SlideShare a Scribd company logo
Simula team
MediaEval 2016	
  Context	
  of	
  Experience	
  Task
Konstantin	
  Pogorelov,	
  Michael	
  Riegler,	
  Pål
Halvorsen,	
  Carsten Griwodz
Simula Research	
  Laboratory
University	
  of	
  Oslo
Norway
konstantin,	
  michael,	
  paalh,	
  griff@simula.no	
  
Data	
  preparation
• Trailers	
  (links	
  provided)
• Metadata
– Rating
– Country
– Language
– Year
– Genre
– Runtime
– Rotten	
  Tomatoes	
  score
– IMDB	
  score
– Metacritic score
Numeric	
  values
Visual	
  features
Missing	
  values	
  filled	
  manually	
  or
replaced	
  by	
  average	
  value
Features	
  extraction
Trailers
Sets	
  of	
  frames
Visual	
  features	
  vectors
Global	
  features
The	
  LIRE	
  web	
  page:	
  http://www.lire-­‐project.net/
21	
  global	
  
features	
  used:	
  
JCD,	
  CEDD,	
  
PHOG,	
  color	
  
layout,	
  etc.
Classification
We	
  used	
  WEKA	
  implementation	
  of	
  PART	
  
algorithm	
  with	
  default	
  settings	
  
Metadata	
  /	
  Features
WEKA
PART
+
-­‐
-­‐
+
+
Good?
Metadata	
  /	
  Features
WEKA
PART
-­‐
-­‐
+
+
Good?
+
P(+)	
  P(-­‐)
Train:
Test:
Three	
  runs
1:	
  Only	
  metadata
2:	
  Only	
  visual	
  features
3:	
  Combined
– Find	
  classes	
  probabilities	
  using	
  visual	
  features
– Add	
  classes	
  probabilities	
  as	
  new	
  metadata	
  
attributes
– Classify	
  using	
  extended	
  metadata	
  vectors
Evaluation	
  results
Run Precision Recall F1-­‐score TP FP TN FN
Metadata 0.6047 0.9338 0.7341 127 83 4 9
Visual	
  
features
0.6333 0.9779 0.7687 133 77 10 3
Combined 0.6084 0.7426 0.6688 101 65 22 35
Baseline 0.629 0.5735 0.6 78 46 41 58
Conclusion
• Global	
  features	
  are	
  the	
  best
• Which	
  features	
  and	
  metadata	
  attributes	
  are	
  
really	
  important?
• More	
  research	
  needed	
  for	
  efficient	
  features	
  
fusion
• More	
  data!
• Collect	
  data	
  from	
  actual	
  travelers
Thank	
  you
Questions?

More Related Content

PPTX
AutoML for user segmentation: how to match millions of users with hundreds of...
PDF
MediaEval 2016 - Placing Images with Refined Language Models and Similarity S...
PDF
MediaEval 2015 - CERTH at MediaEval 2015 Synchronization of Multi-User Event ...
PDF
MediaEval 2015 - JRS at Synchronization of Multi-user Event Media Task
PDF
MediaEval 2016 - Emotion in Music Task: Lessons Learned
PDF
MediaEval 2015 - GTM-UVigo Systems for Person Discovery Task at MediaEval 2015
PPTX
Video Retrieval for Multimedia Verification of Breaking News on Social Networks
PDF
MediaEval 2016: A Multimodal System for the Verifying Multimedia Use Task
AutoML for user segmentation: how to match millions of users with hundreds of...
MediaEval 2016 - Placing Images with Refined Language Models and Similarity S...
MediaEval 2015 - CERTH at MediaEval 2015 Synchronization of Multi-User Event ...
MediaEval 2015 - JRS at Synchronization of Multi-user Event Media Task
MediaEval 2016 - Emotion in Music Task: Lessons Learned
MediaEval 2015 - GTM-UVigo Systems for Person Discovery Task at MediaEval 2015
Video Retrieval for Multimedia Verification of Breaking News on Social Networks
MediaEval 2016: A Multimodal System for the Verifying Multimedia Use Task

Viewers also liked (12)

PDF
MediaEval 2016 - TUD-MMC Predicting media Interestingness Task
PDF
MediaEval 2015 - Verifying Multimedia Use at MediaEval 2015
PDF
MediaEval 2016 - COSMIR and the OpenMIC Challenge: A Plan for Sustainable Mus...
PDF
MediaEval 2016 - LAPI @ 2016 Retrieving Diverse Social Images Task: A Pseudo-...
PDF
MediaEval 2016 - IR Evaluation: Putting the User Back in the Loop
PDF
MediaEval 2016 - BUT Zero-Cost Speech Recognition
PDF
The InVID Plug-in: Web Video Verification on the Browser
PDF
MediaEval 2016: LAPI at Predicting Media Interestingness Task
PDF
MediaEval 2016 - Verifying Multimedia Use Task Overview
PDF
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
PDF
MediaEval 2015 - Synchronization of Multi-User Event Media at MediaEval 2015:...
PPTX
Media REVEALr: A social multimedia monitoring and intelligence system for Web...
MediaEval 2016 - TUD-MMC Predicting media Interestingness Task
MediaEval 2015 - Verifying Multimedia Use at MediaEval 2015
MediaEval 2016 - COSMIR and the OpenMIC Challenge: A Plan for Sustainable Mus...
MediaEval 2016 - LAPI @ 2016 Retrieving Diverse Social Images Task: A Pseudo-...
MediaEval 2016 - IR Evaluation: Putting the User Back in the Loop
MediaEval 2016 - BUT Zero-Cost Speech Recognition
The InVID Plug-in: Web Video Verification on the Browser
MediaEval 2016: LAPI at Predicting Media Interestingness Task
MediaEval 2016 - Verifying Multimedia Use Task Overview
MediaEval 2016 - HUCVL Predicting Interesting Key Frames with Deep Models
MediaEval 2015 - Synchronization of Multi-User Event Media at MediaEval 2015:...
Media REVEALr: A social multimedia monitoring and intelligence system for Web...
Ad

Similar to MediaEval 2016 - Simula Team @ Context of Experience Task (20)

PDF
Cutting Edge Computer Vision for Everyone
PDF
Dilnoza Bobokalonova Resume
PDF
MediaEval 2016 - UNIFESP Predicting Media Interestingness Task
PPTX
Open Metrics for Open Repositories at OR2012
PPTX
Deploying Data Science Engines to Production
PPTX
Architecting an Open Source AI Platform 2018 edition
PDF
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
DOCX
JohnConnollyResumePerformance2017
PDF
VrittiGaneriwal_Resume_USC
PPTX
Unipro ugene bosc 2011 update
PPTX
Testing Testing everywhere
PDF
Continuous delivery for machine learning
PDF
Resume_JiaLIU
PDF
Arpan_booth_talk_2 DNN and Tsnor Floww.pdf
KEY
Portfolio
PPTX
MLBox 0.8.2
PDF
UdayakumarArunachalam
PPTX
How LinkedIn Uses Scalding for Data Driven Product Development
PDF
Scaling Ride-Hailing with Machine Learning on MLflow
PPTX
Multi-modal sources for predictive modeling using deep learning
Cutting Edge Computer Vision for Everyone
Dilnoza Bobokalonova Resume
MediaEval 2016 - UNIFESP Predicting Media Interestingness Task
Open Metrics for Open Repositories at OR2012
Deploying Data Science Engines to Production
Architecting an Open Source AI Platform 2018 edition
Trenowanie i wdrażanie modeli uczenia maszynowego z wykorzystaniem Google Clo...
JohnConnollyResumePerformance2017
VrittiGaneriwal_Resume_USC
Unipro ugene bosc 2011 update
Testing Testing everywhere
Continuous delivery for machine learning
Resume_JiaLIU
Arpan_booth_talk_2 DNN and Tsnor Floww.pdf
Portfolio
MLBox 0.8.2
UdayakumarArunachalam
How LinkedIn Uses Scalding for Data Driven Product Development
Scaling Ride-Hailing with Machine Learning on MLflow
Multi-modal sources for predictive modeling using deep learning
Ad

More from multimediaeval (20)

PPTX
Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal...
PDF
HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table...
PDF
Sports Video Classification: Classification of Strokes in Table Tennis for Me...
PDF
Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention...
PPTX
Essex-NLIP at MediaEval Predicting Media Memorability 2020 Task
PDF
Overview of MediaEval 2020 Predicting Media Memorability task: What Makes a V...
PDF
Fooling an Automatic Image Quality Estimator
PDF
Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable C...
PDF
Pixel Privacy: Quality Camouflage for Social Images
PDF
HCMUS at MediaEval 2020:Image-Text Fusion for Automatic News-Images Re-Matching
PPTX
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
PDF
HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ ...
PDF
Depth-wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Int...
PPTX
Deep Conditional Adversarial learning for polyp Segmentation
PPTX
A Temporal-Spatial Attention Model for Medical Image Detection
PPTX
HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Netw...
PDF
Fine-tuning for Polyp Segmentation with Attention
PPTX
Bigger Networks are not Always Better: Deep Convolutional Neural Networks for...
PPTX
Insights for wellbeing: Predicting Personal Air Quality Index using Regressio...
PDF
Use Visual Features From Surrounding Scenes to Improve Personal Air Quality ...
Classification of Strokes in Table Tennis with a Three Stream Spatio-Temporal...
HCMUS at MediaEval 2020: Ensembles of Temporal Deep Neural Networks for Table...
Sports Video Classification: Classification of Strokes in Table Tennis for Me...
Predicting Media Memorability from a Multimodal Late Fusion of Self-Attention...
Essex-NLIP at MediaEval Predicting Media Memorability 2020 Task
Overview of MediaEval 2020 Predicting Media Memorability task: What Makes a V...
Fooling an Automatic Image Quality Estimator
Fooling Blind Image Quality Assessment by Optimizing a Human-Understandable C...
Pixel Privacy: Quality Camouflage for Social Images
HCMUS at MediaEval 2020:Image-Text Fusion for Automatic News-Images Re-Matching
Efficient Supervision Net: Polyp Segmentation using EfficientNet and Attentio...
HCMUS at Medico Automatic Polyp Segmentation Task 2020: PraNet and ResUnet++ ...
Depth-wise Separable Atrous Convolution for Polyps Segmentation in Gastro-Int...
Deep Conditional Adversarial learning for polyp Segmentation
A Temporal-Spatial Attention Model for Medical Image Detection
HCMUS-Juniors 2020 at Medico Task in MediaEval 2020: Refined Deep Neural Netw...
Fine-tuning for Polyp Segmentation with Attention
Bigger Networks are not Always Better: Deep Convolutional Neural Networks for...
Insights for wellbeing: Predicting Personal Air Quality Index using Regressio...
Use Visual Features From Surrounding Scenes to Improve Personal Air Quality ...

Recently uploaded (20)

PPTX
BIOMOLECULES PPT........................
PPTX
Cell Membrane: Structure, Composition & Functions
PDF
Sciences of Europe No 170 (2025)
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PDF
Phytochemical Investigation of Miliusa longipes.pdf
BIOMOLECULES PPT........................
Cell Membrane: Structure, Composition & Functions
Sciences of Europe No 170 (2025)
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
Introduction to Cardiovascular system_structure and functions-1
INTRODUCTION TO EVS | Concept of sustainability
cpcsea ppt.pptxssssssssssssssjjdjdndndddd
ECG_Course_Presentation د.محمد صقران ppt
Classification Systems_TAXONOMY_SCIENCE8.pptx
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
POSITIONING IN OPERATION THEATRE ROOM.ppt
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
Placing the Near-Earth Object Impact Probability in Context
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
The KM-GBF monitoring framework – status & key messages.pptx
AlphaEarth Foundations and the Satellite Embedding dataset
Phytochemical Investigation of Miliusa longipes.pdf

MediaEval 2016 - Simula Team @ Context of Experience Task

  • 1. Simula team MediaEval 2016  Context  of  Experience  Task Konstantin  Pogorelov,  Michael  Riegler,  Pål Halvorsen,  Carsten Griwodz Simula Research  Laboratory University  of  Oslo Norway konstantin,  michael,  paalh,  griff@simula.no  
  • 2. Data  preparation • Trailers  (links  provided) • Metadata – Rating – Country – Language – Year – Genre – Runtime – Rotten  Tomatoes  score – IMDB  score – Metacritic score Numeric  values Visual  features Missing  values  filled  manually  or replaced  by  average  value
  • 3. Features  extraction Trailers Sets  of  frames Visual  features  vectors Global  features The  LIRE  web  page:  http://www.lire-­‐project.net/ 21  global   features  used:   JCD,  CEDD,   PHOG,  color   layout,  etc.
  • 4. Classification We  used  WEKA  implementation  of  PART   algorithm  with  default  settings   Metadata  /  Features WEKA PART + -­‐ -­‐ + + Good? Metadata  /  Features WEKA PART -­‐ -­‐ + + Good? + P(+)  P(-­‐) Train: Test:
  • 5. Three  runs 1:  Only  metadata 2:  Only  visual  features 3:  Combined – Find  classes  probabilities  using  visual  features – Add  classes  probabilities  as  new  metadata   attributes – Classify  using  extended  metadata  vectors
  • 6. Evaluation  results Run Precision Recall F1-­‐score TP FP TN FN Metadata 0.6047 0.9338 0.7341 127 83 4 9 Visual   features 0.6333 0.9779 0.7687 133 77 10 3 Combined 0.6084 0.7426 0.6688 101 65 22 35 Baseline 0.629 0.5735 0.6 78 46 41 58
  • 7. Conclusion • Global  features  are  the  best • Which  features  and  metadata  attributes  are   really  important? • More  research  needed  for  efficient  features   fusion • More  data! • Collect  data  from  actual  travelers