Modeling Heterogeneity by Structural Varying
Coefficients Models in Presence of Endogeneity
Stefan Sperlich, Giacomo Benini, Raoul Theler, Virginie Trachsel
Universit´e de Gen`eve
Geneva School of Economics and Management
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 1 / 22
Preliminaries
Causality and Correlation
Mis à jour le 11.10.2012
ETUDE
Plus un pays mange de chocolat, plus il a
de prix Nobel
NAISSANCE D'UN DAUPHIN À H
Une femelle a donné naissance
l'oeil des caméras du centre Do
Regardez la vidéo
DES BÉBÉS SINGES SE MONTR
VAUD & RÉGIONS SUISSE MONDE ÉCONOMIE BOURSE SPORTS CULTURE PEOPLE VIVRE AUTO HIGH-TECH
Sciences Santé Environnement Images
La Une | Vendredi 12 octobre 2012 | Dernière mise à jour 12:59 Mon journal numérique | Abonnements | Publicité
Immo | Emploi
SIGNALER UNE ERREUR
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 2 / 22
Preliminaries
Statistical Data Analysis and Causality
consider Y = ϕ(D, X1, X2, ..., ε) to study the effect/impact of D on Y
Disentangling causality from correlation is one of the fundamental
problems of data analysis. Every time the experimental methodology –
typical in some hard sciences – is not applicable, it becomes almost
impossible to separate causality from observed correlations using
non-simulated data.
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 3 / 22
Preliminaries
Statistical Data Analysis and Nonparametrics
Boons and Banes of Nonparametric Statistics
no functional form misspecification
’no need’ to any specification (?)
curse of dimensionality
slower convergence rates, smoothing parameter, numerics,...
problems of interpretation
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 4 / 22
Preliminaries
Proposition
both sides can gain from modeling
well known in econometrics: structural models
well known in nonparametrics: semiparametric methods
Comment:
certainly, in (pure) econometric theory, nonparametric methods are
’standard’, though, ...
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 5 / 22
Preliminaries
Preliminary considerations and confusions
For data as above Y , D ∈ IR, X ∈ IRq
Of interest is E[Y |X = x, D = d] = m(x, d) modeled typically as
m(x, d) = dα + x β or y = dα + x β + ε
and want to study the impact of D, say α
For D continuous interpret α as ∂Y /∂d on average, for D binary
ATE({D = 0} → {D = 1}) = E[Y 1
− Y 0
]
The notion in average is enticing as people are tempted to think first
’on average given (x, d)’ but more often ’on average over all’
Potential problem: endogeneity
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 6 / 22
Heterogeneity in regression
Heterogeneous Returns / Elasticities
Economies of Scale in agriculture: Severance-Lossin and Sperlich (1999)
analyzed Wisconsin farms. Found increasing returns to scale
q
j βj > 1.
logYi = β0 +
q
j=1
βj (logXi,j ) + εi
Efficiency of labor offices: Profit and Sperlich (2004) studied
time-space variation of Job-Matching and their sources Q
Flexible Engle curves and Slutsky (A)Symmetry: Pendakur and
Sperlich (2009) estimated consumer behavior in Canada on price
variation controlling for real expenditures Q, β(·) vector, A(·) matrix
exp.shares = β(Q) + A(Q) prices , Q = (x, p)
etc.
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 7 / 22
Heterogeneity in regression
What do the standard regression methods estimate?
Having heterogeneous returns in mind, write (with D in X, α in β)
Yit = Ditαit + Xitβ + εit = Ditα + Xitβ + Dit(αit − α) + εit
=: it
need E[ it|Xit, Dit] = 0
where αit might be a function of vector Qit (may include Dit, Xit)
Neglecting further interaction and other sources of endogeneity
functional misspecification or say Qit can generate endogeneity
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 8 / 22
Heterogeneity in regression
Methods for VCM (implementation)
To estimate VCM, there exist quite a bit in R
(though often only for very specific models)
For RCM or MEM anyway
but also deterministic ones:
package NP Hayfield and Racine (2008, 2012); kernels
SVCM Heim et al. (2007, 2012); space varying spline coefficients
BayesX (incl. Belitz, Brezger, Kneib, Lang, 20??); splines
GAMLSS Stasinopoulos (2005, 2012); ML and splines
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 9 / 22
Heterogeneity in regression
Methods for VCM (theory)
See ISReview: Park, Mammen, Lee and Lee (2013)
Kernel local pol. smoothing (Fan and Zhang, 1999,2000,2008)
local maximum likelihood (e.g. Cai et al, 2000)
spline methods (e.g. Chiang et al., 2001)
smooth backfitting (Mammen and Nielsen, 2003; Roca-Pardi˜nas and Sperlich,
2010)
Bayesian structured additive models (Fahrmeir et al., 2004)
Particularly large literature on αt, βt
less literature regarding VCM for panel data
Again, not mentioned: random coefficient and mixed effects models
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 10 / 22
Heterogeneity in regression
Example: Econ. growth and inequality: Model
∆Yit = ρ log(Yi,t−1)+α1,it log(Kit)+α2,it log(Lit)+β1 log(Depit)+δi + it
Fully Parametric Semiparametric VCM
FE RE middle-DV Gini-DV
log(Yt−1) −0.010∗∗∗ −0.006∗∗∗ −0.006∗∗∗ -0.005∗∗
(0.002) (0.001) (0.002) (0.002)
log(Dept) −0.001 −0.002 −0.008∗∗∗ −0.008∗∗∗
(0.002) (0.002) (0.002) (0.002)
log(Kt) 0.021∗∗∗ 0.023∗∗∗
(0.001) (0.001)
log(Lt) −0.016∗∗∗ −0.014∗∗∗
(0.001) (0.001)
∆Yit = ρ log(Yi,t−1) + g1(ineqi,t−3)lKit + g2(ineqi,t−3)lLit + β1lDepit +
h1(ineqi,t−3, lKi,t−3, ˆv1,it) + h2(ineqi,t−3, lLi,t−3, ˆv2,it) + δi + εit
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 11 / 22
Heterogeneity in regression
Example: Econ. growth and inequality: functions
0.00
0.05
0.10
0.15
0.20
0.3 0.4 0.5
Middel Class
g_1(gini)_hat
Returns to Physical Capital
0.00
0.05
0.10
0.15
0.3 0.4 0.5
Middel Class
g_2(gini)_hat
Returns to Human Capital
0.05
0.10
0.2 0.3 0.4 0.5 0.6
Gini Index
g_1(gini)_hat
Returns to Physical Capital
0.00
0.05
0.10
0.15
0.2 0.3 0.4 0.5 0.6
Gini Index
g_2(gini)_hat
Returns to Human Capital
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 12 / 22
Heterogeneity and IV regression
The Deus ex Machina principle in economicsHorace (today Heckman or
Deaton), however, instructed poets
(economists) that they must never
resort to it
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 13 / 22
Heterogeneity and IV regression
Instrumental Variable Estimation (IV) when βi constant
Simplified presentation merging D, X and α, β:
Y = X β + , 0 = E[ ] = E[ |X] say ’because of’ Xk
for whatever reason - but you have instruments W (include X−k) s.th.
Cov(X, W ) = 0 & E[ |W ] = 0. Then
β = Cov(W , X)−1
Cov(W , Y ) = Cov(W , X)−1
{Cov(W , X)β+Cov(W , )}
Control function: We may write the ’selection equation’
Xk = g(W , X−k) + v , 0 = E[v|W , X−k] ⇒ ˆv
arising from idea that instruments are variables that induce variation in X
(β, h) = Cov( ˜X, ˜X)−1
Cov( ˜X, Y ) with ˜X = (X, ˆv)
E[Y |X, ˆv] = X β + ˆv h
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 14 / 22
Heterogeneity and IV regression
Instrumental Variable Estimation - Varying Coefficients βi
ˆβ = (
i
Wi Xi )−1
i
Wi Yi = (
i
Wi Xi )−1
i
Wi Xi βi + RTi
if Wi is mean-independent from ri = βi − β we get identification – how
realistic is it without being weak instrument?
List of assumptions increases significantly
But even then, what does it estimate? Consider D and W binary
αIV =
E[Y |W = 1] − E[Y |W = 0]
E[D|W = 1] − E[D|W = 0]
= LATE
extension to discrete and continuous D, W harder to understand
IV gives large variances (Jean-Marie Dufour)
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 15 / 22
Toward structural modeling: VCM with IVs
Toward structural modeling
As the existence of such an instrument is quite unlikely
usefulness, credibility, interpretability, but also est. quality increase by
modeling
Yi = β(Qi ) Xi +
i
ei Xi + εi , βi = β(Qi ) + ei
IV conditions get more realistic
variation over LATE should get reduced
’usual’ advantages of non- and semiparametric data analysis apply
Not hard to extend existing methods for endo- and heterogeneity problems
to VCM (already done in paper with PhD students)
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 16 / 22
Toward structural modeling: VCM with IVs
Example: Mincer’s wage equation: standard IV
log(wagei ) = β0 + αeduci + β1experi + β2exper2
i + i
educi = γ0 + γ1Wi + γ2experi + γ3exper2
i + vi
as educ endogenous; typical IV Wi are parental educ
IV: feduc meduc feduc & meduc
educ 0.075∗∗∗ 0.043∗∗ 0.060∗∗∗
(0.015) (0.016) (0.014)
exper 0.040∗∗∗ 0.038∗∗ 0.039∗∗∗
(0.005) (0.005) (0.005)
exper2 −0.001∗∗ −0.001∗∗ −0.001∗∗
(0.000) (0.000) (0.000)
Constant 1.486∗∗∗ 1.915∗∗∗ 1.678∗∗∗
(0.201) (0.208) (0.185)
Schultz (2003) argues also, that returns to educ varies with exper
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 17 / 22
Toward structural modeling: VCM with IVs
Example: Mincer’s wage equation: VCM IV
log(wagei ) = β0+g(experi )educi +β1experi +β2exper2
i +h(Zi , experi , ˆvi )+εi
0.04
0.05
0.06
0.07
0.08
0 10 20 30
Exper
g_1(exper)_hat
Returns to Education
IV Father
0.04
0.05
0.06
0.07
0.08
0 10 20 30
Exper
g_1(exper)_hat
Returns to Education
IV Mother
The functions α(·) for IV feduc (left) and meduc (right)
Remark: Bands are constructed with a special wild bootstrap.
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 18 / 22
Toward structural modeling: VCM with IVs
But still, αi is a function of W
interesting ways to look at LATE when W is continuous;
maybe most popular one is the marginal treatment effect MTE
Let D be binary, D = 11{P(W ) ≥ v} (impose monotonicity)
Are interested in surplus regarding an incentive, say W given X
S[P(W ) = p] = E[Y 1
− Y 0
|v ≤ p] p quantile of v
the definition of the marginal TE is simply
MTE(u) = E[Y 1
− Y 0
|u = v] ⇒ S(p) =
p
0
MTE(u)du
a nonparametric estimate can be obtained by
∂S(p)/∂p = ∂E[Y |P(W ) = p]/∂p
under a certain set of conditions etc.
Remark: prescinding from X and Q in notation
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 19 / 22
Toward structural modeling: VCM with IVs
Modeling αi as a function of W
Consider a VCM of type
Yi = α(Qi )Di + β(Xi ) + εi
where now Qi = (Wi , Xi ) and Di = P(Qi ) − vi
Then you get ( no extra control fctn needed)
E[Y |D, W , X] = 0 + E[α|D = 1, Q] · P(D = 1|Q) + β(X)
you might want to impose E[α|D = 1, Q] = E[α|P(D = 1|Q), X]
Extension to discrete and continuous D respectively, is straight forward:
E[Y |D, W , X] =
supp(D)
d E[α|D = d, Q] · P(D = d|Q) + β(Q) X
E[Y |D, W , X] =
supp(D)
d E[α|D = d, Q] dF(D = d|Q) + β(Q) X
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 20 / 22
Toward structural modeling: VCM with IVs
Estimation and testing
Simplest implementation would be
Two-step estimation with
firstly, semiparametric probit or logit for P(D = d|Q) with splines
inside link
secondly, semiparametric VCM (or partial additive) estimation of
main fctn
Have presently joint projects on
theory paper on inference in nonparametric structural equations (with
E.Mammen),
especially on testing separability and significance using smooth
backfitting
creating an R package for these methods (J. Roca-Pardi˜nas) including
adaptive bandwidth choices
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 21 / 22
Toward structural modeling: VCM with IVs
Example: Export Promotion
The standard model is
log(Yit) = α log(budgetit) + β log(popit) + δi + λt + it
where
the EPA log(budgetit) could be endogenous.
α heterogeneous, i.e. be modeled as fctn of Q or/and W
these could be composition and sources of budget, etc.
other predictors Q are eg. the structure of the EPA
or the employment of budgets
The results α(Q) allowed us to give country (or EPA) specific results on
returns, efficiency etc., that is, to make policy relevant statements.
Remark: not presented because all excluded instruments had no significant
impact on α function, the others little or no impact on log(budgetit).
Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 22 / 22

More Related Content

PDF
A short and naive introduction to epistasis in association studies
PDF
A copula model to analyze minimum admission scores
PDF
Operations Research Situations and Games
PDF
Fi review5
PDF
Cooperative Interval Games
PDF
PDF
Economic and Operations Research Situations with Interval Data
PDF
Some sampling techniques for big data analysis
A short and naive introduction to epistasis in association studies
A copula model to analyze minimum admission scores
Operations Research Situations and Games
Fi review5
Cooperative Interval Games
Economic and Operations Research Situations with Interval Data
Some sampling techniques for big data analysis

What's hot (10)

PDF
Coalitional Games with Interval-Type Payoffs: A Survey
PDF
Cooperation under Interval Uncertainty
PDF
Generative models : VAE and GAN
PDF
How to Handle Interval Solutions for Cooperative Interval Games
PDF
Cooperative Game Theory
PDF
Chapter 3 projection
PDF
3rd NIPS Workshop on PROBABILISTIC PROGRAMMING
PDF
Uncertainty in deep learning
PPTX
Csr2011 june18 14_00_sudan
PDF
When Classifier Selection meets Information Theory: A Unifying View
Coalitional Games with Interval-Type Payoffs: A Survey
Cooperation under Interval Uncertainty
Generative models : VAE and GAN
How to Handle Interval Solutions for Cooperative Interval Games
Cooperative Game Theory
Chapter 3 projection
3rd NIPS Workshop on PROBABILISTIC PROGRAMMING
Uncertainty in deep learning
Csr2011 june18 14_00_sudan
When Classifier Selection meets Information Theory: A Unifying View
Ad

Similar to Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of Endogeneity (20)

PPTX
Panel Data Regression Notes- Part 2 Subsection -A.pptx
PPTX
Panel Data Regression Notes Part-2 of 5.pptx
PPTX
Panel Data Regression Notes Part 2 Section A.pptx
PDF
PanelDadasdsadadsadasdasdasdataNotes-1b.pdf
DOCX
1 A PRIMER ON CAUSALITY Marc F. Bellemare∗ Introd
PDF
M.E.Bontempi-Panel data: Models, estimation,and the role of attrition and Mea...
PPTX
L-8 VECM Formulation, Hypothesis Testing, and Forecasting - KH.pptx
PDF
Inequality #4
PDF
Thesis_NickyGrant_2013
PDF
Instrumental Variables and Control Functions
PDF
Quantitative Methods for Lawyers - Class #21 - Regression Analysis - Part 4
PPT
Google earth engine_GEE_Engineering_Presentation2.pptx
PDF
Priliminary Research on Multi-Dimensional Panel Data Modeling
PDF
Essential econometrics for data scientists
PDF
A Compact Guide to Biostatistics
PPTX
panel data analysis with implications and importance
PDF
Lecture 2 Regression en evaluación de .pdf
PDF
Advanced Applied Econometrics Panel-Dynamic
PPTX
ERF Training Workshop Panel Data 4
PDF
Slides ineq-4
Panel Data Regression Notes- Part 2 Subsection -A.pptx
Panel Data Regression Notes Part-2 of 5.pptx
Panel Data Regression Notes Part 2 Section A.pptx
PanelDadasdsadadsadasdasdasdataNotes-1b.pdf
1 A PRIMER ON CAUSALITY Marc F. Bellemare∗ Introd
M.E.Bontempi-Panel data: Models, estimation,and the role of attrition and Mea...
L-8 VECM Formulation, Hypothesis Testing, and Forecasting - KH.pptx
Inequality #4
Thesis_NickyGrant_2013
Instrumental Variables and Control Functions
Quantitative Methods for Lawyers - Class #21 - Regression Analysis - Part 4
Google earth engine_GEE_Engineering_Presentation2.pptx
Priliminary Research on Multi-Dimensional Panel Data Modeling
Essential econometrics for data scientists
A Compact Guide to Biostatistics
panel data analysis with implications and importance
Lecture 2 Regression en evaluación de .pdf
Advanced Applied Econometrics Panel-Dynamic
ERF Training Workshop Panel Data 4
Slides ineq-4
Ad

More from Facultad de Ciencias Económicas UdeA (20)

PDF
Risk assessment in commodity markets with semi-nonparametric specifications
PDF
Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...
PDF
Oaxaca-Blinder type Decomposition Methods for Duration Outcomes
PDF
Estimation of Social Interaction Models: A Bayesian Approach
PDF
Ajuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinas
PDF
Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...
PDF
I Network de Métodos Cuantitativos en Economía – AFADECO
PDF
Actuales desafíos de la Unión Europea en un mundo cambiante
PDF
Innovar para sobrevivir: La gestión del conocimiento
PDF
Cuando una PYME crece: el cambio hacia una gestión profesional
PDF
Nuevas formas de la organización del trabajo (documento)
PDF
Nuevas formas de organización del trabajo Parte 1
PDF
La globalización de la economía y la internacionalización de las empresas
PDF
El papel de las políticas de rrhh en el fomento del emprendimiento corporativo
PDF
Expatriación y shock cultural: cómo planificar una asignación internacional c...
PDF
Procolombia: Expansión de los negocios colombianos
PDF
Procafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de Colombia
PDF
Grupo Orbis y su proceso de internacionalización
PDF
Análisis del perfil de internacionalización de las multilatinas colombianas: ...
PDF
Permanencias y disrupciones de la protección social para la vejez en colombia
Risk assessment in commodity markets with semi-nonparametric specifications
Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...
Oaxaca-Blinder type Decomposition Methods for Duration Outcomes
Estimation of Social Interaction Models: A Bayesian Approach
Ajuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinas
Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...
I Network de Métodos Cuantitativos en Economía – AFADECO
Actuales desafíos de la Unión Europea en un mundo cambiante
Innovar para sobrevivir: La gestión del conocimiento
Cuando una PYME crece: el cambio hacia una gestión profesional
Nuevas formas de la organización del trabajo (documento)
Nuevas formas de organización del trabajo Parte 1
La globalización de la economía y la internacionalización de las empresas
El papel de las políticas de rrhh en el fomento del emprendimiento corporativo
Expatriación y shock cultural: cómo planificar una asignación internacional c...
Procolombia: Expansión de los negocios colombianos
Procafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de Colombia
Grupo Orbis y su proceso de internacionalización
Análisis del perfil de internacionalización de las multilatinas colombianas: ...
Permanencias y disrupciones de la protección social para la vejez en colombia

Recently uploaded (20)

PPTX
Simple linear regression model an important topic in econometrics
PPTX
Q1 PE AND HEALTH 5 WEEK 5 DAY 1 powerpoint template
PDF
Call cute girls 😀 Delhi, call now pls cute girls delhi call🔙
PPTX
Corporate Governance and Financial Decision-Making in Consumer Goods.pptx
PPTX
RISK MANAGEMENT IN MEDICAL LABORATORIES 2.pptx
PPTX
Risk Based Audit - Key to managhe the bussines & Creating the value
PDF
3CMT J.AFABLE Flexible-Learning ENTREPRENEURIAL MANAGEMENT.pdf
PPTX
Maths science sst hindi english cucumber
PPTX
Research Writing in Bioiinformatics.pptx
PDF
GVCParticipation_Automation_Climate_India
DOCX
ENHANCING THE DINING EXPERIENCE LESSONS FROM THAI TOWN MELBOURNE’S SERVICE EN...
PDF
Lundin Gold Corporate Presentation August 2025
PDF
Best Accounting Outsourcing Companies in The USA
PPTX
General-Characteristics-of-Microorganisms.pptx
PDF
Management Accounting Information for Decision-Making and Strategy Execution ...
PDF
Lundin Gold - August 2025.pdf presentation
PPTX
Module5_Session1 (mlzrkfbbbbbbbbbbbz1).pptx
PPTX
Integrated Digital Marketing and Supply Chain Model for.pptx
PDF
2012_The dark side of valuation a jedi guide to valuing difficult to value co...
PPT
Relevant Information & Alternative Choice Decisions
Simple linear regression model an important topic in econometrics
Q1 PE AND HEALTH 5 WEEK 5 DAY 1 powerpoint template
Call cute girls 😀 Delhi, call now pls cute girls delhi call🔙
Corporate Governance and Financial Decision-Making in Consumer Goods.pptx
RISK MANAGEMENT IN MEDICAL LABORATORIES 2.pptx
Risk Based Audit - Key to managhe the bussines & Creating the value
3CMT J.AFABLE Flexible-Learning ENTREPRENEURIAL MANAGEMENT.pdf
Maths science sst hindi english cucumber
Research Writing in Bioiinformatics.pptx
GVCParticipation_Automation_Climate_India
ENHANCING THE DINING EXPERIENCE LESSONS FROM THAI TOWN MELBOURNE’S SERVICE EN...
Lundin Gold Corporate Presentation August 2025
Best Accounting Outsourcing Companies in The USA
General-Characteristics-of-Microorganisms.pptx
Management Accounting Information for Decision-Making and Strategy Execution ...
Lundin Gold - August 2025.pdf presentation
Module5_Session1 (mlzrkfbbbbbbbbbbbz1).pptx
Integrated Digital Marketing and Supply Chain Model for.pptx
2012_The dark side of valuation a jedi guide to valuing difficult to value co...
Relevant Information & Alternative Choice Decisions

Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of Endogeneity

  • 1. Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of Endogeneity Stefan Sperlich, Giacomo Benini, Raoul Theler, Virginie Trachsel Universit´e de Gen`eve Geneva School of Economics and Management Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 1 / 22
  • 2. Preliminaries Causality and Correlation Mis à jour le 11.10.2012 ETUDE Plus un pays mange de chocolat, plus il a de prix Nobel NAISSANCE D'UN DAUPHIN À H Une femelle a donné naissance l'oeil des caméras du centre Do Regardez la vidéo DES BÉBÉS SINGES SE MONTR VAUD & RÉGIONS SUISSE MONDE ÉCONOMIE BOURSE SPORTS CULTURE PEOPLE VIVRE AUTO HIGH-TECH Sciences Santé Environnement Images La Une | Vendredi 12 octobre 2012 | Dernière mise à jour 12:59 Mon journal numérique | Abonnements | Publicité Immo | Emploi SIGNALER UNE ERREUR Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 2 / 22
  • 3. Preliminaries Statistical Data Analysis and Causality consider Y = ϕ(D, X1, X2, ..., ε) to study the effect/impact of D on Y Disentangling causality from correlation is one of the fundamental problems of data analysis. Every time the experimental methodology – typical in some hard sciences – is not applicable, it becomes almost impossible to separate causality from observed correlations using non-simulated data. Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 3 / 22
  • 4. Preliminaries Statistical Data Analysis and Nonparametrics Boons and Banes of Nonparametric Statistics no functional form misspecification ’no need’ to any specification (?) curse of dimensionality slower convergence rates, smoothing parameter, numerics,... problems of interpretation Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 4 / 22
  • 5. Preliminaries Proposition both sides can gain from modeling well known in econometrics: structural models well known in nonparametrics: semiparametric methods Comment: certainly, in (pure) econometric theory, nonparametric methods are ’standard’, though, ... Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 5 / 22
  • 6. Preliminaries Preliminary considerations and confusions For data as above Y , D ∈ IR, X ∈ IRq Of interest is E[Y |X = x, D = d] = m(x, d) modeled typically as m(x, d) = dα + x β or y = dα + x β + ε and want to study the impact of D, say α For D continuous interpret α as ∂Y /∂d on average, for D binary ATE({D = 0} → {D = 1}) = E[Y 1 − Y 0 ] The notion in average is enticing as people are tempted to think first ’on average given (x, d)’ but more often ’on average over all’ Potential problem: endogeneity Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 6 / 22
  • 7. Heterogeneity in regression Heterogeneous Returns / Elasticities Economies of Scale in agriculture: Severance-Lossin and Sperlich (1999) analyzed Wisconsin farms. Found increasing returns to scale q j βj > 1. logYi = β0 + q j=1 βj (logXi,j ) + εi Efficiency of labor offices: Profit and Sperlich (2004) studied time-space variation of Job-Matching and their sources Q Flexible Engle curves and Slutsky (A)Symmetry: Pendakur and Sperlich (2009) estimated consumer behavior in Canada on price variation controlling for real expenditures Q, β(·) vector, A(·) matrix exp.shares = β(Q) + A(Q) prices , Q = (x, p) etc. Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 7 / 22
  • 8. Heterogeneity in regression What do the standard regression methods estimate? Having heterogeneous returns in mind, write (with D in X, α in β) Yit = Ditαit + Xitβ + εit = Ditα + Xitβ + Dit(αit − α) + εit =: it need E[ it|Xit, Dit] = 0 where αit might be a function of vector Qit (may include Dit, Xit) Neglecting further interaction and other sources of endogeneity functional misspecification or say Qit can generate endogeneity Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 8 / 22
  • 9. Heterogeneity in regression Methods for VCM (implementation) To estimate VCM, there exist quite a bit in R (though often only for very specific models) For RCM or MEM anyway but also deterministic ones: package NP Hayfield and Racine (2008, 2012); kernels SVCM Heim et al. (2007, 2012); space varying spline coefficients BayesX (incl. Belitz, Brezger, Kneib, Lang, 20??); splines GAMLSS Stasinopoulos (2005, 2012); ML and splines Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 9 / 22
  • 10. Heterogeneity in regression Methods for VCM (theory) See ISReview: Park, Mammen, Lee and Lee (2013) Kernel local pol. smoothing (Fan and Zhang, 1999,2000,2008) local maximum likelihood (e.g. Cai et al, 2000) spline methods (e.g. Chiang et al., 2001) smooth backfitting (Mammen and Nielsen, 2003; Roca-Pardi˜nas and Sperlich, 2010) Bayesian structured additive models (Fahrmeir et al., 2004) Particularly large literature on αt, βt less literature regarding VCM for panel data Again, not mentioned: random coefficient and mixed effects models Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 10 / 22
  • 11. Heterogeneity in regression Example: Econ. growth and inequality: Model ∆Yit = ρ log(Yi,t−1)+α1,it log(Kit)+α2,it log(Lit)+β1 log(Depit)+δi + it Fully Parametric Semiparametric VCM FE RE middle-DV Gini-DV log(Yt−1) −0.010∗∗∗ −0.006∗∗∗ −0.006∗∗∗ -0.005∗∗ (0.002) (0.001) (0.002) (0.002) log(Dept) −0.001 −0.002 −0.008∗∗∗ −0.008∗∗∗ (0.002) (0.002) (0.002) (0.002) log(Kt) 0.021∗∗∗ 0.023∗∗∗ (0.001) (0.001) log(Lt) −0.016∗∗∗ −0.014∗∗∗ (0.001) (0.001) ∆Yit = ρ log(Yi,t−1) + g1(ineqi,t−3)lKit + g2(ineqi,t−3)lLit + β1lDepit + h1(ineqi,t−3, lKi,t−3, ˆv1,it) + h2(ineqi,t−3, lLi,t−3, ˆv2,it) + δi + εit Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 11 / 22
  • 12. Heterogeneity in regression Example: Econ. growth and inequality: functions 0.00 0.05 0.10 0.15 0.20 0.3 0.4 0.5 Middel Class g_1(gini)_hat Returns to Physical Capital 0.00 0.05 0.10 0.15 0.3 0.4 0.5 Middel Class g_2(gini)_hat Returns to Human Capital 0.05 0.10 0.2 0.3 0.4 0.5 0.6 Gini Index g_1(gini)_hat Returns to Physical Capital 0.00 0.05 0.10 0.15 0.2 0.3 0.4 0.5 0.6 Gini Index g_2(gini)_hat Returns to Human Capital Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 12 / 22
  • 13. Heterogeneity and IV regression The Deus ex Machina principle in economicsHorace (today Heckman or Deaton), however, instructed poets (economists) that they must never resort to it Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 13 / 22
  • 14. Heterogeneity and IV regression Instrumental Variable Estimation (IV) when βi constant Simplified presentation merging D, X and α, β: Y = X β + , 0 = E[ ] = E[ |X] say ’because of’ Xk for whatever reason - but you have instruments W (include X−k) s.th. Cov(X, W ) = 0 & E[ |W ] = 0. Then β = Cov(W , X)−1 Cov(W , Y ) = Cov(W , X)−1 {Cov(W , X)β+Cov(W , )} Control function: We may write the ’selection equation’ Xk = g(W , X−k) + v , 0 = E[v|W , X−k] ⇒ ˆv arising from idea that instruments are variables that induce variation in X (β, h) = Cov( ˜X, ˜X)−1 Cov( ˜X, Y ) with ˜X = (X, ˆv) E[Y |X, ˆv] = X β + ˆv h Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 14 / 22
  • 15. Heterogeneity and IV regression Instrumental Variable Estimation - Varying Coefficients βi ˆβ = ( i Wi Xi )−1 i Wi Yi = ( i Wi Xi )−1 i Wi Xi βi + RTi if Wi is mean-independent from ri = βi − β we get identification – how realistic is it without being weak instrument? List of assumptions increases significantly But even then, what does it estimate? Consider D and W binary αIV = E[Y |W = 1] − E[Y |W = 0] E[D|W = 1] − E[D|W = 0] = LATE extension to discrete and continuous D, W harder to understand IV gives large variances (Jean-Marie Dufour) Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 15 / 22
  • 16. Toward structural modeling: VCM with IVs Toward structural modeling As the existence of such an instrument is quite unlikely usefulness, credibility, interpretability, but also est. quality increase by modeling Yi = β(Qi ) Xi + i ei Xi + εi , βi = β(Qi ) + ei IV conditions get more realistic variation over LATE should get reduced ’usual’ advantages of non- and semiparametric data analysis apply Not hard to extend existing methods for endo- and heterogeneity problems to VCM (already done in paper with PhD students) Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 16 / 22
  • 17. Toward structural modeling: VCM with IVs Example: Mincer’s wage equation: standard IV log(wagei ) = β0 + αeduci + β1experi + β2exper2 i + i educi = γ0 + γ1Wi + γ2experi + γ3exper2 i + vi as educ endogenous; typical IV Wi are parental educ IV: feduc meduc feduc & meduc educ 0.075∗∗∗ 0.043∗∗ 0.060∗∗∗ (0.015) (0.016) (0.014) exper 0.040∗∗∗ 0.038∗∗ 0.039∗∗∗ (0.005) (0.005) (0.005) exper2 −0.001∗∗ −0.001∗∗ −0.001∗∗ (0.000) (0.000) (0.000) Constant 1.486∗∗∗ 1.915∗∗∗ 1.678∗∗∗ (0.201) (0.208) (0.185) Schultz (2003) argues also, that returns to educ varies with exper Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 17 / 22
  • 18. Toward structural modeling: VCM with IVs Example: Mincer’s wage equation: VCM IV log(wagei ) = β0+g(experi )educi +β1experi +β2exper2 i +h(Zi , experi , ˆvi )+εi 0.04 0.05 0.06 0.07 0.08 0 10 20 30 Exper g_1(exper)_hat Returns to Education IV Father 0.04 0.05 0.06 0.07 0.08 0 10 20 30 Exper g_1(exper)_hat Returns to Education IV Mother The functions α(·) for IV feduc (left) and meduc (right) Remark: Bands are constructed with a special wild bootstrap. Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 18 / 22
  • 19. Toward structural modeling: VCM with IVs But still, αi is a function of W interesting ways to look at LATE when W is continuous; maybe most popular one is the marginal treatment effect MTE Let D be binary, D = 11{P(W ) ≥ v} (impose monotonicity) Are interested in surplus regarding an incentive, say W given X S[P(W ) = p] = E[Y 1 − Y 0 |v ≤ p] p quantile of v the definition of the marginal TE is simply MTE(u) = E[Y 1 − Y 0 |u = v] ⇒ S(p) = p 0 MTE(u)du a nonparametric estimate can be obtained by ∂S(p)/∂p = ∂E[Y |P(W ) = p]/∂p under a certain set of conditions etc. Remark: prescinding from X and Q in notation Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 19 / 22
  • 20. Toward structural modeling: VCM with IVs Modeling αi as a function of W Consider a VCM of type Yi = α(Qi )Di + β(Xi ) + εi where now Qi = (Wi , Xi ) and Di = P(Qi ) − vi Then you get ( no extra control fctn needed) E[Y |D, W , X] = 0 + E[α|D = 1, Q] · P(D = 1|Q) + β(X) you might want to impose E[α|D = 1, Q] = E[α|P(D = 1|Q), X] Extension to discrete and continuous D respectively, is straight forward: E[Y |D, W , X] = supp(D) d E[α|D = d, Q] · P(D = d|Q) + β(Q) X E[Y |D, W , X] = supp(D) d E[α|D = d, Q] dF(D = d|Q) + β(Q) X Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 20 / 22
  • 21. Toward structural modeling: VCM with IVs Estimation and testing Simplest implementation would be Two-step estimation with firstly, semiparametric probit or logit for P(D = d|Q) with splines inside link secondly, semiparametric VCM (or partial additive) estimation of main fctn Have presently joint projects on theory paper on inference in nonparametric structural equations (with E.Mammen), especially on testing separability and significance using smooth backfitting creating an R package for these methods (J. Roca-Pardi˜nas) including adaptive bandwidth choices Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 21 / 22
  • 22. Toward structural modeling: VCM with IVs Example: Export Promotion The standard model is log(Yit) = α log(budgetit) + β log(popit) + δi + λt + it where the EPA log(budgetit) could be endogenous. α heterogeneous, i.e. be modeled as fctn of Q or/and W these could be composition and sources of budget, etc. other predictors Q are eg. the structure of the EPA or the employment of budgets The results α(Q) allowed us to give country (or EPA) specific results on returns, efficiency etc., that is, to make policy relevant statements. Remark: not presented because all excluded instruments had no significant impact on α function, the others little or no impact on log(budgetit). Stefan Sperlich (Uni Gen`eve) Vaying Coefficients 22 / 22