SlideShare a Scribd company logo
THE CHAIN RULE
If 𝒇 and 𝒈 are differentiable functions, then the composite function 𝒉(𝒙) = 𝒇(𝒈(𝒙)) has derivative
given by:
𝒉′(𝒙) = 𝒇′(𝒈(𝒙))𝒈′(𝒙)
EXAMPLE 1: Differentiate 𝒉(𝒙) = (𝒙𝟑
+ 𝟒𝒙)
𝟑
𝟐
SOLUTION:
STEP 1 Identify the inner function and outer function
The inner function is: 𝒈(𝒙) = 𝒙𝟑
+ 𝟒𝒙
The outer function is: 𝒇(𝒙) = 𝒙
𝟑
𝟐
STEP 2 Solve for the derivative of the inner function and the outer function
• The inner function
𝒈(𝒙) = 𝒙𝟑
+ 𝟒𝒙
𝒈′(𝒙) = 𝟑𝒙𝟐
+ 𝟒
• The outer function
𝒇(𝒙) = 𝒙
𝟑
𝟐
𝒇′(𝒙) =
𝟑
𝟐
𝒙
𝟏
𝟐
STEP 3 Use the Chain Rule Formula
𝒉′(𝒙) = 𝒇′(𝒈(𝒙))𝒈′(𝒙)
𝒉′(𝒙) = (
𝟑
𝟐
𝒙
𝟏
𝟐)( 𝟑𝒙𝟐
+ 𝟒)
𝒉′(𝒙) = [
𝟑
𝟐
(𝒙𝟑
+ 𝟒𝒙)
𝟏
𝟐][𝟑𝒙𝟐
+ 𝟒]

More Related Content

PDF
Module 6 the extreme value theorem
PPTX
ψ And ψ2 significance
PPTX
May 4, 2015
PPTX
Simplifying radicals
PPTX
MT102 Лекц-1
PDF
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
PDF
E0561719
DOCX
Maximum Likelihood Estimation of Beetle
Module 6 the extreme value theorem
ψ And ψ2 significance
May 4, 2015
Simplifying radicals
MT102 Лекц-1
Backpropagation: Understanding How to Update ANNs Weights Step-by-Step
E0561719
Maximum Likelihood Estimation of Beetle

What's hot (20)

PDF
Integral calculus
PPTX
Convergence Of Power Series , Taylor And Laurent Theorems (Without Proof)
PPT
Ch 6 Linear Functions
PDF
2.3 Simplifying Radicals
PPTX
Integral calculus
PDF
An Experiment to Determine and Compare Practical Efficiency of Insertion Sort...
PDF
International Refereed Journal of Engineering and Science (IRJES)
PPT
Lesson 12 derivative of inverse trigonometric functions
PPTX
MT102 Лекц 9
PDF
Transformation of Classical Fractals applying Fractional Operators
PPTX
MT102 Лекц-2
PPTX
Fourier series
PDF
The derivatives module03
PPTX
MT102 Лекц 12
PPTX
MT102 Лекц 15
PPTX
Deriving the inverse of a function2 (composite functions)
PPTX
Fourier transforms
PPTX
Deriving the composition of functions
PPTX
MT102 Лекц 11
Integral calculus
Convergence Of Power Series , Taylor And Laurent Theorems (Without Proof)
Ch 6 Linear Functions
2.3 Simplifying Radicals
Integral calculus
An Experiment to Determine and Compare Practical Efficiency of Insertion Sort...
International Refereed Journal of Engineering and Science (IRJES)
Lesson 12 derivative of inverse trigonometric functions
MT102 Лекц 9
Transformation of Classical Fractals applying Fractional Operators
MT102 Лекц-2
Fourier series
The derivatives module03
MT102 Лекц 12
MT102 Лекц 15
Deriving the inverse of a function2 (composite functions)
Fourier transforms
Deriving the composition of functions
MT102 Лекц 11
Ad

More from REYEMMANUELILUMBA (20)

PDF
Moudule9 the fundamental theorem of calculus
PDF
Module 10 the reimann sums
PDF
Module 8 the antiderivative substitution rule
PDF
Module 7 the antiderivative
PDF
Module 7 the antiderivative
PDF
The algebraic techniques module4
PDF
The algebraic techniques module4
PDF
Module10 the regression analysis
PDF
Module9 the pearson correlation
PDF
Module9 the pearson correlation
PDF
Review on module 9
PDF
Module08 hypotheses testing proportions
PDF
Review on module8
PDF
Module 7 hypothesis testing
PDF
Review on module 7
PDF
Statisitcal hypotheses module06
PDF
Derivatives of trigo and exponential functions module5
PDF
The algebraic techniques module4
PDF
Identifying the sampling distribution module5
PDF
The algebraic techniques module4
Moudule9 the fundamental theorem of calculus
Module 10 the reimann sums
Module 8 the antiderivative substitution rule
Module 7 the antiderivative
Module 7 the antiderivative
The algebraic techniques module4
The algebraic techniques module4
Module10 the regression analysis
Module9 the pearson correlation
Module9 the pearson correlation
Review on module 9
Module08 hypotheses testing proportions
Review on module8
Module 7 hypothesis testing
Review on module 7
Statisitcal hypotheses module06
Derivatives of trigo and exponential functions module5
The algebraic techniques module4
Identifying the sampling distribution module5
The algebraic techniques module4
Ad

Recently uploaded (20)

PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
Insiders guide to clinical Medicine.pdf
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
master seminar digital applications in india
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
Cell Structure & Organelles in detailed.
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
RMMM.pdf make it easy to upload and study
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PDF
O7-L3 Supply Chain Operations - ICLT Program
PDF
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Pharma ospi slides which help in ospi learning
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Business Ethics Teaching Materials for college
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
Abdominal Access Techniques with Prof. Dr. R K Mishra
Insiders guide to clinical Medicine.pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
master seminar digital applications in india
TR - Agricultural Crops Production NC III.pdf
Cell Structure & Organelles in detailed.
Pharmacology of Heart Failure /Pharmacotherapy of CHF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
RMMM.pdf make it easy to upload and study
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
O7-L3 Supply Chain Operations - ICLT Program
Mark Klimek Lecture Notes_240423 revision books _173037.pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
2.FourierTransform-ShortQuestionswithAnswers.pdf
Supply Chain Operations Speaking Notes -ICLT Program
Pharma ospi slides which help in ospi learning
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Business Ethics Teaching Materials for college
STATICS OF THE RIGID BODIES Hibbelers.pdf

Module 6 the chain rule

  • 1. THE CHAIN RULE If 𝒇 and 𝒈 are differentiable functions, then the composite function 𝒉(𝒙) = 𝒇(𝒈(𝒙)) has derivative given by: 𝒉′(𝒙) = 𝒇′(𝒈(𝒙))𝒈′(𝒙) EXAMPLE 1: Differentiate 𝒉(𝒙) = (𝒙𝟑 + 𝟒𝒙) 𝟑 𝟐 SOLUTION: STEP 1 Identify the inner function and outer function The inner function is: 𝒈(𝒙) = 𝒙𝟑 + 𝟒𝒙 The outer function is: 𝒇(𝒙) = 𝒙 𝟑 𝟐 STEP 2 Solve for the derivative of the inner function and the outer function • The inner function 𝒈(𝒙) = 𝒙𝟑 + 𝟒𝒙 𝒈′(𝒙) = 𝟑𝒙𝟐 + 𝟒 • The outer function 𝒇(𝒙) = 𝒙 𝟑 𝟐 𝒇′(𝒙) = 𝟑 𝟐 𝒙 𝟏 𝟐 STEP 3 Use the Chain Rule Formula 𝒉′(𝒙) = 𝒇′(𝒈(𝒙))𝒈′(𝒙) 𝒉′(𝒙) = ( 𝟑 𝟐 𝒙 𝟏 𝟐)( 𝟑𝒙𝟐 + 𝟒) 𝒉′(𝒙) = [ 𝟑 𝟐 (𝒙𝟑 + 𝟒𝒙) 𝟏 𝟐][𝟑𝒙𝟐 + 𝟒]