SlideShare a Scribd company logo
Mining Influencers in the
German Twittersphere
Mapping a Language-Based Follow Network
Felix Victor Münch1
, Ben Thies1
, Cornelius Puschmann1
, Axel Bruns2
1
Leibniz Institute for Media Research | Hans-Bredow-Institut (HBI), Germany
2
Digital Media Research Centre (DMRC), Queensland University of Technology (QUT), Australia
IC2
S2
, July 2019, Amsterdam
Problem
‘I can’t get no population …’
● follow/friend networks of
Online Social Networks (OSNs)
arguably main predictor for
content exposure (despite
sponsored content and
algorithmic sorting of
timelines)
● APIs too restrictive for
collection of comprehensive
follow networks
Opportunities
Possible Research Questions
● “Are there filter bubbles/echo
chambers?”
● “Are there social and/or topical
communities/issue publics?”
● “Who can spread which content
most efficiently?”
● “Can we predict the spread of
(fake) news?”
● “Who let the bots out? And
where?”
Background
The Australian Twittersphere
Bruns, A., Moon, B., Münch, F. V., & Sadkowsky, T. (2017). The Australian Twittersphere in 2016:
mapping the follower/followee network. Social Media + Society, 3(4).
https://doi.org/10.1177/2056305117748162
Münch, F. V. (2019). Measuring the Networked Public – Exploring Network Science Methods
for Large Scale Online Media Studies. Queensland University of Technology.
https://doi.org/10.5204/thesis.eprints.125543
Method: Sample the influentials
Our adaptation of the ‘rank degree’ method
Based on: Salamanos, N., Voudigari, E., & Yannakoudakis, E. J. (2017). Deterministic graph exploration for efficient graph sampling. Social
Network Analysis and Mining, 7(1), 24. https://doi.org/10.1007/s13278-017-0441-6
Bottom: Original graph without walked edges. Starting nodes (seeds) are drawn randomly (1) and
walker move to their friend with the highest in-degree (2-6). Walked edges get removed/‘burned’.
Top: Current sample at each step. Walked (and symmetric) edges are added to sample.
1 2 3 4 5 6
Our adaptation of the ‘rank degree’ method
Main adaptations (amongst others) mostly due to API restrictions:
● Undirected → Directed
● Fewer walkers (200)
● Walkers do not collapse when ending up on the same node
● Last 5000 friends only
● ‘Degree’ stays constant and is equal to follower count reported by Twitter API
● Only collect edges to accounts with German as their interface language (not possible
anymore due to API changes ¯_(ツ)_/¯ … we work on a solution.)
Mining Influencers in the German Twittersphere – Mapping a Language-Based Follow Network
Analysis: Sample quality
Activity and degree-centrality
Coverage
Distribution of public accounts with > 1 friend in the test sample over the percentage of their friends that
can be found in the influencer sample (left, filtered for in-degree >= 1, leaving 199,180 accounts) / baseline
sample (right, same size, randomly drawn from German accounts in global dataset)
Coverage
Ranked distribution of the percentage of ‘friends’ of accounts in a random sample
(n=1000, filtered for having at least 2 ‘friends’) found in our influencer sample (excl. nodes
with in-degree 0) and a random sample of the same size (181k accounts)
Reach
Ranked distribution of the percentage of accounts reached in a random sample (n=1000,
filtered for having at least 2 ‘friends’) by accounts in our influencer sample (excl. nodes
with in-degree 0) and by accounts in a random sample of the same size (181k accounts)
Test study:
Community detection and keyword
extraction
Community detection with
infomap
3-core of our sample network;
coloured by communities detected
with the infomap community
detection algorithm;
node size represents Page Rank
Keyword extraction with chi-squared criterion
# active accounts keywords top accounts tag short tag
4 2015
e3, stream, xd, e32019, nintendo, twitch, game, crossing, pc, zelda, animal, gameplay,
cyberpunk2077, games, switch, xbox, trailer, cyberpunk, gaming, xboxe3, uff, nice, geil, keanu, pk,
spiele, live, nen, lol, mega
unge, dagibee, Gronkh, MelinaSophie, LeFloid, iBlali, Taddl, rewinside,
HandIOfIBlood, PietSmiet YouTubers & Gaming Youtube & Games
3 1855
berlin, innen, spd, berliner, studie, unternehmen, diskutieren, cdu, fordern, themen, wichtiger,
bundesregierung, deutschen, digitalisierung, thema, wurde, wurden, annefrank, klimaschutz,
mehr, juni, zeigt, deutschland, interview, politik, brandenburg
tazgezwitscher, Die_Gruenen, Tagesspiegel, c_lindner, gutjahr, dunjahayali,
sigmargabriel, sixtus, HeikoMaas, spdde German politics German Politics
11 1414
frauenstreik, schweiz, schweizer, glarner, svp, bern, frauenstreik2019, zürich, kanton, grosse,
basel, nationalrat, frauen
NZZ, 20min, viktorgiacobbo, Blickch, tagesanzeiger, srfnews, MikeMuellerLate,
watson_news, migros, srf3
Swiss politics / women's
strike Swiss Politics
2 1044
saison, trainer, bundesliga, neuzugang, spieler, dfb, fc, gerest, em, wechselt, estland, wechsel,
transfer, tor, sieg, mannschaft, wm, cup, liga
DFB_Team, FCBayern, ToniKroos, MarioGoetze, esmuellert_, Podolski10,
Manuel_Neuer, Bundesliga_DE, ZDFsport, JB17Official German football Soccer
17 767
övp, spö, fpö, wien, österreich, bierlein, oenr, österreichs, ibiza, wiener, strache, kickl, türkis,
hofer, parlament, nationalrat, zib2, abdullah, mandat, wahlkampf, zentrum, bundeskanzlerin,
heinz, österreicher, glyphosat, antrag, blau
florianklenk, sebastiankurz, IngridThurnher, kesslermichael, HannoSettele,
vanderbellen, Gawhary, HBrandstaetter, HHumorlos, michelreimon Austrian politics Austrian Politics
33 751
menschen, nazi, merz, deutschland, afd, wer, akk, cdu, spd, jahre, leben, wäre, grünen, obwohl,
jemand, klar, nazis, ja, liebe, wähler, bitte, viele, immer, mann, wissen, wünsche, herr, seit
ntvde, Muhterem_Aras, munich_startup, Literaturtest, _schwarzeKatze,
bmzimmermann, ninjawarriorrtl, cesurmilusoy, MetalabVie, S_chill_ing NTV (news channel) NTV
6 720 album, keanu
officiallyjoko, damitdasklaas, siggismallz, thisiscro, latenightberlin, gamescom,
EtienneToGo, ralphruthe, TheRocketBeans entertainment Entertainment
20 563
saschalobo, StefanOsswald, CarstenRossiKR, ragnarh, cbgreenwood, breitenbach,
BBDO, Ugugu, ring2, julianheck Digital Communication DigiCom
22 510
Kachelmann, schmitt_it, RomeoMicev, Perspektive360, paulespcforumde,
naturkosmetix, TUIDeutschland, glockendoktor, nachtnebel, HaraldKlein ? ?
13 453
lt, bett, morgens, hast, schön, hasse, müde, essen, ja, möchte, manchmal, mama, bitte, frau,
nachts, immer, bier, nein, kaffee, gern, gar, jemand, weiß, mal, geh, glaube, ach, scheiße, tweets,
hund, kinder, hätte, abends
KuttnerSarah, Regendelfin, vergraemer, DrWaumiau, HappySchnitzel, katjaberlin,
ArminRohde, RenateBergmann, hashcrap, peterbreuer
"Feuilleton" / authors / copy
Writers Authors
23 429 10jahrejk, joko, klaas, mtv, canadiangp, hitzekindofmagic, fernsehen
ProSieben, MattBannert, newshausen, haveonenme, Mone_Horan, about_riki_,
delay1, sarahofer8, sweettweetangie, JoanBleicher
Pro7 (Private TV
broadcaster) Pro7
42 376
dessau, roßlau, afd, görlitz, islam, vergewaltigt, migranten, asylbewerber, gefährder, abgelehnter,
sed, wippel, patrioten, greta, niger, hosni, stärkste, grüne, fridayforfuture, afrikaner, rosslau, linke,
gretathunberg, asylbewerbe, verbrechen, altparteien, merkel, linksradikale, grünen, habeck,
schweigt, zerreißen, wählt, mädchen, flüchtling, sachsen, vergewaltigung, maas, bürger,
islamistischer, sexuell
DonJoschi, AfD, MSF_austria, Alice_Weidel, SteinbachErika, Joerg_Meuthen,
Beatrix_vStorch, GrumpyMerkel, krone_at
hard rights / migration /
refugees Hard Right
30 369
mydirtyhobby, femdom, boobs, latex, milf, mistress, cock, anal, tits, blowjob, busty, fetish,
livecam, pornstar, mdh, sexy, findom, highheels, clip, manyvids, cam, cumshot, cum, webcam,
pussy, goddess, dirty, bdsm, porn, hot, horny, booty, slave
Erotik_Center, AnnyAuroraPorn, texas_patti, LenaNitro1, sandy226, Julietta_com,
ModelRoxxyX, swo2212, LucyCatOfficial, SuziAnneVX Porn Porn
Tagged Community graph Community graph of communities
in the 3-core of our sample with
over 300 accounts, at least 80 active
accounts during the examined time
frame, and edges with a weight of at
least 150; edge width represents
weight; edge direction follows
clockwise curvature; edges coloured
by source node; node size represents
the number of accounts in each
community
Outlook
● Adaptation to API changes
● Bootstrapping the seed pool
● Other language-based spheres
● Topical mining
● Other community detection methods
● Bot detection
Feedback and contributions welcome
RaDICeS
Rank Degree Influencer Core Sampler
https://github.com/FlxVctr/RADICES
@FlxVctr, @BenAThies, @cbpuschmann, @snurb_dot_info
Director’s Cut / Backup Slides
Interesting 🤔
Münch, F. V. (2019).
Measuring the Networked Public – Exploring Network
Science Methods for Large Scale Online Media Studies.
Queensland University of Technology.
https://doi.org/10.5204/thesis.eprints.125543
Coverage
Count, mean, standard deviation, minimum, quartiles, and maximum of the number of
friends and the percentages of friends in the influencer and baseline sample for public
accounts in the test sample with at least 2 friends.
n = 597 number of friends
percent of friends in
influencer sample
percent of friends in
baseline sample
mean 57 40 0.54
std 160 30 2.7
min 2 0 0
25% 7 11 0
50% 18 40 0
75% 42 65 0
max 1988 100 50
Twitter is not representative for general population – but for itself
https://www.pewinternet.org/2019/04/24/sizing-up-twitter-users/
Dominance of an active and influential elite
https://www.pewinternet.org/2019/04/24/sizing-up-twitter-users/

More Related Content

PDF
Walking Through Twitter: Sampling a Language-Based Follow Network
PDF
What makes a bot a bot? Exploring benign automation on Twitter
PPTX
Embeddings-Based Clustering for Target Specific Stances
PPTX
Social Media in Australia: A ‘Big Data’ Perspective on Twitter
PPTX
Social Media in Australia: The Case of Twitter
PPTX
Social Media Analytics Research at the QUT Digital Media Research Centre
PPTX
Mapping Online Publics: New Methods for Twitter Research
PDF
Breaking the Barrier: Interactive Election Campaign Communication on Twitter
Walking Through Twitter: Sampling a Language-Based Follow Network
What makes a bot a bot? Exploring benign automation on Twitter
Embeddings-Based Clustering for Target Specific Stances
Social Media in Australia: A ‘Big Data’ Perspective on Twitter
Social Media in Australia: The Case of Twitter
Social Media Analytics Research at the QUT Digital Media Research Centre
Mapping Online Publics: New Methods for Twitter Research
Breaking the Barrier: Interactive Election Campaign Communication on Twitter

Similar to Mining Influencers in the German Twittersphere – Mapping a Language-Based Follow Network (20)

PPTX
Twitter Pres slides3
PPTX
New Approaches to Large-Scale Social Media Analytics: Investigating Twitter i...
PDF
Understanding the world with NLP: interactions between society, behaviour and...
PPTX
One Day in the Life of a National Twittersphere
PPTX
A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...
PDF
Social Media Data Collection & Network Analysis with Netlytic and R
PPTX
Mapping a National Twittersphere: A 'Big Data' Analysis of Australian Twitter...
PDF
Using language to save the world: interactions between society, behaviour and...
PPTX
Big Data: Mapping Twitter Communities
PDF
GIJC19 - NodeXL Tutorial - Session 2
PPTX
Ralph schroeder and eric meyer
PPTX
Twitter in Germany: A Big Data Perspective
PDF
Community Structure, Interaction and Evolution Analysis of Online Social Netw...
PDF
Mapping the German Political Web
PDF
Identifying and Characterizing User Communities on Twitter during Crisis Events
PPTX
Mapping the Australian Twittersphere
PPTX
PEP-TF: Social Media Monitoring of the Campaigns for the 2013 German Bundesta...
PPTX
The language of social media
Twitter Pres slides3
New Approaches to Large-Scale Social Media Analytics: Investigating Twitter i...
Understanding the world with NLP: interactions between society, behaviour and...
One Day in the Life of a National Twittersphere
A Customisable Pipeline for Continuously Harvesting Socially-Minded Twitter U...
Social Media Data Collection & Network Analysis with Netlytic and R
Mapping a National Twittersphere: A 'Big Data' Analysis of Australian Twitter...
Using language to save the world: interactions between society, behaviour and...
Big Data: Mapping Twitter Communities
GIJC19 - NodeXL Tutorial - Session 2
Ralph schroeder and eric meyer
Twitter in Germany: A Big Data Perspective
Community Structure, Interaction and Evolution Analysis of Online Social Netw...
Mapping the German Political Web
Identifying and Characterizing User Communities on Twitter during Crisis Events
Mapping the Australian Twittersphere
PEP-TF: Social Media Monitoring of the Campaigns for the 2013 German Bundesta...
The language of social media
Ad

Recently uploaded (20)

PPTX
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
PPTX
Introduction to Inferential Statistics.pptx
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
A Complete Guide to Streamlining Business Processes
PDF
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
PPTX
Leprosy and NLEP programme community medicine
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PPTX
CYBER SECURITY the Next Warefare Tactics
PPT
Predictive modeling basics in data cleaning process
PDF
Navigating the Thai Supplements Landscape.pdf
PDF
Global Data and Analytics Market Outlook Report
PPTX
Managing Community Partner Relationships
PDF
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
PPTX
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
PDF
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
PDF
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
PDF
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
PDF
Microsoft 365 products and services descrption
PPTX
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
PPTX
Topic 5 Presentation 5 Lesson 5 Corporate Fin
Copy of 16 Timeline & Flowchart Templates – HubSpot.pptx
Introduction to Inferential Statistics.pptx
Qualitative Qantitative and Mixed Methods.pptx
A Complete Guide to Streamlining Business Processes
Data Engineering Interview Questions & Answers Batch Processing (Spark, Hadoo...
Leprosy and NLEP programme community medicine
STERILIZATION AND DISINFECTION-1.ppthhhbx
CYBER SECURITY the Next Warefare Tactics
Predictive modeling basics in data cleaning process
Navigating the Thai Supplements Landscape.pdf
Global Data and Analytics Market Outlook Report
Managing Community Partner Relationships
Jean-Georges Perrin - Spark in Action, Second Edition (2020, Manning Publicat...
Market Analysis -202507- Wind-Solar+Hybrid+Street+Lights+for+the+North+Amer...
Tetra Pak Index 2023 - The future of health and nutrition - Full report.pdf
OneRead_20250728_1808.pdfhdhddhshahwhwwjjaaja
REAL ILLUMINATI AGENT IN KAMPALA UGANDA CALL ON+256765750853/0705037305
Microsoft 365 products and services descrption
(Ali Hamza) Roll No: (F24-BSCS-1103).pptx
Topic 5 Presentation 5 Lesson 5 Corporate Fin
Ad

Mining Influencers in the German Twittersphere – Mapping a Language-Based Follow Network

  • 1. Mining Influencers in the German Twittersphere Mapping a Language-Based Follow Network Felix Victor Münch1 , Ben Thies1 , Cornelius Puschmann1 , Axel Bruns2 1 Leibniz Institute for Media Research | Hans-Bredow-Institut (HBI), Germany 2 Digital Media Research Centre (DMRC), Queensland University of Technology (QUT), Australia IC2 S2 , July 2019, Amsterdam
  • 2. Problem ‘I can’t get no population …’ ● follow/friend networks of Online Social Networks (OSNs) arguably main predictor for content exposure (despite sponsored content and algorithmic sorting of timelines) ● APIs too restrictive for collection of comprehensive follow networks
  • 3. Opportunities Possible Research Questions ● “Are there filter bubbles/echo chambers?” ● “Are there social and/or topical communities/issue publics?” ● “Who can spread which content most efficiently?” ● “Can we predict the spread of (fake) news?” ● “Who let the bots out? And where?”
  • 5. The Australian Twittersphere Bruns, A., Moon, B., Münch, F. V., & Sadkowsky, T. (2017). The Australian Twittersphere in 2016: mapping the follower/followee network. Social Media + Society, 3(4). https://doi.org/10.1177/2056305117748162 Münch, F. V. (2019). Measuring the Networked Public – Exploring Network Science Methods for Large Scale Online Media Studies. Queensland University of Technology. https://doi.org/10.5204/thesis.eprints.125543
  • 6. Method: Sample the influentials
  • 7. Our adaptation of the ‘rank degree’ method Based on: Salamanos, N., Voudigari, E., & Yannakoudakis, E. J. (2017). Deterministic graph exploration for efficient graph sampling. Social Network Analysis and Mining, 7(1), 24. https://doi.org/10.1007/s13278-017-0441-6 Bottom: Original graph without walked edges. Starting nodes (seeds) are drawn randomly (1) and walker move to their friend with the highest in-degree (2-6). Walked edges get removed/‘burned’. Top: Current sample at each step. Walked (and symmetric) edges are added to sample. 1 2 3 4 5 6
  • 8. Our adaptation of the ‘rank degree’ method Main adaptations (amongst others) mostly due to API restrictions: ● Undirected → Directed ● Fewer walkers (200) ● Walkers do not collapse when ending up on the same node ● Last 5000 friends only ● ‘Degree’ stays constant and is equal to follower count reported by Twitter API ● Only collect edges to accounts with German as their interface language (not possible anymore due to API changes ¯_(ツ)_/¯ … we work on a solution.)
  • 12. Coverage Distribution of public accounts with > 1 friend in the test sample over the percentage of their friends that can be found in the influencer sample (left, filtered for in-degree >= 1, leaving 199,180 accounts) / baseline sample (right, same size, randomly drawn from German accounts in global dataset)
  • 13. Coverage Ranked distribution of the percentage of ‘friends’ of accounts in a random sample (n=1000, filtered for having at least 2 ‘friends’) found in our influencer sample (excl. nodes with in-degree 0) and a random sample of the same size (181k accounts)
  • 14. Reach Ranked distribution of the percentage of accounts reached in a random sample (n=1000, filtered for having at least 2 ‘friends’) by accounts in our influencer sample (excl. nodes with in-degree 0) and by accounts in a random sample of the same size (181k accounts)
  • 15. Test study: Community detection and keyword extraction
  • 16. Community detection with infomap 3-core of our sample network; coloured by communities detected with the infomap community detection algorithm; node size represents Page Rank
  • 17. Keyword extraction with chi-squared criterion # active accounts keywords top accounts tag short tag 4 2015 e3, stream, xd, e32019, nintendo, twitch, game, crossing, pc, zelda, animal, gameplay, cyberpunk2077, games, switch, xbox, trailer, cyberpunk, gaming, xboxe3, uff, nice, geil, keanu, pk, spiele, live, nen, lol, mega unge, dagibee, Gronkh, MelinaSophie, LeFloid, iBlali, Taddl, rewinside, HandIOfIBlood, PietSmiet YouTubers & Gaming Youtube & Games 3 1855 berlin, innen, spd, berliner, studie, unternehmen, diskutieren, cdu, fordern, themen, wichtiger, bundesregierung, deutschen, digitalisierung, thema, wurde, wurden, annefrank, klimaschutz, mehr, juni, zeigt, deutschland, interview, politik, brandenburg tazgezwitscher, Die_Gruenen, Tagesspiegel, c_lindner, gutjahr, dunjahayali, sigmargabriel, sixtus, HeikoMaas, spdde German politics German Politics 11 1414 frauenstreik, schweiz, schweizer, glarner, svp, bern, frauenstreik2019, zürich, kanton, grosse, basel, nationalrat, frauen NZZ, 20min, viktorgiacobbo, Blickch, tagesanzeiger, srfnews, MikeMuellerLate, watson_news, migros, srf3 Swiss politics / women's strike Swiss Politics 2 1044 saison, trainer, bundesliga, neuzugang, spieler, dfb, fc, gerest, em, wechselt, estland, wechsel, transfer, tor, sieg, mannschaft, wm, cup, liga DFB_Team, FCBayern, ToniKroos, MarioGoetze, esmuellert_, Podolski10, Manuel_Neuer, Bundesliga_DE, ZDFsport, JB17Official German football Soccer 17 767 övp, spö, fpö, wien, österreich, bierlein, oenr, österreichs, ibiza, wiener, strache, kickl, türkis, hofer, parlament, nationalrat, zib2, abdullah, mandat, wahlkampf, zentrum, bundeskanzlerin, heinz, österreicher, glyphosat, antrag, blau florianklenk, sebastiankurz, IngridThurnher, kesslermichael, HannoSettele, vanderbellen, Gawhary, HBrandstaetter, HHumorlos, michelreimon Austrian politics Austrian Politics 33 751 menschen, nazi, merz, deutschland, afd, wer, akk, cdu, spd, jahre, leben, wäre, grünen, obwohl, jemand, klar, nazis, ja, liebe, wähler, bitte, viele, immer, mann, wissen, wünsche, herr, seit ntvde, Muhterem_Aras, munich_startup, Literaturtest, _schwarzeKatze, bmzimmermann, ninjawarriorrtl, cesurmilusoy, MetalabVie, S_chill_ing NTV (news channel) NTV 6 720 album, keanu officiallyjoko, damitdasklaas, siggismallz, thisiscro, latenightberlin, gamescom, EtienneToGo, ralphruthe, TheRocketBeans entertainment Entertainment 20 563 saschalobo, StefanOsswald, CarstenRossiKR, ragnarh, cbgreenwood, breitenbach, BBDO, Ugugu, ring2, julianheck Digital Communication DigiCom 22 510 Kachelmann, schmitt_it, RomeoMicev, Perspektive360, paulespcforumde, naturkosmetix, TUIDeutschland, glockendoktor, nachtnebel, HaraldKlein ? ? 13 453 lt, bett, morgens, hast, schön, hasse, müde, essen, ja, möchte, manchmal, mama, bitte, frau, nachts, immer, bier, nein, kaffee, gern, gar, jemand, weiß, mal, geh, glaube, ach, scheiße, tweets, hund, kinder, hätte, abends KuttnerSarah, Regendelfin, vergraemer, DrWaumiau, HappySchnitzel, katjaberlin, ArminRohde, RenateBergmann, hashcrap, peterbreuer "Feuilleton" / authors / copy Writers Authors 23 429 10jahrejk, joko, klaas, mtv, canadiangp, hitzekindofmagic, fernsehen ProSieben, MattBannert, newshausen, haveonenme, Mone_Horan, about_riki_, delay1, sarahofer8, sweettweetangie, JoanBleicher Pro7 (Private TV broadcaster) Pro7 42 376 dessau, roßlau, afd, görlitz, islam, vergewaltigt, migranten, asylbewerber, gefährder, abgelehnter, sed, wippel, patrioten, greta, niger, hosni, stärkste, grüne, fridayforfuture, afrikaner, rosslau, linke, gretathunberg, asylbewerbe, verbrechen, altparteien, merkel, linksradikale, grünen, habeck, schweigt, zerreißen, wählt, mädchen, flüchtling, sachsen, vergewaltigung, maas, bürger, islamistischer, sexuell DonJoschi, AfD, MSF_austria, Alice_Weidel, SteinbachErika, Joerg_Meuthen, Beatrix_vStorch, GrumpyMerkel, krone_at hard rights / migration / refugees Hard Right 30 369 mydirtyhobby, femdom, boobs, latex, milf, mistress, cock, anal, tits, blowjob, busty, fetish, livecam, pornstar, mdh, sexy, findom, highheels, clip, manyvids, cam, cumshot, cum, webcam, pussy, goddess, dirty, bdsm, porn, hot, horny, booty, slave Erotik_Center, AnnyAuroraPorn, texas_patti, LenaNitro1, sandy226, Julietta_com, ModelRoxxyX, swo2212, LucyCatOfficial, SuziAnneVX Porn Porn
  • 18. Tagged Community graph Community graph of communities in the 3-core of our sample with over 300 accounts, at least 80 active accounts during the examined time frame, and edges with a weight of at least 150; edge width represents weight; edge direction follows clockwise curvature; edges coloured by source node; node size represents the number of accounts in each community
  • 19. Outlook ● Adaptation to API changes ● Bootstrapping the seed pool ● Other language-based spheres ● Topical mining ● Other community detection methods ● Bot detection
  • 20. Feedback and contributions welcome RaDICeS Rank Degree Influencer Core Sampler https://github.com/FlxVctr/RADICES @FlxVctr, @BenAThies, @cbpuschmann, @snurb_dot_info
  • 21. Director’s Cut / Backup Slides
  • 22. Interesting 🤔 Münch, F. V. (2019). Measuring the Networked Public – Exploring Network Science Methods for Large Scale Online Media Studies. Queensland University of Technology. https://doi.org/10.5204/thesis.eprints.125543
  • 23. Coverage Count, mean, standard deviation, minimum, quartiles, and maximum of the number of friends and the percentages of friends in the influencer and baseline sample for public accounts in the test sample with at least 2 friends. n = 597 number of friends percent of friends in influencer sample percent of friends in baseline sample mean 57 40 0.54 std 160 30 2.7 min 2 0 0 25% 7 11 0 50% 18 40 0 75% 42 65 0 max 1988 100 50
  • 24. Twitter is not representative for general population – but for itself https://www.pewinternet.org/2019/04/24/sizing-up-twitter-users/
  • 25. Dominance of an active and influential elite https://www.pewinternet.org/2019/04/24/sizing-up-twitter-users/