SlideShare a Scribd company logo
Research
Marigianna Skouradaki,	Frank	Leymann
Institute	of	Architecture	of	Application	Systems
University	of	Stuttgart,	Germany
Vincenzo	Ferme,	Cesare Pautasso
Faculty	of	Informatics,	
University	of	Lugano,	Switzerland
André	van	Hoorn
Institute	of	Software	Technology,
University	of	Stuttgart,	Germany
Micro	– Benchmarking	BPMN	2.0	
Workflow	Management	Systems
with	Workflow	Patterns
22
Research
©	Marigianna Skouradaki
Motivation
*the appearance and company selection are random
77
Research
©	Marigianna Skouradaki
Motivation
Workload
Mix
Results
2. What is the impact of the core BPMN 2.0 language constructs
on the performance of the Workflow Management Systems?
3. Can simple workload mix reveal performance bottlenecks?
1. How to define meaningful workload models candidates?
Benchmark
88
Research
©	Marigianna Skouradaki
Agenda
n Background
n Workload	Models
n BenchFlow	Environment
n Experiments	Setup
n Experiments	Methodology
n Results
n Discussion
n Conclusions	and	Future	Work
99
Research
©	Marigianna Skouradaki
What	is	a	Workflow	Management	System	(WfMS)?
4.Navigator
3.Web Services
6.Application
Server
Workflow
Engine
5.Instance
Database
2.Users
& IT tools
…
1.Process
Models
1010
Research
©	Marigianna Skouradaki
What	is	a	Workflow	Management	System	(WfMS)?
4.Navigator
3.Web Services
6.Application
Server
Workflow
Engine
5.Instance
Database
2.Users
& IT tools
…
1.Process
Models
1313
Research
©	Marigianna Skouradaki
Micro-Benchmark
n Simple	workload	and	targets	the	evaluation	of	atomic	
operations1
1Waller, J., Hasselbring, W.: A benchmark engineering methodology to measure the overhead of application-level monitoring.
In: KPDAYS. CEUR Workshop Proceedings, vol. 1083, pp. 59–68. CEUR-WS.org (2013)
2Oracle, “Java Microbenchmark Harness”, (2013). Online resource: http://openjdk.java.net/projects/code-tools/jmh/
3Van Der Aalst, W.M.P., Hofstede, T., et al.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (Jul 2003)
HelloWorld() micro-benchmark measures “nothing”.
It is a good showcase for the overheads in infrastructure2
à For Workflow Management Systems
The basic control flow
workflow patterns can be considered
as atomic operations.
Contribution
Introduce & Execute
the first Micro-Benchmark on
BPMN 2.0 WfMS using
Workflow Patterns
1818
Research
©	Marigianna Skouradaki
Workflow	Patterns	as	Workload	Models	(Constraints)
1. Maximize	the	simplicity	of	the	process	models
2. Omit	interactions	with	external	systems	(i.e.,	stress	the	
Process	Navigator)
3. Most	script	tasks	are	empty,	unless	the	
implementation	of	the	workflow	pattern	requires	
otherwise
4. Define	equal	probability	for	passing	the	control	flow	to	
the	outgoing	branches
5. Combine:
- Simple	merge	+	exclusive	choice
- Parallel	split	+	synchronization
2323
Research
©	Marigianna Skouradaki
Workload	Models
Empty
Script 1
Empty
Script 2
Sequence Pattern [SEQ]
parallelSplitPattern
Empty
Script 1
Empty
Script 2
Parallel Split & Synchronization [PAR]
tern
Empty
Script 1
Wait 5
Sec
Explicit Termination Pattern [EXT]ryCyclesPattern
generate
1 or 2
Empty
Script 1
Empty
Script 2
i++
i < 10
i >= 10
case_1
case_2
Arbitrary Cycle Pattern [CYC]
exclusiveChoicePattern
generate
number
Empty
Script 1
Empty
Script 2case_2
case_1
Simple Merge & Exclusive Choice [EXC]
2424
Research
©	Marigianna Skouradaki
Three	Open-Source	WfMS Under	Test
1. Widely used in the industry
2. Tested against BPMN 2.0 conformance1
3. Vendor provided configurations are used
1.Geiger, M., Harrer, S., Lenhard, J., Casar, M., Vorndran, A., Wirtz, G.: BPMN conformance in open source engines. In: Proc. of the 9th IEEE International
Symposium on Service-Oriented System Engineering (SOSE 2015). SOSE 2015, IEEE, San Francisco Bay, CA, USA (March 30 – April 3 2015)
2525
Research
Vincenzo	Ferme
The	BenchFlow	Environment5
5Ferme, Vincenzo; Ivanchikj, Ana and Pautasso Cesare: "A Framework for Benchmarking BPMN 2.0 Workflow Management Systems",
In: Proceedings of BPM’15, Innsbruck, Austria, Springer, August, 2015.
2626
Research
Vincenzo	Ferme
Metrics	/	KPIs
2727
Research
Vincenzo	Ferme
Experiments	Methodology
n Experiment	1:
Max(1500)	concurrent	Instance	Producers	starting	
instances	for	each	workflow	pattern	[SEQ,	EXC,	EXT,	
PAR,	CYC]
n Experiment	2:
1500	concurrent	Instance	Producers	starting	an	equal	
number	instances	of	the	workflow	patterns	(20%	[MIX]	
of	[SEQ,	EXC,	EXT,	PAR,	CYC])
à Three	rounds	per	experiment
à Each	experiment	lasts	for	10	minutes
à Discarded	the	data	of	the	warm-up	state	(first	1min)
2828
Research
©	Marigianna Skouradaki
Results:	Mean	Duration	(ms)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
2.91
8.16
6.39
9.3
2,622
10.06
38.65
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
Activiti jBPM Camunda
SEQ EXC E
0
20
40
60
80
100
43.21
57.42
5.83
5.73
36.75
44.62
(b)MeanCPU(%)
Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
6.23
8.16
6.39
9.3
2,622
10.06
39.36
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
WfMS A WfMS B Camunda
SEQ EXC EXT PAR CYC MIX
0
20
40
60
80
100
43.21
57.42
60.2
66.1
70.09
77.69
5.83
5.73
0.24
5.64
4.67
0.66
36.75
44.62
33.34
41.76
41.67
(b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U
per workflow pattern
Mean duration (ms)
Empty
Script 1
Empty
Script 2
[SEQ]
2929
Research
©	Marigianna Skouradaki
Results:	Mean	Duration	(ms)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
2.91
8.16
6.39
9.3
2,622
10.06
38.65
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
Activiti jBPM Camunda
SEQ EXC E
0
20
40
60
80
100
43.21
57.42
5.83
5.73
36.75
44.62
(b)MeanCPU(%)
Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
6.23
8.16
6.39
9.3
2,622
10.06
39.36
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
WfMS A WfMS B Camunda
SEQ EXC EXT PAR CYC MIX
0
20
40
60
80
100
43.21
57.42
60.2
66.1
70.09
77.69
5.83
5.73
0.24
5.64
4.67
0.66
36.75
44.62
33.34
41.76
41.67
(b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U
per workflow pattern
Mean duration (ms)
[EXC]
Pattern
generate
number
Empty
Script 1
Empty
Script 2case_2
case_1
3030
Research
©	Marigianna Skouradaki
Results:	Mean	Duration	(ms)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
2.91
8.16
6.39
9.3
2,622
10.06
38.65
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
Activiti jBPM Camunda
SEQ EXC E
0
20
40
60
80
100
43.21
57.42
5.83
5.73
36.75
44.62
(b)MeanCPU(%)
Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
6.23
8.16
6.39
9.3
2,622
10.06
39.36
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
WfMS A WfMS B Camunda
SEQ EXC EXT PAR CYC MIX
0
20
40
60
80
100
43.21
57.42
60.2
66.1
70.09
77.69
5.83
5.73
0.24
5.64
4.67
0.66
36.75
44.62
33.34
41.76
41.67
(b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U
per workflow pattern
Mean duration (ms)
Empty
Script 1
Wait 5
Sec
[EXT]
3131
Research
©	Marigianna Skouradaki
Results:	Mean	Duration	(ms)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
2.91
8.16
6.39
9.3
2,622
10.06
38.65
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
Activiti jBPM Camunda
SEQ EXC E
0
20
40
60
80
100
43.21
57.42
5.83
5.73
36.75
44.62
(b)MeanCPU(%)
Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
6.23
8.16
6.39
9.3
2,622
10.06
39.36
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
WfMS A WfMS B Camunda
SEQ EXC EXT PAR CYC MIX
0
20
40
60
80
100
43.21
57.42
60.2
66.1
70.09
77.69
5.83
5.73
0.24
5.64
4.67
0.66
36.75
44.62
33.34
41.76
41.67
(b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U
per workflow pattern
Mean duration (ms)
Empty
Script 1
Empty
Script 2
[PAR]
3232
Research
©	Marigianna Skouradaki
Results:	Mean	Duration	(ms)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
2.91
8.16
6.39
9.3
2,622
10.06
38.65
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
Activiti jBPM Camunda
SEQ EXC E
0
20
40
60
80
100
43.21
57.42
5.83
5.73
36.75
44.62
(b)MeanCPU(%)
Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
6.23
8.16
6.39
9.3
2,622
10.06
39.36
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
WfMS A WfMS B Camunda
SEQ EXC EXT PAR CYC MIX
0
20
40
60
80
100
43.21
57.42
60.2
66.1
70.09
77.69
5.83
5.73
0.24
5.64
4.67
0.66
36.75
44.62
33.34
41.76
41.67
(b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U
per workflow pattern
Mean duration (ms)
CYC
Instance Producers:
Camunda: 600
WfMS A: 600
WfMS B: 600
ryCyclesPattern
generate
1 or 2
Empty
Script 1
Empty
Script 2
i++
i < 10
i >= 10
case_1
case_2
[CYC]
3333
Research
©	Marigianna Skouradaki
Results:	Mean	Duration	(ms)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
2.91
8.16
6.39
9.3
2,622
10.06
38.65
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
Activiti jBPM Camunda
SEQ EXC E
0
20
40
60
80
100
43.21
57.42
5.83
5.73
36.75
44.62
(b)MeanCPU(%)
Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b)
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
6.23
8.16
6.39
9.3
2,622
10.06
39.36
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
WfMS A WfMS B Camunda
SEQ EXC EXT PAR CYC MIX
0
20
40
60
80
100
43.21
57.42
60.2
66.1
70.09
77.69
5.83
5.73
0.24
5.64
4.67
0.66
36.75
44.62
33.34
41.76
41.67
(b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U
per workflow pattern
Mean duration (ms)
3434
Research
©	Marigianna Skouradaki
Results:	Mean	CPU	(%)	and	RAM	(MB)	usage
munda
SEQ EXC EXT PAR CYC MIX
0
20
40
60
80
100
43.21
57.42
60.2
66.1
70.09
77.69
5.83
5.73
0.24
5.64
4.67
0.66
36.75
44.62
33.34
41.76
41.67
48.53
(b)MeanCPU(%)
rkflow pattern and (b) Mean CPU (%) Usage
SEQ EXC EXT PAR CYC MIX
0
2,000
4,000
12,074.2
12,215.9
12,025.54
12,201.16
12,340.65
12,310.88
2,936.6
2,976.37
2,747.34
2,935.81
2,851.9
2,786.54
807.81
824.96
794.92
828.37
933.31
991.86
MeanRAM(MB)
WfMS A WfMS B Camunda
Fig. 3. (a) Mean RAM (MB) Usage per workflow
per workflow pattern in [MIX]
SEQ EXC EXT PAR CYC MIX
0
5
10
15
20
0.39
0.48
14.1
13.29
6.23
8.16
6.39
9.3
2,622
10.06
39.36
540.02
0.74
0.85
0.4
0.7
3.06
1.22
(a)MeanDuration(ms)
WfMS A WfMS B Camunda
SEQ EXC EXT PAR
0
20
40
60
80
100
43.21
57.42
60.2
66.1
5.83
5.73
0.24
5.64
36.75
44.62
33.34
41.76
(b)MeanCPU(%)
Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CP
per workflow pattern
mentary material. The behaviour of all the WfMSs is discussed th
CPU(%) usage
Memory (MB) Usage
3737
Research
©	Marigianna Skouradaki
Results	Throughput	(wi/s)
SEQ EXC EXT PAR CYC MIX
WfMS A 1,447.66 1,436.03 1,426.35 1,429.65 644.02 1,402.33
WfMS B 63.31 49.04 0.38 48.89 13.46 1.78
Camunda 1,456.79 1,417.17 1,455.68 1,455.68 327.99 1,061.27
CYC Instance Producers: WfMS A: 800 WfMS B: 1500 Camunda: 600
WfMS B uses a synchronous instantiation API.
Therefore, load drivers must wait for the workflow instances to end
Before instantiating the next one
4646
Research
©	Marigianna Skouradaki
Findings
Even though the defined workload is simple
SEQ EXC EXT PAR CY
0
5
10
15
20
0.39
0.48
14.1
13.29
2.91
6.39
9.3
2,622
10.06
38.65
0.74
0.85
0.4
0.7
(a)MeanDuration(ms)
Activiti jBPM
Fig. 2. (a) Mean Duration (ms)
per workflow pattern
shows that the duration times
those of [SEQ].
More particularly, we have
and 0.85 ms for Camunda. Co
a slight increase with respect
CPU and 12, 215 MB RAM for
jBPM takes approximately the
workflow instances. For this, it
of RAM, and Camunda 43.21%
765, 274 workflow instances in
4.2.3 Explicit Terminatio
[EXT] executes concurrently an
3. Differences in
the duration
of the
workflow instances
2. Discovered
Bottleneck on WfMS B
1. Differences in
resource utilization
show space for
improvement
4. EXT pattern is
not implemented
consistently on WfMS B
5. Sequential patterns
are better candidates
for discovering the
maximum throughputsequencePattern
Empty
Script 1
Empty
Script 2
6. Complex and parallel
workflows
are better candidates
for stressing the WfMS on
Resource Utilization
parallelSplitPattern
Empty
Script 1
Empty
Script 2
attern
Empty
Script 1
Wait 5
Sec
7. The CYC pattern
caused
time out errors
in Camunda
arbitaryCyclesPattern
generate
1 or 2
Empty
Script 1
Empty
Script 2
i++
i < 10
i >= 10
case_1
case_2
8. The execution
of the MIX
had the expected
behavior
4747
Research
©	Marigianna Skouradaki
Future	Work
n Finalize	and	release	the	BenchFlow	framework	in	an	open-source	
model	on	Github	and	DockerHub:
n Generate	synthetic	process	models	w.r.t.	the	present	results
n Execute	a	macro	benchmark	with	the	synthetic,	complex,	
representative	workflow	mix
n Execute	different	tests	with	realistic	load	functions	and	test	data
n Production-like	configurations
benchflowhttps://github.com/benchflow
goo.gl/Olw32m skourama@iaas.uni-stuttgart.de

More Related Content

PDF
Как повысить эффективность ТОиР с помощью PI System?
PDF
Letter of Recommendation 1
DOC
Resume (Willie Anthony) 2 0
DOC
Caliper Weight Optimization
DOC
Nra 2013 costados indulgentes frsi
ODP
Trabinvestigacion unidad1
PDF
Бизнес-аналитика (BI): новый взгляд на ваши данные PI System
DOCX
jaynewresume6
Как повысить эффективность ТОиР с помощью PI System?
Letter of Recommendation 1
Resume (Willie Anthony) 2 0
Caliper Weight Optimization
Nra 2013 costados indulgentes frsi
Trabinvestigacion unidad1
Бизнес-аналитика (BI): новый взгляд на ваши данные PI System
jaynewresume6

Viewers also liked (7)

PDF
BPM-4 Migration from jBPM to Activiti
PPT
Un dia al menjador de l'Escola Santa Anna, 16 de desembre de 2008
PDF
Webinar - Activiti: il Business Process Management di Alfresco
PDF
Introduction to advanced workflow
PDF
07 spp-izin-lingkungan
PDF
Alfresco Day Milano 2016 - Alfresco Activiti
PPTX
BPMN Introduction
BPM-4 Migration from jBPM to Activiti
Un dia al menjador de l'Escola Santa Anna, 16 de desembre de 2008
Webinar - Activiti: il Business Process Management di Alfresco
Introduction to advanced workflow
07 spp-izin-lingkungan
Alfresco Day Milano 2016 - Alfresco Activiti
BPMN Introduction
Ad

Similar to Micro Benchmarking WfMS with Workflow Patterns (20)

PDF
Towards a Benchmark for BPMN Engines
PDF
CamundaCon 2018: Big Workflow in Action: Zeebe Live Hacking (Camunda)
PDF
On the Road to Benchmarking BPMN 2.0 Workflow Engines
PPTX
Benchmarking Workflow Engines: Open Research Challenges - Presentation of BTW...
PDF
Benchmarck 2014 Bonita Activiti Jbpm
PDF
Introducing Workflow Architectures Using Grails - Greach 2015
PDF
2016 JFall Camunda BPM
PDF
The Comparison of the Workflow Management Systems Bizagi, Arabdox, Bonita and...
PDF
BenchFlow, a Framework for Benchmarking BPMN 2.0 Workflow Management Systems
PDF
Camunda BPM 7.2: Performance and Scalability (English)
PDF
Exploiting Web Technologies to connect business process management and engine...
PDF
Estimating the Cost for Executing Business Processes in the Cloud
PDF
Analysis of Most Common Process Modelling Mistakes in BPMN Process Models
PPTX
Final pre power_group_executing bpm processes with Camunda
PPTX
WSO2 Business Process Server 3.5.0 - Product Overview
PPTX
Business Process Automation and Data Processing Workflows
PPTX
From Conceptual to Executable BPMN Process Models A Step-by-Step Method
PPT
From Models to Data and Back: The Journey of the BPM Discipline and the Tangl...
ODP
JBug.be The future of (j)BPM 2010-06-03
ODP
Kris Verlaenen on jBPM5 at JBUG.be
Towards a Benchmark for BPMN Engines
CamundaCon 2018: Big Workflow in Action: Zeebe Live Hacking (Camunda)
On the Road to Benchmarking BPMN 2.0 Workflow Engines
Benchmarking Workflow Engines: Open Research Challenges - Presentation of BTW...
Benchmarck 2014 Bonita Activiti Jbpm
Introducing Workflow Architectures Using Grails - Greach 2015
2016 JFall Camunda BPM
The Comparison of the Workflow Management Systems Bizagi, Arabdox, Bonita and...
BenchFlow, a Framework for Benchmarking BPMN 2.0 Workflow Management Systems
Camunda BPM 7.2: Performance and Scalability (English)
Exploiting Web Technologies to connect business process management and engine...
Estimating the Cost for Executing Business Processes in the Cloud
Analysis of Most Common Process Modelling Mistakes in BPMN Process Models
Final pre power_group_executing bpm processes with Camunda
WSO2 Business Process Server 3.5.0 - Product Overview
Business Process Automation and Data Processing Workflows
From Conceptual to Executable BPMN Process Models A Step-by-Step Method
From Models to Data and Back: The Journey of the BPM Discipline and the Tangl...
JBug.be The future of (j)BPM 2010-06-03
Kris Verlaenen on jBPM5 at JBUG.be
Ad

Recently uploaded (20)

PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PPT
Teaching material agriculture food technology
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
cuic standard and advanced reporting.pdf
PPTX
Cloud computing and distributed systems.
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Approach and Philosophy of On baking technology
Understanding_Digital_Forensics_Presentation.pptx
Encapsulation_ Review paper, used for researhc scholars
Mobile App Security Testing_ A Comprehensive Guide.pdf
Teaching material agriculture food technology
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
“AI and Expert System Decision Support & Business Intelligence Systems”
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Chapter 3 Spatial Domain Image Processing.pdf
Digital-Transformation-Roadmap-for-Companies.pptx
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Agricultural_Statistics_at_a_Glance_2022_0.pdf
cuic standard and advanced reporting.pdf
Cloud computing and distributed systems.
Spectral efficient network and resource selection model in 5G networks
Per capita expenditure prediction using model stacking based on satellite ima...
Diabetes mellitus diagnosis method based random forest with bat algorithm
Approach and Philosophy of On baking technology

Micro Benchmarking WfMS with Workflow Patterns

  • 3. 77 Research © Marigianna Skouradaki Motivation Workload Mix Results 2. What is the impact of the core BPMN 2.0 language constructs on the performance of the Workflow Management Systems? 3. Can simple workload mix reveal performance bottlenecks? 1. How to define meaningful workload models candidates? Benchmark
  • 4. 88 Research © Marigianna Skouradaki Agenda n Background n Workload Models n BenchFlow Environment n Experiments Setup n Experiments Methodology n Results n Discussion n Conclusions and Future Work
  • 7. 1313 Research © Marigianna Skouradaki Micro-Benchmark n Simple workload and targets the evaluation of atomic operations1 1Waller, J., Hasselbring, W.: A benchmark engineering methodology to measure the overhead of application-level monitoring. In: KPDAYS. CEUR Workshop Proceedings, vol. 1083, pp. 59–68. CEUR-WS.org (2013) 2Oracle, “Java Microbenchmark Harness”, (2013). Online resource: http://openjdk.java.net/projects/code-tools/jmh/ 3Van Der Aalst, W.M.P., Hofstede, T., et al.: Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (Jul 2003) HelloWorld() micro-benchmark measures “nothing”. It is a good showcase for the overheads in infrastructure2 à For Workflow Management Systems The basic control flow workflow patterns can be considered as atomic operations. Contribution Introduce & Execute the first Micro-Benchmark on BPMN 2.0 WfMS using Workflow Patterns
  • 8. 1818 Research © Marigianna Skouradaki Workflow Patterns as Workload Models (Constraints) 1. Maximize the simplicity of the process models 2. Omit interactions with external systems (i.e., stress the Process Navigator) 3. Most script tasks are empty, unless the implementation of the workflow pattern requires otherwise 4. Define equal probability for passing the control flow to the outgoing branches 5. Combine: - Simple merge + exclusive choice - Parallel split + synchronization
  • 9. 2323 Research © Marigianna Skouradaki Workload Models Empty Script 1 Empty Script 2 Sequence Pattern [SEQ] parallelSplitPattern Empty Script 1 Empty Script 2 Parallel Split & Synchronization [PAR] tern Empty Script 1 Wait 5 Sec Explicit Termination Pattern [EXT]ryCyclesPattern generate 1 or 2 Empty Script 1 Empty Script 2 i++ i < 10 i >= 10 case_1 case_2 Arbitrary Cycle Pattern [CYC] exclusiveChoicePattern generate number Empty Script 1 Empty Script 2case_2 case_1 Simple Merge & Exclusive Choice [EXC]
  • 10. 2424 Research © Marigianna Skouradaki Three Open-Source WfMS Under Test 1. Widely used in the industry 2. Tested against BPMN 2.0 conformance1 3. Vendor provided configurations are used 1.Geiger, M., Harrer, S., Lenhard, J., Casar, M., Vorndran, A., Wirtz, G.: BPMN conformance in open source engines. In: Proc. of the 9th IEEE International Symposium on Service-Oriented System Engineering (SOSE 2015). SOSE 2015, IEEE, San Francisco Bay, CA, USA (March 30 – April 3 2015)
  • 11. 2525 Research Vincenzo Ferme The BenchFlow Environment5 5Ferme, Vincenzo; Ivanchikj, Ana and Pautasso Cesare: "A Framework for Benchmarking BPMN 2.0 Workflow Management Systems", In: Proceedings of BPM’15, Innsbruck, Austria, Springer, August, 2015.
  • 14. 2828 Research © Marigianna Skouradaki Results: Mean Duration (ms) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 2.91 8.16 6.39 9.3 2,622 10.06 38.65 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) Activiti jBPM Camunda SEQ EXC E 0 20 40 60 80 100 43.21 57.42 5.83 5.73 36.75 44.62 (b)MeanCPU(%) Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 6.23 8.16 6.39 9.3 2,622 10.06 39.36 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) WfMS A WfMS B Camunda SEQ EXC EXT PAR CYC MIX 0 20 40 60 80 100 43.21 57.42 60.2 66.1 70.09 77.69 5.83 5.73 0.24 5.64 4.67 0.66 36.75 44.62 33.34 41.76 41.67 (b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U per workflow pattern Mean duration (ms) Empty Script 1 Empty Script 2 [SEQ]
  • 15. 2929 Research © Marigianna Skouradaki Results: Mean Duration (ms) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 2.91 8.16 6.39 9.3 2,622 10.06 38.65 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) Activiti jBPM Camunda SEQ EXC E 0 20 40 60 80 100 43.21 57.42 5.83 5.73 36.75 44.62 (b)MeanCPU(%) Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 6.23 8.16 6.39 9.3 2,622 10.06 39.36 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) WfMS A WfMS B Camunda SEQ EXC EXT PAR CYC MIX 0 20 40 60 80 100 43.21 57.42 60.2 66.1 70.09 77.69 5.83 5.73 0.24 5.64 4.67 0.66 36.75 44.62 33.34 41.76 41.67 (b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U per workflow pattern Mean duration (ms) [EXC] Pattern generate number Empty Script 1 Empty Script 2case_2 case_1
  • 16. 3030 Research © Marigianna Skouradaki Results: Mean Duration (ms) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 2.91 8.16 6.39 9.3 2,622 10.06 38.65 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) Activiti jBPM Camunda SEQ EXC E 0 20 40 60 80 100 43.21 57.42 5.83 5.73 36.75 44.62 (b)MeanCPU(%) Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 6.23 8.16 6.39 9.3 2,622 10.06 39.36 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) WfMS A WfMS B Camunda SEQ EXC EXT PAR CYC MIX 0 20 40 60 80 100 43.21 57.42 60.2 66.1 70.09 77.69 5.83 5.73 0.24 5.64 4.67 0.66 36.75 44.62 33.34 41.76 41.67 (b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U per workflow pattern Mean duration (ms) Empty Script 1 Wait 5 Sec [EXT]
  • 17. 3131 Research © Marigianna Skouradaki Results: Mean Duration (ms) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 2.91 8.16 6.39 9.3 2,622 10.06 38.65 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) Activiti jBPM Camunda SEQ EXC E 0 20 40 60 80 100 43.21 57.42 5.83 5.73 36.75 44.62 (b)MeanCPU(%) Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 6.23 8.16 6.39 9.3 2,622 10.06 39.36 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) WfMS A WfMS B Camunda SEQ EXC EXT PAR CYC MIX 0 20 40 60 80 100 43.21 57.42 60.2 66.1 70.09 77.69 5.83 5.73 0.24 5.64 4.67 0.66 36.75 44.62 33.34 41.76 41.67 (b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U per workflow pattern Mean duration (ms) Empty Script 1 Empty Script 2 [PAR]
  • 18. 3232 Research © Marigianna Skouradaki Results: Mean Duration (ms) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 2.91 8.16 6.39 9.3 2,622 10.06 38.65 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) Activiti jBPM Camunda SEQ EXC E 0 20 40 60 80 100 43.21 57.42 5.83 5.73 36.75 44.62 (b)MeanCPU(%) Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 6.23 8.16 6.39 9.3 2,622 10.06 39.36 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) WfMS A WfMS B Camunda SEQ EXC EXT PAR CYC MIX 0 20 40 60 80 100 43.21 57.42 60.2 66.1 70.09 77.69 5.83 5.73 0.24 5.64 4.67 0.66 36.75 44.62 33.34 41.76 41.67 (b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U per workflow pattern Mean duration (ms) CYC Instance Producers: Camunda: 600 WfMS A: 600 WfMS B: 600 ryCyclesPattern generate 1 or 2 Empty Script 1 Empty Script 2 i++ i < 10 i >= 10 case_1 case_2 [CYC]
  • 19. 3333 Research © Marigianna Skouradaki Results: Mean Duration (ms) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 2.91 8.16 6.39 9.3 2,622 10.06 38.65 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) Activiti jBPM Camunda SEQ EXC E 0 20 40 60 80 100 43.21 57.42 5.83 5.73 36.75 44.62 (b)MeanCPU(%) Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 6.23 8.16 6.39 9.3 2,622 10.06 39.36 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) WfMS A WfMS B Camunda SEQ EXC EXT PAR CYC MIX 0 20 40 60 80 100 43.21 57.42 60.2 66.1 70.09 77.69 5.83 5.73 0.24 5.64 4.67 0.66 36.75 44.62 33.34 41.76 41.67 (b)MeanCPU(%)Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CPU (%) U per workflow pattern Mean duration (ms)
  • 20. 3434 Research © Marigianna Skouradaki Results: Mean CPU (%) and RAM (MB) usage munda SEQ EXC EXT PAR CYC MIX 0 20 40 60 80 100 43.21 57.42 60.2 66.1 70.09 77.69 5.83 5.73 0.24 5.64 4.67 0.66 36.75 44.62 33.34 41.76 41.67 48.53 (b)MeanCPU(%) rkflow pattern and (b) Mean CPU (%) Usage SEQ EXC EXT PAR CYC MIX 0 2,000 4,000 12,074.2 12,215.9 12,025.54 12,201.16 12,340.65 12,310.88 2,936.6 2,976.37 2,747.34 2,935.81 2,851.9 2,786.54 807.81 824.96 794.92 828.37 933.31 991.86 MeanRAM(MB) WfMS A WfMS B Camunda Fig. 3. (a) Mean RAM (MB) Usage per workflow per workflow pattern in [MIX] SEQ EXC EXT PAR CYC MIX 0 5 10 15 20 0.39 0.48 14.1 13.29 6.23 8.16 6.39 9.3 2,622 10.06 39.36 540.02 0.74 0.85 0.4 0.7 3.06 1.22 (a)MeanDuration(ms) WfMS A WfMS B Camunda SEQ EXC EXT PAR 0 20 40 60 80 100 43.21 57.42 60.2 66.1 5.83 5.73 0.24 5.64 36.75 44.62 33.34 41.76 (b)MeanCPU(%) Fig. 2. (a) Mean Duration (ms) per workflow pattern and (b) Mean CP per workflow pattern mentary material. The behaviour of all the WfMSs is discussed th CPU(%) usage Memory (MB) Usage
  • 21. 3737 Research © Marigianna Skouradaki Results Throughput (wi/s) SEQ EXC EXT PAR CYC MIX WfMS A 1,447.66 1,436.03 1,426.35 1,429.65 644.02 1,402.33 WfMS B 63.31 49.04 0.38 48.89 13.46 1.78 Camunda 1,456.79 1,417.17 1,455.68 1,455.68 327.99 1,061.27 CYC Instance Producers: WfMS A: 800 WfMS B: 1500 Camunda: 600 WfMS B uses a synchronous instantiation API. Therefore, load drivers must wait for the workflow instances to end Before instantiating the next one
  • 22. 4646 Research © Marigianna Skouradaki Findings Even though the defined workload is simple SEQ EXC EXT PAR CY 0 5 10 15 20 0.39 0.48 14.1 13.29 2.91 6.39 9.3 2,622 10.06 38.65 0.74 0.85 0.4 0.7 (a)MeanDuration(ms) Activiti jBPM Fig. 2. (a) Mean Duration (ms) per workflow pattern shows that the duration times those of [SEQ]. More particularly, we have and 0.85 ms for Camunda. Co a slight increase with respect CPU and 12, 215 MB RAM for jBPM takes approximately the workflow instances. For this, it of RAM, and Camunda 43.21% 765, 274 workflow instances in 4.2.3 Explicit Terminatio [EXT] executes concurrently an 3. Differences in the duration of the workflow instances 2. Discovered Bottleneck on WfMS B 1. Differences in resource utilization show space for improvement 4. EXT pattern is not implemented consistently on WfMS B 5. Sequential patterns are better candidates for discovering the maximum throughputsequencePattern Empty Script 1 Empty Script 2 6. Complex and parallel workflows are better candidates for stressing the WfMS on Resource Utilization parallelSplitPattern Empty Script 1 Empty Script 2 attern Empty Script 1 Wait 5 Sec 7. The CYC pattern caused time out errors in Camunda arbitaryCyclesPattern generate 1 or 2 Empty Script 1 Empty Script 2 i++ i < 10 i >= 10 case_1 case_2 8. The execution of the MIX had the expected behavior
  • 23. 4747 Research © Marigianna Skouradaki Future Work n Finalize and release the BenchFlow framework in an open-source model on Github and DockerHub: n Generate synthetic process models w.r.t. the present results n Execute a macro benchmark with the synthetic, complex, representative workflow mix n Execute different tests with realistic load functions and test data n Production-like configurations benchflowhttps://github.com/benchflow goo.gl/Olw32m skourama@iaas.uni-stuttgart.de