SlideShare a Scribd company logo
PPR Maths nbk
                                   MODUL 3
           SKIM TUISYEN FELDA (STF) MATEMATIK SPM “ENRICHMENT”
                     TOPIC: CIRCLE, AREA AND PERIMETER
                                TIME: 2 HOURS


1.   Diagram 1 shows two sector of circle ORQ and OPS with centre O.

                               R



                           12 cm



                                      7 cm
                        150° O
                                                  P        Q


                    S


                                   DIAGRAM 1
                  22
     By using π =    , calculate
                  7
     (a)      the perimeter for the whole diagram in cm,
     (b)      area of the shaded region in cm2.
                                                                       [ 6 marks ]

     Answer :

     (a)




     (b)
PPR Maths nbk
2.   In diagram 2, ABCD is a rectangle.


                         A                       21 cm            B




                                                                  14 cm

                                             F



                         D                FIGURE 4       E        C

     CF is an arc of a circle with center E where E is a point on the line DC with EC
                         22
     = 7 cm. Using π =      , calculate
                         7
     (a)    the length, in cm, of arc CF

     (b)    the area, in cm2, of the shaded region
                                                                          [ 6 marks ]

     Answer :

     (a)




     (b)
PPR Maths nbk
3.   Diagram 3 shows two sectors OPQR and OJKL.
     OPQR and OJKL are three quarters of a circle.
     POL and JOR are straight lines. OP = 21cm and OJ= 7 cm.




                                    J               Q

                   P                        L
                                   O
                              K



                                   R
                              DIAGRAM 3
                  22
     Using π =       , calculate
                  7
     (a)       the perimeter, in cm, of the whole diagram,
     (b)       the area, in cm2, of the shaded region.

                                                                    [6 marks]
     Answer:

     (a)




     (b)
PPR Maths nbk
4.    In Diagram 4, JK and PQ are arcs of two circles with centre O.
      OQRT is a square.
                                        K



                                        Q          R
               J

                            P
                                    O
                                                   T
                                    210°

                                    DIAGRAM 4

     OT = 14 cm and P is the midpoint of OJ.
                   22
     Using π =        , calculate
                   7
     (a)    the perimeter, in cm, of the whole diagram,
     (b)    the area, in cm2 , of the shaded region.
                                                                            [6 marks]
     Answer:

     (a)




     (b)
PPR Maths nbk
5.   Diagram 5 shows two sectors OLMN and OPQR with the same centre O.

                                   M



                        L                         N
                                   120°
                            P                 R

                                    O

                                    Q
                                DIAGRAM 5

     OL = 14 cm. P is the midpoint of OL.
                 22
     [Use π =       ]
                 7

     Calculate

     (a)    the area of the whole diagram,
     (b)    the perimeter of the whole diagram.
                                                                     [6 marks]
     Answer:
     (a)




     (b)
PPR Maths nbk
6.         In Diagram 6, ABD is an arc of a sector with the centre O and BCD is a
           quadrant.
                                                                                    A



           OD = OB = 14 cm and ∠ AOB = 45o .
                       22
           Using π =      , calculate                           O                       B
                       7

           (a)   the perimeter, in cm, of the whole diagram,

           (b)   the area, in cm2, of the shaded region.

                                                [6 marks]

                                                                D                       C

                                                                       DIAGRAM 6

Answer :

      (a)




      (b)
PPR Maths nbk
7.   In Diagram 7, the shaded region represents the part of the flat windscreen of a van
     which is being wiped by the windscreen wiper AB. The wiper rotates through an
     angle of 210o about the centre O.
     Given that OA = 7 cm and AB = 28 cm.




                    B′



                                   A′       210o

                                            O       A                B
                                         DIAGRAM 7
                 22
     Using π =      , calculate
                 7
     (a)     the length of arc BB′ ,
     (b)     the ratio of arc lengths , AA′ : BB′
     (c)     the area of the shaded region.                              [7 marks]

     Answer:

     (a)




      (b)




      (c)
PPR Maths nbk
8.   Diagram 8 shows a quadrant ADO with centre O and a sector BEF with centre B.
     OBC is a right angled triangle and D is the midpoint of the straight line OC.
     Given OC = OB = BE = 14 cm.




                                   DIAGRAM 8

                 22
     Using π =      , calculate
                 7
     (a)    the perimeter, in cm, of the whole diagram,
     (b)    the area, in cm2, of the shaded region.
                         .                                               [6 marks]

     Answer:

     (a)




     (b)
PPR Maths nbk
9.    In Diagram 9, OPQS is a quadrant with the centre O and OSQR is a semicircle
      with the centre S.
                                           Q




                        R              S
                                            60°
                                                           T


                                        O                          P
                                           DIAGRAM 9

                                               22
     Given that OP = 14 cm. Using π =             , calculate
                                               7

     (a)       the area, in cm2, of the shaded region,

     (b)       the perimeter, in cm, of the whole diagram.

                                                                            [6 marks]

     Answer:

     (a)




     (b)
PPR Maths nbk
10.   In diagram 10, OABC is a sector of a circle with centre O and radius 14 cm.


                                 B


                                                                 A

                                      60
                     C
                                             O
                                      DIAGRAM 10

                     22
      By using π =      , calculate
                     7
      (a)   perimeter, in cm, the shaded area.
      (b)   area, in cm2, the shaded area.
                                                                         [7 markah]
Answer :

      (a)




      (b)
PPR Maths nbk
                             MODULE 3 - ANSWERS
                     TOPIC: CIRCLE, AREA AND PERIMETER

1
       90      22      120      22
(a)       × 2 × × 12 @     × 2× × 7                      K1
      360      7       360       7
       90      22      120      22
          × 2 × × 12 +     × 2 × × 7 + 12 + 5
      360       7      360      7                        K1
      57.53
                                                         N1

      90 22         120 22 2
(b)      × × 12 2 @    × ×7                              K1
      360 7         360 7

       90 22          120 22        1
          ×  × 12 2 +    ×   × 7 2 − × 7 × 12
      360 7           360 7         2                    K1
      122.48
                                                         N1

2
(a)     ∠FEC = 135o                                      K2
        135      22
             × 2× ×7
        360      7                                       K1
        16.5
                                                         N1
             135 22
(b)     L3 =    × ×7×7                                   K1
             360 7
                                  ⎛1          ⎞
        Shaded area = (21 × 14) − ⎜ × 14 × 14 ⎟ − L3
                                  ⎝2          ⎠          K1
                             = 138.25
                                                         N1

3
      270 22             90 22
a)       × × 2 × 21 atau    × ×7×2                       K1
      360 7              360 7

      270 22          90 22
         × × 2 × 21 +    × × 7 × 2 + 14 + 14             K1
      360 7           360 7

      = 138                                              N1

      270 22                           90 22
b)       × × 21 × 21 atau         2×      × ×7×7         K1
      360 7                            360 7

      270 22               90 22
         × × 21 × 21 - 2 ×    × ×7×7                     K1
      360 7                360 7
PPR Maths nbk
                     2
       = 962.5 cm                                          N1

4

         60      22
a)          × 2 × × 28                                     K1
        360      7

         60      22
            × 2 × × 28 + 14 + 14 + 14 + 14 + 28            K1
        360      7
            1
        113 atau 113⋅33                                    N1
            3

         60 22               60 22
b)         × × 28 × 28 atau    × ×14 ×14                   K1
        360 7               360 7
         60 22            60 22
           × × 28 × 28 −    × ×14 ×14 + 14 × 14            K1
        360 7            360 7
       504                                                 N1

5
        120 22              240 22
a)         × × 14 × 14 atau    × ×7×7                      K1
        360 7               360 7
        120 22           240 22
           × × 14 × 14 +    × ×7×7                         K1
        360 7            360 7
       308                                                 N1
        120       22          240       22
b)           × 2 × × 14 atau       × 2× ×7                 K1
        360       7           360       7
        120       22        240      22
             × 2 × × 14 +       × 2× ×7 + 7 + 7            K1
        360       7        360        7
           2
        72                                                 N1
           3
6
(a)    45     22                                           K1
          ×2×    × 14
      360     7

      ⎛ 45      22      ⎞                                  K1
      ⎜     ×2×    × 14 ⎟ + 14 + 14 + 14 + 14
      ⎝ 360     7       ⎠

            2                                              N1
      70
            3

(b)    45 22               or 90 × 22 × 14 × 14            K1
         ×   × 14 × 14
      360 7                    360    7

      ⎛ 45 22          ⎞     ⎛           90 22         ⎞   K1
      ⎜    × × 14 × 14 ⎟ + 2 ⎜14 × 14 −    × × 14 × 14 ⎟
      ⎝ 360 7          ⎠     ⎝          360 7          ⎠

      161                                                  N1
PPR Maths nbk


7

        210      22
(i)         × 2 × × 35                                        K1
        360      7
           1
        128 @ 128.33                                          N1
            3

        210     22    210      22
(ii)        × 2× ×7 :     × 2 × × 35                          K1
        360     7     360      7
        1: 5                                                  N1

        210 22          210 22 2
(iii)      × × 35 2 or      × ×7                              K1
        360 7           360 7
        210 22         210 22 2
           × × 35 2 −      × ×7                               K1
        360 7          360 7
        2156                                                  N1



8
         45     22
(a)         ×2×    × 14       or    14 2 + 14 2 − 14          K1
        360     7

        11 + 14 + 14 + 14 + 5.799                             K1
        58.80 (2 d. p)                                        N1

         90 22                 45    22
(b)        ×   ×7 × 7    or        ×    × 14 x 14             K1
        360 7                 360    7
        1              90 22             45    22
          × 14 × 14 −    ×   ×7 × 7 +       ×     × 14 × 14   K1
        2             360 7             360     7

        136.5                                                 N1


9

                90 22                    60 22
(a)     A1 =       × × 14 × 14 and A2 =     × ×7×7
               360 7                    360 7                 K1
        A1 – A2                                               K1
             1
        128                                                   N1
             3
                90      22            180    22
(b)     P1 =       × 2 × × 14 or P2 =     ×2× ×7              K1
               360      7             360    7

        P1 + P2 + 14                                          K1
PPR Maths nbk
      58                                                          N1
10

(a)   AB =   14 2 + 14 2 = 392 = 19.80                            K1
      150       22            60      22         90       22
          × 2 × × 14 atau        × 2 × × 14 atau     × 2 × × 14   K1
      360        7           360      7          360      7
      Lengkok AC + 14 + 14 + 19.80 atau
      Lengkok AB + lengkok BC + 14 + 14 + 19.80                   K1
      84.47                                                       N1

      150 22             1
(b)       × × 14 2 atau × 14 × 14                                 K1
      360 7              2
      150 22          1
          × × 14 2 - × 14 × 14 atau                               K1
      360 7           2
      770
            – 98
       3
          2      476
      158 atau       atau 158.67                                  N1
          3       3

More Related Content

PPTX
Penalaran matematis
PDF
Module 7 The Straight Lines
PPTX
Pembuktian teorema pythagoras oleh presiden James A. Garfield
PPTX
Presentasi jajar genjang
PPTX
BAB Statistika Materi Penyajian data kelas 9
DOCX
4. MAKALAH GRUPOIDA,SEMIGRUP DAN MONOIDA
PDF
MODULE 3-Circle Area and Perimeter
PDF
SEGIEMPAT & SEGITIGA (Jenis & Sifat Segiempat) - P2
Penalaran matematis
Module 7 The Straight Lines
Pembuktian teorema pythagoras oleh presiden James A. Garfield
Presentasi jajar genjang
BAB Statistika Materi Penyajian data kelas 9
4. MAKALAH GRUPOIDA,SEMIGRUP DAN MONOIDA
MODULE 3-Circle Area and Perimeter
SEGIEMPAT & SEGITIGA (Jenis & Sifat Segiempat) - P2

What's hot (20)

PPTX
PPT GARIS SINGGUNG PERSEKUTUAN DUA LINGKARAN.pptx
PPTX
TEOREMA PHYTAGORAS
PPT
Alin 3.1 3.3
PPTX
PPT Irisan-Kerucut.pptx
PPT
Materi vektor (matematika tingkat lanjut)
DOCX
Bangun ruang
PPT
1 - intro Diskrit Logika.ppt
PPT
Besaran Vektor.ppt
DOCX
Pengenalan_pola_data_123456789abcdefghij
DOCX
ANALISIS RIIL 1 3.3 dan 3.4 ROBERT G BARTLE
PDF
RPP peluang
PPTX
Ppt spldv kelas viii miftah
PPT
Lingkaran 2
PPTX
Bahan Ajar Tabung, Kerucut, dan Bola (Kelas IX)
DOCX
Bahan Ajar Materi Garis Singgung Lingkaran dengan Pendekatan Saintifik untuk ...
DOCX
Irisan kerucut
PDF
Form 5 Additional Maths Note
PPSX
Methods of solving ODE
DOCX
Analisis kompleks
 
DOCX
Lks 2.2 (grafik)
PPT GARIS SINGGUNG PERSEKUTUAN DUA LINGKARAN.pptx
TEOREMA PHYTAGORAS
Alin 3.1 3.3
PPT Irisan-Kerucut.pptx
Materi vektor (matematika tingkat lanjut)
Bangun ruang
1 - intro Diskrit Logika.ppt
Besaran Vektor.ppt
Pengenalan_pola_data_123456789abcdefghij
ANALISIS RIIL 1 3.3 dan 3.4 ROBERT G BARTLE
RPP peluang
Ppt spldv kelas viii miftah
Lingkaran 2
Bahan Ajar Tabung, Kerucut, dan Bola (Kelas IX)
Bahan Ajar Materi Garis Singgung Lingkaran dengan Pendekatan Saintifik untuk ...
Irisan kerucut
Form 5 Additional Maths Note
Methods of solving ODE
Analisis kompleks
 
Lks 2.2 (grafik)
Ad

Viewers also liked (20)

PPS
NOTE MATH PMR CIRCLE
PDF
F4 03 Sets
PDF
Form 4 formulae and note
PPS
NOTE MATH FORM 3 - INDICES
PPS
NOTE MATH FORM 3 - SOLID GEOMETRY
PDF
Module 5 Sets
PDF
Rca matematik
PDF
Chapter 4 simultaneous equations
PPT
Chapter 3 Circles II
PDF
Bentuk piawai
PDF
Notes and-formulae-mathematics
PPTX
Chapter 1 : SIGNIFICANT FIGURES AND STANDARD FORM
PPTX
Chapter 3 Algebraic Expressions II
PPS
NOTE MATH FORM 3 - ALGEBRAIC FORMULA
PPS
NOTE MATH FORM 3 - ALGEBRAIC
PDF
Chapter 8 circular measure
PDF
Chapter 5 indices & logarithms
PPTX
Bab 3 F 4 Part 1awal
 
DOCX
MATEMATIK TINGKATAN 4 LATIHAN BAB 1-6
PDF
Dania Entertainment Plans Exhibit C
NOTE MATH PMR CIRCLE
F4 03 Sets
Form 4 formulae and note
NOTE MATH FORM 3 - INDICES
NOTE MATH FORM 3 - SOLID GEOMETRY
Module 5 Sets
Rca matematik
Chapter 4 simultaneous equations
Chapter 3 Circles II
Bentuk piawai
Notes and-formulae-mathematics
Chapter 1 : SIGNIFICANT FIGURES AND STANDARD FORM
Chapter 3 Algebraic Expressions II
NOTE MATH FORM 3 - ALGEBRAIC FORMULA
NOTE MATH FORM 3 - ALGEBRAIC
Chapter 8 circular measure
Chapter 5 indices & logarithms
Bab 3 F 4 Part 1awal
 
MATEMATIK TINGKATAN 4 LATIHAN BAB 1-6
Dania Entertainment Plans Exhibit C
Ad

Similar to Module 3 Circle Area And Perimeter (20)

RTF
Module 3 circle area and perimeter
DOCX
Circle & solid geometry f3
PDF
F4 11 Lines And Planes In 3 Dim
DOCX
Homework mate ting 3
DOC
Sec 2 Term 3 Arc Length 01 97
PDF
F4 10 Angles Of Elevation Dep
DOC
Transformations
PDF
F4 08circlesiii-090716074042-phpapp01
PDF
F4 08 Circles Iii
DOC
2005 pmr klon p1
PDF
Module 3 circle 2
PDF
BukitPanjang GovtHigh Emath Paper2_printed
PPS
Mathematics Keynotes 2
DOC
1A QB Ch07 Introduction duction to Geometry.doc
PPT
Mathematics keynotes 1
PDF
F4 09 Trigonometry Ii
PPTX
Kuiz Add Maths
PPT
3. curves2
PDF
Monfort Emath Paper2_printed
PPT
3. curves2
Module 3 circle area and perimeter
Circle & solid geometry f3
F4 11 Lines And Planes In 3 Dim
Homework mate ting 3
Sec 2 Term 3 Arc Length 01 97
F4 10 Angles Of Elevation Dep
Transformations
F4 08circlesiii-090716074042-phpapp01
F4 08 Circles Iii
2005 pmr klon p1
Module 3 circle 2
BukitPanjang GovtHigh Emath Paper2_printed
Mathematics Keynotes 2
1A QB Ch07 Introduction duction to Geometry.doc
Mathematics keynotes 1
F4 09 Trigonometry Ii
Kuiz Add Maths
3. curves2
Monfort Emath Paper2_printed
3. curves2

More from norainisaser (20)

XLS
Direktori Gc Ogos 09
PDF
Trial Sbp 2007 Mm2
PDF
Trial Sbp 2007 Mm1
PDF
Trial Sbp 2007 Answer Mm 1 & 2
PDF
Trial Sbp 2006 Mm2
PDF
Trial Sbp 2006 Mm1
PDF
Trial Sbp05 Skema 1& 2
PDF
Trial Sbp05 Mm2
PDF
Trial Sbp 2006 Answer Mm 1& 2
PDF
Trial Sbp05 Mm1
PPT
Amazing Optical Illusion
PPT
Brainteasers
PPT
Triangle
PDF
Maths Ppsmi 2006 F4 P2
PDF
Maths Answer Ppsmi2006 F4 P2
PDF
Maths Answer Ppsmif4 2006 P1 #
PDF
Jsuppsmi Maths2006 F4
PDF
F4 Maths Ppsmi 2007 P2
PDF
F4 Maths Ppsmi 2007 P1
PDF
F4 Jsu Sbp 2007 Maths
Direktori Gc Ogos 09
Trial Sbp 2007 Mm2
Trial Sbp 2007 Mm1
Trial Sbp 2007 Answer Mm 1 & 2
Trial Sbp 2006 Mm2
Trial Sbp 2006 Mm1
Trial Sbp05 Skema 1& 2
Trial Sbp05 Mm2
Trial Sbp 2006 Answer Mm 1& 2
Trial Sbp05 Mm1
Amazing Optical Illusion
Brainteasers
Triangle
Maths Ppsmi 2006 F4 P2
Maths Answer Ppsmi2006 F4 P2
Maths Answer Ppsmif4 2006 P1 #
Jsuppsmi Maths2006 F4
F4 Maths Ppsmi 2007 P2
F4 Maths Ppsmi 2007 P1
F4 Jsu Sbp 2007 Maths

Recently uploaded (20)

PDF
Solaris Resources Presentation - Corporate August 2025.pdf
PDF
Blood Collected straight from the donor into a blood bag and mixed with an an...
PDF
1911 Gold Corporate Presentation Aug 2025.pdf
PDF
Tata consultancy services case study shri Sharda college, basrur
PDF
Keppel_Proposed Divestment of M1 Limited
PDF
How to Get Business Funding for Small Business Fast
PDF
Daniels 2024 Inclusive, Sustainable Development
PDF
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
PDF
Deliverable file - Regulatory guideline analysis.pdf
PPTX
Board-Reporting-Package-by-Umbrex-5-23-23.pptx
PDF
SIMNET Inc – 2023’s Most Trusted IT Services & Solution Provider
PDF
Technical Architecture - Chainsys dataZap
PDF
NISM Series V-A MFD Workbook v December 2024.khhhjtgvwevoypdnew one must use ...
PPTX
Slide gioi thieu VietinBank Quy 2 - 2025
PDF
NEW - FEES STRUCTURES (01-july-2024).pdf
PPTX
operations management : demand supply ch
PPT
Lecture 3344;;,,(,(((((((((((((((((((((((
PPTX
Slide gioi thieu VietinBank Quy 2 - 2025
PDF
kom-180-proposal-for-a-directive-amending-directive-2014-45-eu-and-directive-...
PDF
Introduction to Generative Engine Optimization (GEO)
Solaris Resources Presentation - Corporate August 2025.pdf
Blood Collected straight from the donor into a blood bag and mixed with an an...
1911 Gold Corporate Presentation Aug 2025.pdf
Tata consultancy services case study shri Sharda college, basrur
Keppel_Proposed Divestment of M1 Limited
How to Get Business Funding for Small Business Fast
Daniels 2024 Inclusive, Sustainable Development
THE COMPLETE GUIDE TO BUILDING PASSIVE INCOME ONLINE
Deliverable file - Regulatory guideline analysis.pdf
Board-Reporting-Package-by-Umbrex-5-23-23.pptx
SIMNET Inc – 2023’s Most Trusted IT Services & Solution Provider
Technical Architecture - Chainsys dataZap
NISM Series V-A MFD Workbook v December 2024.khhhjtgvwevoypdnew one must use ...
Slide gioi thieu VietinBank Quy 2 - 2025
NEW - FEES STRUCTURES (01-july-2024).pdf
operations management : demand supply ch
Lecture 3344;;,,(,(((((((((((((((((((((((
Slide gioi thieu VietinBank Quy 2 - 2025
kom-180-proposal-for-a-directive-amending-directive-2014-45-eu-and-directive-...
Introduction to Generative Engine Optimization (GEO)

Module 3 Circle Area And Perimeter

  • 1. PPR Maths nbk MODUL 3 SKIM TUISYEN FELDA (STF) MATEMATIK SPM “ENRICHMENT” TOPIC: CIRCLE, AREA AND PERIMETER TIME: 2 HOURS 1. Diagram 1 shows two sector of circle ORQ and OPS with centre O. R 12 cm 7 cm 150° O P Q S DIAGRAM 1 22 By using π = , calculate 7 (a) the perimeter for the whole diagram in cm, (b) area of the shaded region in cm2. [ 6 marks ] Answer : (a) (b)
  • 2. PPR Maths nbk 2. In diagram 2, ABCD is a rectangle. A 21 cm B 14 cm F D FIGURE 4 E C CF is an arc of a circle with center E where E is a point on the line DC with EC 22 = 7 cm. Using π = , calculate 7 (a) the length, in cm, of arc CF (b) the area, in cm2, of the shaded region [ 6 marks ] Answer : (a) (b)
  • 3. PPR Maths nbk 3. Diagram 3 shows two sectors OPQR and OJKL. OPQR and OJKL are three quarters of a circle. POL and JOR are straight lines. OP = 21cm and OJ= 7 cm. J Q P L O K R DIAGRAM 3 22 Using π = , calculate 7 (a) the perimeter, in cm, of the whole diagram, (b) the area, in cm2, of the shaded region. [6 marks] Answer: (a) (b)
  • 4. PPR Maths nbk 4. In Diagram 4, JK and PQ are arcs of two circles with centre O. OQRT is a square. K Q R J P O T 210° DIAGRAM 4 OT = 14 cm and P is the midpoint of OJ. 22 Using π = , calculate 7 (a) the perimeter, in cm, of the whole diagram, (b) the area, in cm2 , of the shaded region. [6 marks] Answer: (a) (b)
  • 5. PPR Maths nbk 5. Diagram 5 shows two sectors OLMN and OPQR with the same centre O. M L N 120° P R O Q DIAGRAM 5 OL = 14 cm. P is the midpoint of OL. 22 [Use π = ] 7 Calculate (a) the area of the whole diagram, (b) the perimeter of the whole diagram. [6 marks] Answer: (a) (b)
  • 6. PPR Maths nbk 6. In Diagram 6, ABD is an arc of a sector with the centre O and BCD is a quadrant. A OD = OB = 14 cm and ∠ AOB = 45o . 22 Using π = , calculate O B 7 (a) the perimeter, in cm, of the whole diagram, (b) the area, in cm2, of the shaded region. [6 marks] D C DIAGRAM 6 Answer : (a) (b)
  • 7. PPR Maths nbk 7. In Diagram 7, the shaded region represents the part of the flat windscreen of a van which is being wiped by the windscreen wiper AB. The wiper rotates through an angle of 210o about the centre O. Given that OA = 7 cm and AB = 28 cm. B′ A′ 210o O A B DIAGRAM 7 22 Using π = , calculate 7 (a) the length of arc BB′ , (b) the ratio of arc lengths , AA′ : BB′ (c) the area of the shaded region. [7 marks] Answer: (a) (b) (c)
  • 8. PPR Maths nbk 8. Diagram 8 shows a quadrant ADO with centre O and a sector BEF with centre B. OBC is a right angled triangle and D is the midpoint of the straight line OC. Given OC = OB = BE = 14 cm. DIAGRAM 8 22 Using π = , calculate 7 (a) the perimeter, in cm, of the whole diagram, (b) the area, in cm2, of the shaded region. . [6 marks] Answer: (a) (b)
  • 9. PPR Maths nbk 9. In Diagram 9, OPQS is a quadrant with the centre O and OSQR is a semicircle with the centre S. Q R S 60° T O P DIAGRAM 9 22 Given that OP = 14 cm. Using π = , calculate 7 (a) the area, in cm2, of the shaded region, (b) the perimeter, in cm, of the whole diagram. [6 marks] Answer: (a) (b)
  • 10. PPR Maths nbk 10. In diagram 10, OABC is a sector of a circle with centre O and radius 14 cm. B A 60 C O DIAGRAM 10 22 By using π = , calculate 7 (a) perimeter, in cm, the shaded area. (b) area, in cm2, the shaded area. [7 markah] Answer : (a) (b)
  • 11. PPR Maths nbk MODULE 3 - ANSWERS TOPIC: CIRCLE, AREA AND PERIMETER 1 90 22 120 22 (a) × 2 × × 12 @ × 2× × 7 K1 360 7 360 7 90 22 120 22 × 2 × × 12 + × 2 × × 7 + 12 + 5 360 7 360 7 K1 57.53 N1 90 22 120 22 2 (b) × × 12 2 @ × ×7 K1 360 7 360 7 90 22 120 22 1 × × 12 2 + × × 7 2 − × 7 × 12 360 7 360 7 2 K1 122.48 N1 2 (a) ∠FEC = 135o K2 135 22 × 2× ×7 360 7 K1 16.5 N1 135 22 (b) L3 = × ×7×7 K1 360 7 ⎛1 ⎞ Shaded area = (21 × 14) − ⎜ × 14 × 14 ⎟ − L3 ⎝2 ⎠ K1 = 138.25 N1 3 270 22 90 22 a) × × 2 × 21 atau × ×7×2 K1 360 7 360 7 270 22 90 22 × × 2 × 21 + × × 7 × 2 + 14 + 14 K1 360 7 360 7 = 138 N1 270 22 90 22 b) × × 21 × 21 atau 2× × ×7×7 K1 360 7 360 7 270 22 90 22 × × 21 × 21 - 2 × × ×7×7 K1 360 7 360 7
  • 12. PPR Maths nbk 2 = 962.5 cm N1 4 60 22 a) × 2 × × 28 K1 360 7 60 22 × 2 × × 28 + 14 + 14 + 14 + 14 + 28 K1 360 7 1 113 atau 113⋅33 N1 3 60 22 60 22 b) × × 28 × 28 atau × ×14 ×14 K1 360 7 360 7 60 22 60 22 × × 28 × 28 − × ×14 ×14 + 14 × 14 K1 360 7 360 7 504 N1 5 120 22 240 22 a) × × 14 × 14 atau × ×7×7 K1 360 7 360 7 120 22 240 22 × × 14 × 14 + × ×7×7 K1 360 7 360 7 308 N1 120 22 240 22 b) × 2 × × 14 atau × 2× ×7 K1 360 7 360 7 120 22 240 22 × 2 × × 14 + × 2× ×7 + 7 + 7 K1 360 7 360 7 2 72 N1 3 6 (a) 45 22 K1 ×2× × 14 360 7 ⎛ 45 22 ⎞ K1 ⎜ ×2× × 14 ⎟ + 14 + 14 + 14 + 14 ⎝ 360 7 ⎠ 2 N1 70 3 (b) 45 22 or 90 × 22 × 14 × 14 K1 × × 14 × 14 360 7 360 7 ⎛ 45 22 ⎞ ⎛ 90 22 ⎞ K1 ⎜ × × 14 × 14 ⎟ + 2 ⎜14 × 14 − × × 14 × 14 ⎟ ⎝ 360 7 ⎠ ⎝ 360 7 ⎠ 161 N1
  • 13. PPR Maths nbk 7 210 22 (i) × 2 × × 35 K1 360 7 1 128 @ 128.33 N1 3 210 22 210 22 (ii) × 2× ×7 : × 2 × × 35 K1 360 7 360 7 1: 5 N1 210 22 210 22 2 (iii) × × 35 2 or × ×7 K1 360 7 360 7 210 22 210 22 2 × × 35 2 − × ×7 K1 360 7 360 7 2156 N1 8 45 22 (a) ×2× × 14 or 14 2 + 14 2 − 14 K1 360 7 11 + 14 + 14 + 14 + 5.799 K1 58.80 (2 d. p) N1 90 22 45 22 (b) × ×7 × 7 or × × 14 x 14 K1 360 7 360 7 1 90 22 45 22 × 14 × 14 − × ×7 × 7 + × × 14 × 14 K1 2 360 7 360 7 136.5 N1 9 90 22 60 22 (a) A1 = × × 14 × 14 and A2 = × ×7×7 360 7 360 7 K1 A1 – A2 K1 1 128 N1 3 90 22 180 22 (b) P1 = × 2 × × 14 or P2 = ×2× ×7 K1 360 7 360 7 P1 + P2 + 14 K1
  • 14. PPR Maths nbk 58 N1 10 (a) AB = 14 2 + 14 2 = 392 = 19.80 K1 150 22 60 22 90 22 × 2 × × 14 atau × 2 × × 14 atau × 2 × × 14 K1 360 7 360 7 360 7 Lengkok AC + 14 + 14 + 19.80 atau Lengkok AB + lengkok BC + 14 + 14 + 19.80 K1 84.47 N1 150 22 1 (b) × × 14 2 atau × 14 × 14 K1 360 7 2 150 22 1 × × 14 2 - × 14 × 14 atau K1 360 7 2 770 – 98 3 2 476 158 atau atau 158.67 N1 3 3