SlideShare a Scribd company logo
Mitigation Pathways to well below 2C in ETSAP-TIAM
Environmental Research Institute
University College Cork
Mitigation Pathways to well below 2˚C
in ETSAP-TIAM
Dr James Glynn, Prof. Brian Ó Gallachóir
Joint Global Change Research Institute of Pacific Northwest Laboratory
(PNNL) & University of Maryland (UMD), USA
71st ETSAP-MEETING | 11th July 2017
Research Question & Motivation
• How low can we go?
• How far below 2C can we achieve temperature
stabilisation?
• Explore the solution space for mitigation
pathways for well below 2C in ETSAP-TIAM.
• Constrain TIAM with carbon budgets, Climate
module and CO2 sequestration sinks volumes.
• Explore the influence of CCS on temperature
stabilisation.
• Effort to inform the IPCC SR1.5 scenario
database Call.
• Is this best done collaboratively through the
ETSAP-TIAM github project?
• What is the influence of CCS and other
“backstop” technologies, such as DAC?
Mitigation Pathways to well below 2C in ETSAP-TIAM
GLOBAL ETSAP-TIAM model
• Linear programming bottom-up energy system model of IEA-ETSAP
• Integrated model of the entire energy system
• Prospective analysis on medium to long term horizon (2100)
• Demand driven by exogenous energy service demands
• Partial and dynamic equilibrium
• (usually)
• Optimal technology selection
• Minimizes the total system cost
• Environmental constraints
• Price-elastic demands
• Hybrid General Equilibrium MSA
• Integrated Climate Model
• Myopic and Stochastic options
ETSAP TIAM Description
• …
Climate
Module
Atm. Conc.
ΔForcing
ΔTemp
Used for
reporting &
setting
targets
Biomass
Potential
Renewable
Potential
Nuclear
Fossil Fuel
Reserves
(oil, coal, gas)
Extraction
Upstream
Fuels
Trade
Secondary
Transformation
OPEC/
NON-OPEC
regrouping
Electricity
Fuels
Electricity
Cogeneration
Heat
Hydrogen production
and distribution
End Use
Fuels
Industrial
Service
Composition
Auto Production
Cogeneration
Carbon
capture
CH4 options
Carbon
sequestration
Terrestrial
sequestration
Landfills Manure
Bio burning, rice,
enteric ferm
Wastewater
CH4 options
N2O options
CH4 options
OI****
GA****
CO****
Trade
ELC***
WIN SOL
GEO TDL
BIO***
NUC
HYD
BIO***
HETHET
ELC
ELC
SYNH2
BIO***
CO2
ELC
GAS***
COA***
Industrial
Tech.
Commercial
Tech.
Transport
Tech.
Residential
Tech.
Agriculture
Tech.
I***
I** (6)
T** (16)R** (11)C** (8)A** (1)
INDELC
INDELC
IS**
Demands
IND*** COM***AGR*** TRA***RES***
Non-energy
sectors (CH4)
OIL***
Updates to ETSAP-TIAM
• Following from IER Phase 2 Updates (2014) & DTU Github updates (Present)
• Updated Drivers
• SSP2 from OECD Env-LINKS CGE model
• Regional Structural detail of the economy from GTAP calibration.
• Work in progress on other SSP narratives and consistent resource estimates
• MACRO / MSA
• Collaboration with PSI,VTT, E4SMA, UCC
• Calibrations for Default TIAM drivers & SSP2 drivers submitted to ETSAP-TIAM
GIT project
• 2 Papers in Review ETSAP-TIAM / TIAM-UCL
• Local Air Pollution
• Include damage costs from local air pollutants (NEEDS extrapolation)
• PM2.5, PM10, SO2, NOx, NH4, etc.
• Collaboration with PSI, VTT, CRES, UCC
• Paper in review (MSA + LAP)
• Climate Module – Control for non-CO2 GHGs & Exoforcing
• Updates to UCL specifications using CMIP5 linear forcing (CO2, N2O, CH4)
Meaning of 1.5˚C: Warming in volcano-free
periods relative to a volcano-free period
1900 1950 2000
-0.5
0.0
0.5
1.0
1.5
Warmingrelativeto1861-1880(o
C)
Monthly global temperatures from HadCRUT4
Attributable human-induced warming
Attributable natural warming & cooling
Combination
1861-80
Scenarios
• Base – Drivers are calibrated to SSP2 drivers from the OECD ENV-LINKS.
• Population, GDP, sectoral GVA, Households
• All Climate Policy runs are fixed to the Base run to 2020.
• Combinations of the following
• 2°C, 1.75°C and 1.5°C temperature limits from the Climate module to control
for Non-CO2 GHGs and Exoforcing
• Carbon Budgets applied from 2020-2100
• 1000GtCO2 – 2°C
• 750GtCO2 – 1.75°C
• 500GtCO2 – 1.5°C
• Constraints on CO2 sequestration sinks limits
• NoLimit, 16600GtCO2, 1380GtCO2, 800GtCO2, 367GtCO2, ZEROGtCO2
• Not Shown – to keep things simple
• with Local Air pollution Damages
• with Macro Stand Alone macroeconmic estimates of economic and consumption
losses
Resulting Temperature Increases
0.5
0.75
1
1.25
1.5
1.75
2
2.25
2.5
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
TemperatureIncrease(°C)
1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt
1-5DS_by2100_SSP2_500GtCB_CCSNoLim
1-5DS_by2100_SSP2_500GtCO2_CCSNoLim
1-75DS_SSP2_750GtCB_CCSLim1380Gt
1-75DS_SSP2_750GtCB_CCSLim1660Gt
1-75DS_SSP2_750GtCB_CCSLim367Gt
1-75DS_SSP2_750GtCB_CCSLim800Gt
1-75DS_SSP2_750GtCB_CCSLimZeroGt
1-75DS_SSP2_750GtCB_CCSNoLim
1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt
1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt
1-75DS_by2100_SSP2_750GtCB_CCSNoLim
1-75DS_by2100_SSP2_750GtCO2_CCSNoLim
2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD
2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD
BASE_SSP2_11p_NoCO2Trd
SSP Marker Model Comparison
CO2 Emissions
-30
-10
10
30
50
70
2000 2020 2040 2060 2080 2100
1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt
1-5DS_by2100_SSP2_500GtCB_CCSNoLim
1-5DS_by2100_SSP2_500GtCO2_CCSNoLim
1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt
1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt
1-75DS_by2100_SSP2_750GtCB_CCSNoLim
1-75DS_by2100_SSP2_750GtCO2_CCSNoLim
1-75DS_SSP2_750GtCB_CCSLim1380Gt
1-75DS_SSP2_750GtCB_CCSLim1660Gt
1-75DS_SSP2_750GtCB_CCSLim367Gt
1-75DS_SSP2_750GtCB_CCSLim800Gt
1-75DS_SSP2_750GtCB_CCSLimZeroGt
1-75DS_SSP2_750GtCB_CCSNoLim
2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD
2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD
BASE_SSP2_11p_NoCO2Trd
SSP2 Marker Model Comparison
Primary Energy
0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300 1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt
1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt
1-5DS_by2100_SSP2_500GtCB_CCSNoLim
1-5DS_by2100_SSP2_500GtCO2_CCSNoLim
1-75DS_SSP2_750GtCB_CCSLim1380Gt
1-75DS_SSP2_750GtCB_CCSLim1660Gt
1-75DS_SSP2_750GtCB_CCSLim367Gt
1-75DS_SSP2_750GtCB_CCSLim800Gt
1-75DS_SSP2_750GtCB_CCSLimZeroGt
1-75DS_SSP2_750GtCB_CCSNoLim
1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt
1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt
1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt
1-75DS_by2100_SSP2_750GtCB_CCSNoLim
1-75DS_by2100_SSP2_750GtCO2_CCSNoLim
2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD
2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD
2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD
BASE_SSP2_11p_NoCO2Trd
Primary Energy (PJ)
0
200,000
400,000
600,000
800,000
1,000,000
1,200,000
1,400,000
1,600,000
1,800,000
2,000,000
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim
Coal Oil Gas Nuclear Biomass Hydro Renewable except hydro and biomass
Final Energy (PJ)
0
200,000
400,000
600,000
800,000
1,000,000
1,200,000
1,400,000
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim
Coal Oil Products (includes synthetic oil from coal and Gas Biomass (excludes liquid biofuels) Biodiesel Alcohol (ethanol, methanol, from biomass or not) Hydrogen Heat Other Renewable Electricity
Electricity Installed Capacity (GW)
0
2,000
4,000
6,000
8,000
10,000
12,000
14,000
16,000
18,000
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2005
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim
Coal Gas and Oil Nuclear Hydro Biomass Biomass CCS Wind Geo, Tidal and Wave Solar Thermal Solar PV
Electricity Generation (PJ)
0
50,000
100,000
150,000
200,000
250,000
2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090
BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim
Coal Gas and Oil Nuclear Hydro Biomass Biomass CCS CH4 Options Wind Geo, Tidal and Wave Solar Thermal Solar PV
Regional Emissions (MtCO2)
-20,000
0
20,000
40,000
60,000
80,000
100,000
20052010202020302040205020602070208020902100200520102020203020402050206020702080209021002005201020202030204020502060207020802090210020052010202020302040205020602070208020902100
BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim
AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU
Carbon Price ($/tCO2)
0
500
1000
1500
2000
2500
2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100
2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim
AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU
Key Messages
• Staying below a 1.5°C ceiling seems infeasible.
• Overshooting and returning to 1.5°C may be feasible
• Negative Emissions technologies are required.
• TIAM currently does not have a Direct Air Capture (DAC) Specification
• Do we think it should have a DAC specification?
• The costs of achieving ambitious decarbonisation scenarios are
highly sensitive to the volume of CO2 disposed.
• Carbon Capture and Storage, and other negative emissions technologies
require accelerated development as well as likely demand side measures.
• Some regions may have significantly reduced abatement costs due
to their ability to sequester CO2 in conjunction with large renewables
potentials as well geological storage for BECCs
• Notably, Austrailia, Canada and Former Soviet Union
QUESTIONS?
“Unlocking the potential of our
marine and renewable energy
resources through the power of
research and innovation”
Environmental Research Institute
Instiúd Taighde Comshaoil
Energy Policy and Modelling Group
www.ucc.ie/energypolicy
Q&A Backup Slides
INDC action is not fast enough
UNFCCC INDC Synthesis Report
Simple Science-Policy Message:
For every 1 trillion tonnes of CO2 emitted, temperature increases about 0.52˚C
1.5°C - 2°C
550-1000
GtCO2
left
~1750
175yrs
34 yrs
16 yrs
13 yrs
10 yrs
9 yrs
8 yrs
300
GtCO2
300
GtCO2
300
GtCO2
300
GtCO2
300
GtCO2
300
GtCO2
300
GtCO2
300
GtCO2
250
GtCO2
300
GtCO2
250
GtCO2
11 yrs?
9 yrs?
2016
Global Sensitivity to Restricted Technology
Global emissions from fossil fuel and industry: 36.3 ± 1.8 GtCO2 in 2015, 63% over 1990
Projection for 2016: 36.4 ± 2.3 GtCO2, 0.2% higher than 2015
Estimates for 2014 and 2015 are preliminary. Growth rate is adjusted for the leap year in 2016.
Source: CDIAC; Le Quéré et al 2016; Global Carbon Budget 2016
Uncertainty is ±5% for
one standard deviation
(IPCC “likely” range)
Emissions from fossil fuel use and industry
Total global emissions
Total global emissions: 41.9 ± 2.8 GtCO2 in 2015, 49% over 1990
Percentage land-use change: 36% in 1960, 9% averaged 2006-2015
Three different methods have been used to estimate
land-use change emissions, indicated here by different shades of grey
Source: CDIAC; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016
Global carbon budget
The carbon sources from fossil fuels, industry, and land use change emissions are balanced by the atmosphere and carbon
sinks on land and in the ocean
Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;
Le Quéré et al 2016; Global Carbon Budget 2016
Total global emissions by source
Land-use change was the dominant source of annual CO2 emissions until around 1950
Others: Emissions from cement production and gas flaring
Source: CDIAC; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016
Where did the 80%-95% target come from?
Firstly the IPCC AR4 WG3 report was published in 2007. specifically chapter 13 is where the targets came from.
[1]Implications of regime stringency: linking goals, participation and timing.
http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch13-ens13-3-3-3.html
Then an EU Parliament recommended to use this (scientifically based target) before COP15 (Copenhagen) for developed regions to
aim for 80%-95% GHG reduction by 2050.
[1] 2050: The future begins today – Recommendations for the EU’s Future integrated policy on climate change
http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?lang=en&reference=2008/2105(INI)
(Note AR5 does not have the same table or recommendation as AR4 and is discussed in various online blog pieces from IPCC co-
authors that WG3 lead authors feel that there should be a separation from Science and policy, and hence did not update the WG3
Ch13 chart on Annex1 country targets in AR5. Most of the regions in the AR5 WG3 IAM models are different from AR4 - I don't
know if this aggregation was on purpose or not to disable this link between the climate science and national/regional policy
decisions, i.e. to encourage policy makers to take ownership of the uncertainties in the decision making subtleties.)
The recommendation is also highlighted in the EU Presidency conclusion documents before Copenhagen (COP15) in October 2009
[1] Presidency Conclusions (2009)
http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%2015265%202009%20INIT
Then the EU energy roadmap from 2011 includes the 80% target.
[1]Energy Roadmap 2050 (2011)
http://ec.europa.eu/energy/sites/ener/files/documents/roadmap2050_ia_20120430_en_0.pdf
during this time the EU 20-20-20 targets for 2020 had been used, but were established before the 2007 publication of AR4 and so
where not based on the 80%-95% reduction targets for 2050.

More Related Content

PDF
Status of US CCS projects and data available
PDF
Status ETSAP_TIAM Git project and starting up ETSAP-TIAM update
PDF
The Danish Energy Technology Data Catalogue
PDF
A Spatio-temporal Optimization Model for the Analysis of Future Energy System...
PDF
MoCho-TIMES -Modal choice within bottom-up optimization energy system models
PDF
Analysis of the relative roles of supply-side and demand-side measures in tac...
PDF
Impacts of green hydrogen on the Italian power system by 2030
PDF
TIMES Course for Master Students in DTU: Reflections and Way Forward
Status of US CCS projects and data available
Status ETSAP_TIAM Git project and starting up ETSAP-TIAM update
The Danish Energy Technology Data Catalogue
A Spatio-temporal Optimization Model for the Analysis of Future Energy System...
MoCho-TIMES -Modal choice within bottom-up optimization energy system models
Analysis of the relative roles of supply-side and demand-side measures in tac...
Impacts of green hydrogen on the Italian power system by 2030
TIMES Course for Master Students in DTU: Reflections and Way Forward

What's hot (19)

PDF
JRC-EU-TIMES updates and outlook
PDF
ETSAP-TIAM update and re-calibration
PDF
Addressing Uncertainty in TIMES Using Monte Carlo Analysis
PDF
Climate policy Engagement in Brazil: how delayed action might lead to CCS as ...
PDF
Modelling different Thermal Energy Storage (TES) options in a TIMES model
PDF
How costs affect deployment of low carbon technologies - analysis with JRC-EU...
PDF
The Influence of Continued RES Cost Reductions - an Analysis with the Mid-Eur...
PDF
Techno-economic and environmental implications of transportation decarbonizat...
PDF
Analysis of the role of energy storages in Germany with TIMES PanEU – methodo...
PDF
TIMES-CGE-SD model coupling and data exchange mechanism for the LEDS developm...
PDF
Modelling Circular Economy in TIMES
PDF
Dr Dev Kambhampati | DOE NETL Report- Cost & Performance Baseline for Fossil ...
PDF
Modelling global macroeconomic impacts of a carbon constrained energy system ...
PDF
Addressing RE Intermittency and Operation Aspects of Generating Units in Long...
PDF
Analysis of the role of energy storages in Belgium and Netherlands with TIMES
PPT
Coal Fleet Overview 2010
PPT
The Carbon Nexus - Boilers, Power Plants, and Strategic Energy Management
PDF
L010437380
PDF
Integrative Smart City Planning – Energy system modelling for the city of Evora
JRC-EU-TIMES updates and outlook
ETSAP-TIAM update and re-calibration
Addressing Uncertainty in TIMES Using Monte Carlo Analysis
Climate policy Engagement in Brazil: how delayed action might lead to CCS as ...
Modelling different Thermal Energy Storage (TES) options in a TIMES model
How costs affect deployment of low carbon technologies - analysis with JRC-EU...
The Influence of Continued RES Cost Reductions - an Analysis with the Mid-Eur...
Techno-economic and environmental implications of transportation decarbonizat...
Analysis of the role of energy storages in Germany with TIMES PanEU – methodo...
TIMES-CGE-SD model coupling and data exchange mechanism for the LEDS developm...
Modelling Circular Economy in TIMES
Dr Dev Kambhampati | DOE NETL Report- Cost & Performance Baseline for Fossil ...
Modelling global macroeconomic impacts of a carbon constrained energy system ...
Addressing RE Intermittency and Operation Aspects of Generating Units in Long...
Analysis of the role of energy storages in Belgium and Netherlands with TIMES
Coal Fleet Overview 2010
The Carbon Nexus - Boilers, Power Plants, and Strategic Energy Management
L010437380
Integrative Smart City Planning – Energy system modelling for the city of Evora
Ad

Similar to Mitigation Pathways to well below 2C in ETSAP-TIAM (20)

PDF
The role of Direct Air Capture and Carbon Dioxide Removal in well below 2C sc...
PDF
CCS in IAM climate stabilisation scenarios – Exploring the sensitivity to CCS...
PDF
Addressing climate change uncertainty with a monte carloversion of TIMES
PDF
Introducing external costs for Local Atmospheric Pollution (LAP) in TIAM-MACR...
PDF
Informing the debate around the role of hydrogen in net zero pathways for dif...
PDF
"Taking on TIAM" a new user´s experience and lessons learned
PDF
IEA DSM Task 17: Integration of DSM, DG, RES and ES – Outcome of Phase 1 and ...
PDF
Pushing the limits of TIAM - Achieving well-below 2 degrees scenarios
PPTX
NCPC IE Conference 2017 P Mukoma
PDF
Techno-economic assessment and global sensitivity analysis for biomass-based ...
PDF
Impacts of deep decarbonization pathways on the Italian energy intensive indu...
PDF
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
PDF
GHG emission reduction due to energy efficiency measures under climate policy
PDF
Emission impacts of marginal electricity demand in France
PDF
Model archaeology
PDF
Analysis of the required global energy system transformations and the associa...
PDF
Towards becoming a net greenhouse gas sink: Metrics and Techniques to identif...
PDF
British Standards for Carbon Management- including PAS 2080 – The world’s fir...
PPT
Future possibilities for utilization of solar energy serc 2009 05-20
PDF
R&D Enabling Decarbonisation of Heat - SEAI RDD Conference
The role of Direct Air Capture and Carbon Dioxide Removal in well below 2C sc...
CCS in IAM climate stabilisation scenarios – Exploring the sensitivity to CCS...
Addressing climate change uncertainty with a monte carloversion of TIMES
Introducing external costs for Local Atmospheric Pollution (LAP) in TIAM-MACR...
Informing the debate around the role of hydrogen in net zero pathways for dif...
"Taking on TIAM" a new user´s experience and lessons learned
IEA DSM Task 17: Integration of DSM, DG, RES and ES – Outcome of Phase 1 and ...
Pushing the limits of TIAM - Achieving well-below 2 degrees scenarios
NCPC IE Conference 2017 P Mukoma
Techno-economic assessment and global sensitivity analysis for biomass-based ...
Impacts of deep decarbonization pathways on the Italian energy intensive indu...
eni_Rossi Gianmarco - Energy Management System for the Optimization of the Up...
GHG emission reduction due to energy efficiency measures under climate policy
Emission impacts of marginal electricity demand in France
Model archaeology
Analysis of the required global energy system transformations and the associa...
Towards becoming a net greenhouse gas sink: Metrics and Techniques to identif...
British Standards for Carbon Management- including PAS 2080 – The world’s fir...
Future possibilities for utilization of solar energy serc 2009 05-20
R&D Enabling Decarbonisation of Heat - SEAI RDD Conference
Ad

More from IEA-ETSAP (20)

PDF
Generalized levelized cost as a metric for explaining model behavior of linea...
PDF
TIMES2JuMP project status report; Learnings on the feasibility of Migrating T...
PDF
A platform for open, realistic, and reproducible benchmarking of solvers on e...
PDF
Integrated Long-Term Planning and Short-Term Reliability Assessment for High-...
PDF
IEA H2 TCP Task 52 Hydrogen for Iron and Steel Making
PDF
TIMES-NZ 3.0: automating upstream data processing for an open-source workflow
PDF
Towards a national integrated energy, land and food system model for long ter...
PDF
Development of an AFOLU module for TIMES
PDF
The plant-level decarbonization pathways and mitigation cost of global oil re...
PDF
Near-optimal solutions for long-term energy planning facing the possible crit...
PDF
Integrated TIMES-E3ME-PLEXOS-DASMOD Modelling Framework for Assessing The Cze...
PDF
Does myopic foresight modeling better capture the real-world energy transitio...
PDF
xl2times: progress update & a proof-of-concept interactive notebook-based wor...
PDF
Liberating energy models from modelers Amit Kanudia
PDF
The potential role of alternative fuels in the decarbonization of hard-to-aba...
PDF
Future Low-Carbon Hydrogen Production Technology Penetration with Aspen-Based...
PDF
Integrating Detailed Petrochemical Processes in Global Energy System Models f...
PDF
Are Heavy-Duty Vehicles at a Crossroads? A Real Options and Innovation Diffus...
PDF
An Assessment of the Impact of Electrification for Integration of Offshore Wi...
PDF
Role of Carbon Pricing and Emissions Constraint Pathways for India’s Net-Zero...
Generalized levelized cost as a metric for explaining model behavior of linea...
TIMES2JuMP project status report; Learnings on the feasibility of Migrating T...
A platform for open, realistic, and reproducible benchmarking of solvers on e...
Integrated Long-Term Planning and Short-Term Reliability Assessment for High-...
IEA H2 TCP Task 52 Hydrogen for Iron and Steel Making
TIMES-NZ 3.0: automating upstream data processing for an open-source workflow
Towards a national integrated energy, land and food system model for long ter...
Development of an AFOLU module for TIMES
The plant-level decarbonization pathways and mitigation cost of global oil re...
Near-optimal solutions for long-term energy planning facing the possible crit...
Integrated TIMES-E3ME-PLEXOS-DASMOD Modelling Framework for Assessing The Cze...
Does myopic foresight modeling better capture the real-world energy transitio...
xl2times: progress update & a proof-of-concept interactive notebook-based wor...
Liberating energy models from modelers Amit Kanudia
The potential role of alternative fuels in the decarbonization of hard-to-aba...
Future Low-Carbon Hydrogen Production Technology Penetration with Aspen-Based...
Integrating Detailed Petrochemical Processes in Global Energy System Models f...
Are Heavy-Duty Vehicles at a Crossroads? A Real Options and Innovation Diffus...
An Assessment of the Impact of Electrification for Integration of Offshore Wi...
Role of Carbon Pricing and Emissions Constraint Pathways for India’s Net-Zero...

Recently uploaded (20)

PPTX
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
PPTX
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
PPTX
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
PDF
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
PPTX
Qualitative Qantitative and Mixed Methods.pptx
PPTX
STERILIZATION AND DISINFECTION-1.ppthhhbx
PDF
Galatica Smart Energy Infrastructure Startup Pitch Deck
PDF
.pdf is not working space design for the following data for the following dat...
PPT
Reliability_Chapter_ presentation 1221.5784
PPTX
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
PPTX
Introduction-to-Cloud-ComputingFinal.pptx
PPTX
SAP 2 completion done . PRESENTATION.pptx
PDF
Fluorescence-microscope_Botany_detailed content
PDF
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
PDF
Lecture1 pattern recognition............
PDF
Business Analytics and business intelligence.pdf
PPTX
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
PPTX
Computer network topology notes for revision
PPT
ISS -ESG Data flows What is ESG and HowHow
mbdjdhjjodule 5-1 rhfhhfjtjjhafbrhfnfbbfnb
DISORDERS OF THE LIVER, GALLBLADDER AND PANCREASE (1).pptx
ALIMENTARY AND BILIARY CONDITIONS 3-1.pptx
22.Patil - Early prediction of Alzheimer’s disease using convolutional neural...
Qualitative Qantitative and Mixed Methods.pptx
STERILIZATION AND DISINFECTION-1.ppthhhbx
Galatica Smart Energy Infrastructure Startup Pitch Deck
.pdf is not working space design for the following data for the following dat...
Reliability_Chapter_ presentation 1221.5784
iec ppt-1 pptx icmr ppt on rehabilitation.pptx
Introduction-to-Cloud-ComputingFinal.pptx
SAP 2 completion done . PRESENTATION.pptx
Fluorescence-microscope_Botany_detailed content
Recruitment and Placement PPT.pdfbjfibjdfbjfobj
Lecture1 pattern recognition............
Business Analytics and business intelligence.pdf
01_intro xxxxxxxxxxfffffffffffaaaaaaaaaaafg
Computer network topology notes for revision
ISS -ESG Data flows What is ESG and HowHow

Mitigation Pathways to well below 2C in ETSAP-TIAM

  • 2. Environmental Research Institute University College Cork Mitigation Pathways to well below 2˚C in ETSAP-TIAM Dr James Glynn, Prof. Brian Ó Gallachóir Joint Global Change Research Institute of Pacific Northwest Laboratory (PNNL) & University of Maryland (UMD), USA 71st ETSAP-MEETING | 11th July 2017
  • 3. Research Question & Motivation • How low can we go? • How far below 2C can we achieve temperature stabilisation? • Explore the solution space for mitigation pathways for well below 2C in ETSAP-TIAM. • Constrain TIAM with carbon budgets, Climate module and CO2 sequestration sinks volumes. • Explore the influence of CCS on temperature stabilisation. • Effort to inform the IPCC SR1.5 scenario database Call. • Is this best done collaboratively through the ETSAP-TIAM github project? • What is the influence of CCS and other “backstop” technologies, such as DAC?
  • 5. GLOBAL ETSAP-TIAM model • Linear programming bottom-up energy system model of IEA-ETSAP • Integrated model of the entire energy system • Prospective analysis on medium to long term horizon (2100) • Demand driven by exogenous energy service demands • Partial and dynamic equilibrium • (usually) • Optimal technology selection • Minimizes the total system cost • Environmental constraints • Price-elastic demands • Hybrid General Equilibrium MSA • Integrated Climate Model • Myopic and Stochastic options
  • 6. ETSAP TIAM Description • … Climate Module Atm. Conc. ΔForcing ΔTemp Used for reporting & setting targets Biomass Potential Renewable Potential Nuclear Fossil Fuel Reserves (oil, coal, gas) Extraction Upstream Fuels Trade Secondary Transformation OPEC/ NON-OPEC regrouping Electricity Fuels Electricity Cogeneration Heat Hydrogen production and distribution End Use Fuels Industrial Service Composition Auto Production Cogeneration Carbon capture CH4 options Carbon sequestration Terrestrial sequestration Landfills Manure Bio burning, rice, enteric ferm Wastewater CH4 options N2O options CH4 options OI**** GA**** CO**** Trade ELC*** WIN SOL GEO TDL BIO*** NUC HYD BIO*** HETHET ELC ELC SYNH2 BIO*** CO2 ELC GAS*** COA*** Industrial Tech. Commercial Tech. Transport Tech. Residential Tech. Agriculture Tech. I*** I** (6) T** (16)R** (11)C** (8)A** (1) INDELC INDELC IS** Demands IND*** COM***AGR*** TRA***RES*** Non-energy sectors (CH4) OIL***
  • 7. Updates to ETSAP-TIAM • Following from IER Phase 2 Updates (2014) & DTU Github updates (Present) • Updated Drivers • SSP2 from OECD Env-LINKS CGE model • Regional Structural detail of the economy from GTAP calibration. • Work in progress on other SSP narratives and consistent resource estimates • MACRO / MSA • Collaboration with PSI,VTT, E4SMA, UCC • Calibrations for Default TIAM drivers & SSP2 drivers submitted to ETSAP-TIAM GIT project • 2 Papers in Review ETSAP-TIAM / TIAM-UCL • Local Air Pollution • Include damage costs from local air pollutants (NEEDS extrapolation) • PM2.5, PM10, SO2, NOx, NH4, etc. • Collaboration with PSI, VTT, CRES, UCC • Paper in review (MSA + LAP) • Climate Module – Control for non-CO2 GHGs & Exoforcing • Updates to UCL specifications using CMIP5 linear forcing (CO2, N2O, CH4)
  • 8. Meaning of 1.5˚C: Warming in volcano-free periods relative to a volcano-free period 1900 1950 2000 -0.5 0.0 0.5 1.0 1.5 Warmingrelativeto1861-1880(o C) Monthly global temperatures from HadCRUT4 Attributable human-induced warming Attributable natural warming & cooling Combination 1861-80
  • 9. Scenarios • Base – Drivers are calibrated to SSP2 drivers from the OECD ENV-LINKS. • Population, GDP, sectoral GVA, Households • All Climate Policy runs are fixed to the Base run to 2020. • Combinations of the following • 2°C, 1.75°C and 1.5°C temperature limits from the Climate module to control for Non-CO2 GHGs and Exoforcing • Carbon Budgets applied from 2020-2100 • 1000GtCO2 – 2°C • 750GtCO2 – 1.75°C • 500GtCO2 – 1.5°C • Constraints on CO2 sequestration sinks limits • NoLimit, 16600GtCO2, 1380GtCO2, 800GtCO2, 367GtCO2, ZEROGtCO2 • Not Shown – to keep things simple • with Local Air pollution Damages • with Macro Stand Alone macroeconmic estimates of economic and consumption losses
  • 10. Resulting Temperature Increases 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 TemperatureIncrease(°C) 1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim 1-5DS_by2100_SSP2_500GtCO2_CCSNoLim 1-75DS_SSP2_750GtCB_CCSLim1380Gt 1-75DS_SSP2_750GtCB_CCSLim1660Gt 1-75DS_SSP2_750GtCB_CCSLim367Gt 1-75DS_SSP2_750GtCB_CCSLim800Gt 1-75DS_SSP2_750GtCB_CCSLimZeroGt 1-75DS_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt 1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt 1-75DS_by2100_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCO2_CCSNoLim 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD BASE_SSP2_11p_NoCO2Trd
  • 11. SSP Marker Model Comparison CO2 Emissions -30 -10 10 30 50 70 2000 2020 2040 2060 2080 2100 1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim 1-5DS_by2100_SSP2_500GtCO2_CCSNoLim 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt 1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt 1-75DS_by2100_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCO2_CCSNoLim 1-75DS_SSP2_750GtCB_CCSLim1380Gt 1-75DS_SSP2_750GtCB_CCSLim1660Gt 1-75DS_SSP2_750GtCB_CCSLim367Gt 1-75DS_SSP2_750GtCB_CCSLim800Gt 1-75DS_SSP2_750GtCB_CCSLimZeroGt 1-75DS_SSP2_750GtCB_CCSNoLim 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD BASE_SSP2_11p_NoCO2Trd
  • 12. SSP2 Marker Model Comparison Primary Energy 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1-5DS_by2100_SSP2_500GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim1660Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim367Gt 1-5DS_by2100_SSP2_500GtCB_CCSLim800Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim 1-5DS_by2100_SSP2_500GtCO2_CCSNoLim 1-75DS_SSP2_750GtCB_CCSLim1380Gt 1-75DS_SSP2_750GtCB_CCSLim1660Gt 1-75DS_SSP2_750GtCB_CCSLim367Gt 1-75DS_SSP2_750GtCB_CCSLim800Gt 1-75DS_SSP2_750GtCB_CCSLimZeroGt 1-75DS_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim1660Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim367Gt 1-75DS_by2100_SSP2_750GtCB_CCSLim800Gt 1-75DS_by2100_SSP2_750GtCB_CCSLimZeroGt 1-75DS_by2100_SSP2_750GtCB_CCSNoLim 1-75DS_by2100_SSP2_750GtCO2_CCSNoLim 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim1660_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim367_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLim800_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSNoLim_noCo2TRD BASE_SSP2_11p_NoCO2Trd
  • 14. Final Energy (PJ) 0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim Coal Oil Products (includes synthetic oil from coal and Gas Biomass (excludes liquid biofuels) Biodiesel Alcohol (ethanol, methanol, from biomass or not) Hydrogen Heat Other Renewable Electricity
  • 15. Electricity Installed Capacity (GW) 0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 2005 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim Coal Gas and Oil Nuclear Hydro Biomass Biomass CCS Wind Geo, Tidal and Wave Solar Thermal Solar PV
  • 16. Electricity Generation (PJ) 0 50,000 100,000 150,000 200,000 250,000 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 2010 2020 2030 2040 2050 2060 2070 2080 2100 2090 BASE_SSP2_11p_NoCO2Trd 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim Coal Gas and Oil Nuclear Hydro Biomass Biomass CCS CH4 Options Wind Geo, Tidal and Wave Solar Thermal Solar PV
  • 18. Carbon Price ($/tCO2) 0 500 1000 1500 2000 2500 2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100 2030 2040 2050 2060 2070 2080 2090 2100 2DS_SSP2_1000GtCO2_CCSLim1380Gt_noCo2TRD 2DS_SSP2_1000GtCO2_CCSLimZeroGt_noCo2TRD 1-75DS_by2100_SSP2_750GtCB_CCSLim1380Gt 1-5DS_by2100_SSP2_500GtCB_CCSNoLim AFR AUS CAN CHI CSA EEU FSU IND JPN MEA MEX ODA SKO USA WEU
  • 19. Key Messages • Staying below a 1.5°C ceiling seems infeasible. • Overshooting and returning to 1.5°C may be feasible • Negative Emissions technologies are required. • TIAM currently does not have a Direct Air Capture (DAC) Specification • Do we think it should have a DAC specification? • The costs of achieving ambitious decarbonisation scenarios are highly sensitive to the volume of CO2 disposed. • Carbon Capture and Storage, and other negative emissions technologies require accelerated development as well as likely demand side measures. • Some regions may have significantly reduced abatement costs due to their ability to sequester CO2 in conjunction with large renewables potentials as well geological storage for BECCs • Notably, Austrailia, Canada and Former Soviet Union
  • 21. “Unlocking the potential of our marine and renewable energy resources through the power of research and innovation”
  • 22. Environmental Research Institute Instiúd Taighde Comshaoil Energy Policy and Modelling Group www.ucc.ie/energypolicy
  • 24. INDC action is not fast enough UNFCCC INDC Synthesis Report
  • 25. Simple Science-Policy Message: For every 1 trillion tonnes of CO2 emitted, temperature increases about 0.52˚C 1.5°C - 2°C 550-1000 GtCO2 left ~1750 175yrs 34 yrs 16 yrs 13 yrs 10 yrs 9 yrs 8 yrs 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 300 GtCO2 250 GtCO2 300 GtCO2 250 GtCO2 11 yrs? 9 yrs? 2016
  • 26. Global Sensitivity to Restricted Technology
  • 27. Global emissions from fossil fuel and industry: 36.3 ± 1.8 GtCO2 in 2015, 63% over 1990 Projection for 2016: 36.4 ± 2.3 GtCO2, 0.2% higher than 2015 Estimates for 2014 and 2015 are preliminary. Growth rate is adjusted for the leap year in 2016. Source: CDIAC; Le Quéré et al 2016; Global Carbon Budget 2016 Uncertainty is ±5% for one standard deviation (IPCC “likely” range) Emissions from fossil fuel use and industry
  • 28. Total global emissions Total global emissions: 41.9 ± 2.8 GtCO2 in 2015, 49% over 1990 Percentage land-use change: 36% in 1960, 9% averaged 2006-2015 Three different methods have been used to estimate land-use change emissions, indicated here by different shades of grey Source: CDIAC; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016
  • 29. Global carbon budget The carbon sources from fossil fuels, industry, and land use change emissions are balanced by the atmosphere and carbon sinks on land and in the ocean Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016
  • 30. Total global emissions by source Land-use change was the dominant source of annual CO2 emissions until around 1950 Others: Emissions from cement production and gas flaring Source: CDIAC; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2016; Global Carbon Budget 2016
  • 31. Where did the 80%-95% target come from? Firstly the IPCC AR4 WG3 report was published in 2007. specifically chapter 13 is where the targets came from. [1]Implications of regime stringency: linking goals, participation and timing. http://www.ipcc.ch/publications_and_data/ar4/wg3/en/ch13-ens13-3-3-3.html Then an EU Parliament recommended to use this (scientifically based target) before COP15 (Copenhagen) for developed regions to aim for 80%-95% GHG reduction by 2050. [1] 2050: The future begins today – Recommendations for the EU’s Future integrated policy on climate change http://www.europarl.europa.eu/oeil/popups/ficheprocedure.do?lang=en&reference=2008/2105(INI) (Note AR5 does not have the same table or recommendation as AR4 and is discussed in various online blog pieces from IPCC co- authors that WG3 lead authors feel that there should be a separation from Science and policy, and hence did not update the WG3 Ch13 chart on Annex1 country targets in AR5. Most of the regions in the AR5 WG3 IAM models are different from AR4 - I don't know if this aggregation was on purpose or not to disable this link between the climate science and national/regional policy decisions, i.e. to encourage policy makers to take ownership of the uncertainties in the decision making subtleties.) The recommendation is also highlighted in the EU Presidency conclusion documents before Copenhagen (COP15) in October 2009 [1] Presidency Conclusions (2009) http://register.consilium.europa.eu/doc/srv?l=EN&f=ST%2015265%202009%20INIT Then the EU energy roadmap from 2011 includes the 80% target. [1]Energy Roadmap 2050 (2011) http://ec.europa.eu/energy/sites/ener/files/documents/roadmap2050_ia_20120430_en_0.pdf during this time the EU 20-20-20 targets for 2020 had been used, but were established before the 2007 publication of AR4 and so where not based on the 80%-95% reduction targets for 2050.