148 4,664 Boston Marathon bombing 35 189 28 344 Sochi Olympics 26 274 - - MH370 Flight 29 501 - - Bring Back Our Girls 7 131 - - Columbian Chemicals 15 185 - - Passport hoax 2 44 - - Rock Elephant 1 13 - - Underwater bedroom 3 113 - - Livr mobile app 4 9 - - Pig fish 1 14 - - Solar Eclipse 6 137 4 140 Samurai with girl 4 218 - - Nepal Earthquake 21 356 11 1004 Garissa Attack 2 6 2 73 Syrian boy 1 1786 - - Varoufakis 1 61 - - Total 220 9596 193 6225
  • 12. TEST SET Event Fake Real Multime dia Posts Multime dia Posts American Soldier Quran 1 17 - - Airstrikes 1 24 - - Attacks in Paris 3 44 22 536 Ankara Explosions - - 3 19 Bush book 1 27 - - Black Lion 1 7 - - Boko Haram 1 31 - - Bowie David 2 24 4 48 Brussels Car Metro 3 41 - - Brussels Explosions 3 69 1 9 Burst in KFC 1 25 - - Convoy Explosion Turkey - - 3 13 Donald Trump Attacker 1 25 - - Eagle Kid 1 334 - - Five Headed Snake 5 6 - - Fuji Lenticular Clouds 1 123 1 53 Total 66 1230 64 998 Event Fake Real Multime dia Posts Multimed ia Posts Gandhi Dancing 1 29 - - Half of Everything 9 39 - - Hubble Telescope 1 18 - - Immigrants’ fear 5 33 3 18 ISIS children 2 3 - - John Guevara 1 33 - - Mc Donalds’ Fee 1 6 - - Nazi Submarine 2 11 - - North Korea 2 10 - - Not Afraid 2 32 3 35 Pakistan Explosion 1 53 - - Pope Francis 1 29 - - Protest 1 30 10 34 Refugees 4 35 13 33 Rio Moon 1 33 - - Snowboard Girl 2 14 - - Soldier Stealing 1 1 - - Syrian Children 1 12 1 200 Ukrainian Nazi 1 1 - - Woman 14 children 2 11 - -
  • 14. Main task Target class: Fake TASK EVALUATION Sub-task Target class: Tampered Classic IR metrics Precision Recall F1-score -> main evaluation metric Participants were allowed to mark a case as “unknown” (expected to result in reduced recall)
  • 15. TASK SUBMISSIONS 10 submissions for the main task 2 submissions for the sub-task (just one team) 3 teams submitted (+1 the organizers)
  • 16. TRENDS IN APPROACHES Features being used - Text features (most common) - Post and user metadata - Image forensics - Video quality metadata - Topics of post - Text similarity of posts (per image case) - Trusted sources attributed in text - Mentioned online external sources
  • 17. RESULTS: MAIN TASK Team Run Recall Precision F1-Score Linkmedia run1TextKnn 0.9227 0.6397 0.7556 run2CBIR1 0.3406 0.4917 0.4024 run3Sources 0.9463 0.9030 0.9241 run4Fusion 0.9121 0.7525 0.8246 MMLAB@DIS I RUN1 0.5487 0.7060 0.6175 RUN2 0.9365 0.8135 0.8707 RUN3 0.9398 0.7405 0.8283 MCGICT hybrid 0.6097 0.7637 0.6781 image 0.5138 0.6975 0.5917 text 0.6292 0.7471 0.6831 VMU Run1 0.8512 0.9812 0.9116 Run2 0.9056 0.7709 0.8328 Run3 0.8869 0.9882 0.9348 Run4 0.8739 0.9799 0.9239 Run5 0.9951 0.5873 0.7386 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  and  organizers  F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  F1
  • 18. RESULTS: MAIN TASK Team Run Recall Precision F1-Score Linkmedia run1TextKnn 0.9227 0.6397 0.7556 run2CBIR1 0.3406 0.4917 0.4024 run3Sources 0.9463 0.9030 0.9241 run4Fusion 0.9121 0.7525 0.8246 MMLAB@DIS I RUN1 0.5487 0.7060 0.6175 RUN2 0.9365 0.8135 0.8707 RUN3 0.9398 0.7405 0.8283 MCGICT hybrid 0.6097 0.7637 0.6781 image 0.5138 0.6975 0.5917 text 0.6292 0.7471 0.6831 VMU Run1 0.8512 0.9812 0.9116 Run2 0.9056 0.7709 0.8328 Run3 0.8869 0.9882 0.9348 Run4 0.8739 0.9799 0.9239 Run5 0.9951 0.5873 0.7386 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  and  organizers  F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  F1
  • 19. RESULTS: MAIN TASK Team Run Recall Precision F1-Score Linkmedia run1TextKnn 0.9227 0.6397 0.7556 run2CBIR1 0.3406 0.4917 0.4024 run3Sources 0.9463 0.9030 0.9241 run4Fusion 0.9121 0.7525 0.8246 MMLAB@DIS I RUN1 0.5487 0.7060 0.6175 RUN2 0.9365 0.8135 0.8707 RUN3 0.9398 0.7405 0.8283 MCGICT hybrid 0.6097 0.7637 0.6781 image 0.5138 0.6975 0.5917 text 0.6292 0.7471 0.6831 VMU Run1 0.8512 0.9812 0.9116 Run2 0.9056 0.7709 0.8328 Run3 0.8869 0.9882 0.9348 Run4 0.8739 0.9799 0.9239 Run5 0.9951 0.5873 0.7386 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  and  organizers  F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  F1
  • 20. RESULTS: MAIN TASK Team Run Recall Precision F1-Score Linkmedia run1TextKnn 0.9227 0.6397 0.7556 run2CBIR1 0.3406 0.4917 0.4024 run3Sources 0.9463 0.9030 0.9241 run4Fusion 0.9121 0.7525 0.8246 MMLAB@DIS I RUN1 0.5487 0.7060 0.6175 RUN2 0.9365 0.8135 0.8707 RUN3 0.9398 0.7405 0.8283 MCGICT hybrid 0.6097 0.7637 0.6781 image 0.5138 0.6975 0.5917 text 0.6292 0.7471 0.6831 VMU Run1 0.8512 0.9812 0.9116 Run2 0.9056 0.7709 0.8328 Run3 0.8869 0.9882 0.9348 Run4 0.8739 0.9799 0.9239 Run5 0.9951 0.5873 0.7386 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  and  organizers  F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  F1
  • 21. RESULTS: MAIN TASK Team Run Recall Precision F1-Score Linkmedia run1TextKnn 0.9227 0.6397 0.7556 run2CBIR1 0.3406 0.4917 0.4024 run3Sources 0.9463 0.9030 0.9241 run4Fusion 0.9121 0.7525 0.8246 MMLAB@DIS I RUN1 0.5487 0.7060 0.6175 RUN2 0.9365 0.8135 0.8707 RUN3 0.9398 0.7405 0.8283 MCGICT hybrid 0.6097 0.7637 0.6781 image 0.5138 0.6975 0.5917 text 0.6292 0.7471 0.6831 VMU Run1 0.8512 0.9812 0.9116 Run2 0.9056 0.7709 0.8328 Run3 0.8869 0.9882 0.9348 Run4 0.8739 0.9799 0.9239 Run5 0.9951 0.5873 0.7386 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  and  organizers  F1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Participants  F1
  • 22. RESULTS: SUB-TASK Team Run Recall Precision F1-Score MMLAB@DIS I RUN1 0.5 0.4827 0.4912 RUN2 0.9285 0.4906 0.6420 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
  • 23. FUTURE PLANS Reconsider the fake/real distinction Think about different evaluation metrics Use posts from other social media
  • 24. Thanks for your attention! ANY QUESTIONS? Get in touch at boididou@iti.gr www.revealproject.eu @RevealEU