SlideShare a Scribd company logo
Tweet tonight using #MongoDB to be
entered to win a t-shirt!
Welcome to MongoDB Evenings Dallas!
Agenda
5:30pm: Pizza, Beer & Soft Drinks
6:00pm: Welcome
William Kent, Enterprise Account Executive, MongoDB
6:10pm: What’s the Scoop on MongoDB & Hadoop?
Jake Angerman, Senior Solutions Architect, MongoDB
7:00pm:Acxiom's Journey with MongoDB
John Riewerts, Director of Engineering - Marketing Services, Acxiom
7:45pm:Announcements
Q&A
MongoDB + Hadoop
{ Name: ‘Jake Angerman’,
Title: ‘Sr. Solutions Architect’}
MongoDB + Hadoop
Documents Support Modern Requirements
Relational Document Data Structure
{ customer_id : 123,
first_name : "Mark",
last_name : "Smith",
city : "San Francisco",
location : [37.7576792,-122.5078112],
image : <binary data>,
phones: [ {
number : “1-212-555-1212”,
dnc : true,
type : “home”
},
{
number : “1-212-555-1213”,
type : “cell”
} ]
}
6
MongoDB Technical Capabilities
Applica'on	
Driver	
Mongos	
Primary	
Secondary	
Secondary	
Shard	1	
Primary	
Secondary	
Secondary	
Shard	2	
…
Primary	
Secondary	
Secondary	
Shard	N	
1. Dynamic	Document	Schema	
	 { name: “John Smith”,
date: “2013-08-01”,
address: “10 3rd St.”,
phone: {
home: 1234567890,
mobile: 1234568138 }
}
db.customer.insert({…})
db.customer.find({
name: ”John Smith”})
2.	Na3ve	language	drivers	
4.	High	performance	
- Data	locality	
- Indexes	
- RAM	
3.	High	availability	
- Replica	sets	
5.	Horizontal	scalability	
- Sharding
7
Hadoop
A framework for distributed processing of large data sets
•  Terabyte and petabyte datasets
•  Data warehousing
•  Advanced analytics
•  Not a database
•  No indexes
•  Batch processing
8
Data Management
9
Data Management
Hadoop
Fault tolerance
Batch processing
Coarse-grained operations
Unstructured Data
WORM
MongoDB
High availability
Mutable data
Fine-grained operations
Flexible Schemas
CRUD
10
Data Management
Hadoop
Offline Processing
Analytics
Data Warehousing
MongoDB
Online Operations
Application
Operational
11
Commerce Use Case
Applications
powered by
Analysis
powered by
•  Products & Inventory
•  Recommended products
•  Customer profile
•  Session management
•  Elastic pricing
•  Recommendation models
•  Predictive analytics
•  Clickstream history
MongoDB
Connector for
Hadoop
12
Insurance Use Case
Applications
powered by
Analysis
powered by
•  Customer profiles
•  Insurance policies
•  Session data
•  Call center data
•  Customer action analysis
•  Churn analysis
•  Churn prediction
•  Policy rates
MongoDB
Connector for
Hadoop
13
Fraud Detection Use Case
Payments
Fraud modeling
Nightly
Analysis
MongoDB Connector
for Hadoop
Results
Cache
Online payments
processing
3rd Party Data
Sources
Fraud
Detection
query
only
query
only
Where MongoDB Fits
in the Hadoop Ecosystem
15
HDFS
YARN
MapReduce
Pig Hive
Spark
Spark
Streaming
Hive
Spark
Shell
Mesos
Hadoop
Pig
Spark
SQL
Spark
Stand
Alone
YARN
17
MongoDB Connector for Hadoop
•  Low latency
•  Rich fast querying
•  Flexible indexing
•  Aggregations in database
•  Known data relationships
•  Great for any subset of data
•  Longer jobs
•  Batch analytics
•  Highly parallel processing
•  Unknown data relationships
•  Great for looking at all data or
large subsets
Applications Distributed Analytics
MongoDB
Connector for
Hadoop
db.tweets.aggregate([	
		{$group:	{	
				_id:	{	
						hour:	{$hour:	"$date"},	
						minute:	{$minute:	"$date"}	
				},	
				total:	{$sum:	"$sentiment.score"},	
				average:	{$avg:	"$sentiment.score"},	
				count:	{$sum:	1},	
				happyTalk:	{$push:	"$sentiment.positive"}	
		}},	
		{$unwind:	"$happyTalk"},	
		{$unwind:	"$happyTalk"},	
		{$group:	{	
				_id:	"$_id",	
				total:	{$first:	"$total"},	
				average:	{$first:	"$average"},	
				count:	{$first:	"$count"},	
				happyTalk:	{$addToSet:	"$happyTalk"}	
		}},	
		{$sort:	{_id:	-1}	}	
])	
But doesn't
MongoDB have…?
•  aggregation framework
–  machine learning libraries
•  map reduce
–  Javascript
–  competing workloads
19
MongoDB Data Operations Spectrum
•  Document Retrieval – 1ms if in cache, ~10ms from
spinning disk
•  .find() – per-document cost similar to single document
–  _id range
–  any secondary index range, can be composite key
–  intersect two indexes
–  covered indexes even faster
•  .count(), .distinct(), .group() – fast, may be covered
•  .aggregate() – retrieval cost like find, plus pipeline
operations
–  $match, $group
–  $project, $redact
•  .mapReduce() – in-database Javascript
•  Hadoop Connector
–  mongo.input.query for indexed partial scan
–  full scan
Faster…………….....Slower
20
21
Analytics Landscape
Batch / Predictive / Ad Hoc
(mins – hours)
Real-Time Dashboards /
Scoring
(<30 ms)
Planned Reporting
(secs – mins )
Modern
Legacy
Use Cases
MetLife – Single View
…
Single	CSR	Applica3on	Unified	Customer	
Portal	
Opera3onal	Repor3ng	
Cards		 …Cards		Silo	1	
…
Opera'onal	Data	Layer	
•  Insurance	policies	
•  Demographic	data	
•  Customer	web	data	
•  Call	center	data	 DW/Data	Lake	
•  Churn	predic3on	algorithms	
MongoDB		
Connector	for	Hadoop	
Cards		Cards		Silo	2	
Cards		Cards		Silo	N	
Pub-sub/ETL	
Customer	
Clustering	
Churn	Analysis	
Predic3ve	
analy3cs	
…
25
Foursquare
•  k-nearest neighbor problems
– similarity of venues, people, or brands
•  MongoDB data has advantages when used with MapReduce
– log files can be stale
– log files may not contain as much information
– you can scan much less data
BSON dump
MongoDB		
Connector	for	Hadoop
MongoDB Connector for Hadoop
28
https://github.com/mongodb/mongo-hadoop
29
Connector Overview
Data	
Read/Write	
MongoDB	
Read/Write	
BSON	
Tools	
MapReduce	
Pig	
Hive	
Spark	
PlaUorms	
Apache	Hadoop	
Cloudera	CDH	
Hortonworks	HDP	
Amazon	EMR
30
MapReduce Configuration
•  MongoDB input
–  mongo.job.input.format	=	com.mongodb.hadoop.MongoInputFormat	
–  mongo.input.uri	=	mongodb://mydb:27017/db1.collection1	
•  MongoDB output
–  mongo.job.output.format	=	com.mongodb.hadoop.MongoOutputFormat	
–  mongo.output.uri	=	mongodb://mydb:27017/db1.collection2	
•  BSON input/output
–  mongo.job.input.format	=	com.hadoop.BSONFileInputFormat	
–  mapred.input.dir	=	hdfs:///tmp/database.bson	
–  mongo.job.output.format	=	com.hadoop.BSONFileOutputFormat	
–  mapred.output.dir	=	hdfs:///tmp/output.bson
33
MongoDB Cluster
MONGOS
SHARD A
SHARD B
SHARD C
SHARD D
MONGOS Client
34
35
extends MongoSplitter class
List<InputSplit> calculateSplits()
36
•  High-level platform for creating MapReduce
•  Pig Latin abstracts Java into easier-to-use notation
•  Executed as a series of MapReduce applications
•  Supports user-defined functions (UDFs)
Pig
37
samples = LOAD 'mongodb://127.0.0.1:27017/sensor.logs'
USING
com.mongodb.hadoop.pig.MongoLoader(’deviceId:int,value:double');
grouped = GROUP samples by deviceId;
sample_stats = FOREACH grouped {
mean = AVG(samples.value);
GENERATE group as deviceId, mean as mean;
}
STORE sample_stats INTO 'mongodb://127.0.0.1:27017/sensor.stats'
USING com.mongodb.hadoop.pig.MongoStorage;
38
•  Data warehouse infrastructure built on top of Hadoop
•  Provides data summarization, query, and analysis
•  HiveQL is a subset of SQL
•  Support for user-defined functions (UDFs)
39
Hive Support
CREATE	TABLE	mongo_users	(id	int,	name	string,	age	int)	
STORED	BY	"com.mongodb.hadoop.hive.MongoStorageHandler"	
WITH	SERDEPROPERTIES("mongo.columns.mapping”	=	"_id,name,age”)	
TBLPROPERTIES("mongo.uri"	=	"mongodb://host:27017/test.users”)	
•  Access collections as Hive tables
•  Use with MongoStorageHandler or BSONStorageHandler
Spark
41
Image source: dzone.com
42
•  Powerful built-in transformations and actions
–  map, reduceByKey, union, distinct, sample, intersection, and more
–  foreach, count, collect, take, and many more
An engine for processing Hadoop data. Can perform
MapReduce in addition to streaming, interactive queries,
and machine learning.
Create the Resilient Distributed Dataset (RDD)
rdd = sc.newAPIHadoopRDD(
config, MongoInputFormat.class, Object.class, BSONObject.class)
config.set(
"mongo.input.uri", "mongodb://127.0.0.1:27017/marketdata.minbars")
config.set(
"mongo.input.query", '{"_id":{"$gt":{"$date":1182470400000}}}')
config.set(
"mongo.output.uri", "mongodb://127.0.0.1:27017/marketdata.fiveminutebars")
val minBarRawRDD = sc.newAPIHadoopRDD(
config,
classOf[com.mongodb.hadoop.MongoInputFormat],
classOf[Object],
classOf[BSONObject])
Spark Demo
K-means Clustering
>>> mongo_rdd = sc.mongoRDD('mongodb://localhost:27017/adsb.tincan')
>>> parsed_rdd = mongo_rdd.map(parseData)
>>> clusters = KMeans.train(parsed_rdd, 10, maxIterations=10, runs=1,
initializationMode="random")
>>> cluster_sizes = parsed_rdd.map(lambda e: clusters.predict(e)).countByValue()
>>> cluster_sizes
defaultdict(<type 'int'>, {0: 70122, 1: 350890, 2: 118596, 3: 104609, 4: 254759, 5:
175840, 6: 166789, 7: 68309, 8: 147826, 9: 495102})
K-means Clustering
K-means Clustering
K-means Clustering
Summary
52
Data Flows
Hadoop
Connector
BSON Files
MapReduce & HDFS
Optimal location
for providing
operational
response times
& slices
Governance to
choose where to
load and process
data
More Complete EDMArchitecture & Data Lake
…Siloed	source	
databases	
External	feeds		
(batch)	
Streams	
Stream icon from: https://en.wikipedia.org/wiki/File:Activity_Streams_icon.png
	
Data processing pipeline
Pub-sub,ETL,fileimports
Stream Processing
Downstream
Systems
… …
Single	CSR	
Applica3on	
Unified	
Digital	
Apps	
Opera3ona
l	Repor3ng	
…
… …
Analy3c	
Repor3ng	
Drivers & Stacks
Customer	
Clusterin
g	
Churn	
Analysis	
Predic3v
e	
Analy3cs	
…
Distributed
Processing
Operational Applications & Reporting
Can run
processing on
all data or
slices
Data Lake
Code “JakeAngerman” gets 25% off
Super Early Bird Registration Ends March 25, 2016
June 28 - 29, 2016
New York, NY
www.mongodbworld.com

More Related Content

PDF
MongoDB Evenings Houston: What's the Scoop on MongoDB and Hadoop? by Jake Ang...
PDF
MongoDB in the Big Data Landscape
PPTX
Webinar: Enterprise Trends for Database-as-a-Service
PPTX
MongoDB Evenings Minneapolis: MongoDB is Cool But When Should I Use It?
PDF
MongoDB Evenings Houston: Implementing EDW Using MongoDB by Purvesh Patel, Ch...
PPTX
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
PPTX
MongoDB Evenings DC: MongoDB - The New Default Database for Giant Ideas
PPTX
Jumpstart: MongoDB BI Connector & Tableau
MongoDB Evenings Houston: What's the Scoop on MongoDB and Hadoop? by Jake Ang...
MongoDB in the Big Data Landscape
Webinar: Enterprise Trends for Database-as-a-Service
MongoDB Evenings Minneapolis: MongoDB is Cool But When Should I Use It?
MongoDB Evenings Houston: Implementing EDW Using MongoDB by Purvesh Patel, Ch...
MongoDB Evenings DC: Get MEAN and Lean with Docker and Kubernetes
MongoDB Evenings DC: MongoDB - The New Default Database for Giant Ideas
Jumpstart: MongoDB BI Connector & Tableau

What's hot (20)

PDF
Blazing Fast Analytics with MongoDB & Spark
PDF
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
PPTX
Benefits of Using MongoDB Over RDBMSs
PPTX
L’architettura di Classe Enterprise di Nuova Generazione
PPTX
An Enterprise Architect's View of MongoDB
PPTX
How Insurance Companies Use MongoDB
PDF
MongoDB Europe 2016 - The Rise of the Data Lake
PPTX
Webinar: An Enterprise Architect’s View of MongoDB
PDF
MongoDB company and case studies - john hong
PPT
Webinar: High Performance MongoDB Applications with IBM POWER8
PDF
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
PPTX
Webinar: Enterprise Data Management in the Era of MongoDB and Data Lakes
PPTX
Webinar: Elevate Your Enterprise Architecture with In-Memory Computing
PPTX
Webinar: MongoDB and Analytics: Building Solutions with the MongoDB BI Connector
PDF
Apache Spark and MongoDB - Turning Analytics into Real-Time Action
PPTX
Webinar: Live Data Visualisation with Tableau and MongoDB
PPTX
MongoDB Days Silicon Valley: Jumpstart: The Right and Wrong Use Cases for Mon...
PDF
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
PPTX
Tableau & MongoDB: Visual Analytics at the Speed of Thought
PDF
Spark and MongoDB
Blazing Fast Analytics with MongoDB & Spark
Webinar: Introducing the MongoDB Connector for BI 2.0 with Tableau
Benefits of Using MongoDB Over RDBMSs
L’architettura di Classe Enterprise di Nuova Generazione
An Enterprise Architect's View of MongoDB
How Insurance Companies Use MongoDB
MongoDB Europe 2016 - The Rise of the Data Lake
Webinar: An Enterprise Architect’s View of MongoDB
MongoDB company and case studies - john hong
Webinar: High Performance MongoDB Applications with IBM POWER8
MongoDB .local Munich 2019: MongoDB Atlas Data Lake Technical Deep Dive
Webinar: Enterprise Data Management in the Era of MongoDB and Data Lakes
Webinar: Elevate Your Enterprise Architecture with In-Memory Computing
Webinar: MongoDB and Analytics: Building Solutions with the MongoDB BI Connector
Apache Spark and MongoDB - Turning Analytics into Real-Time Action
Webinar: Live Data Visualisation with Tableau and MongoDB
MongoDB Days Silicon Valley: Jumpstart: The Right and Wrong Use Cases for Mon...
MongoDB .local Toronto 2019: MongoDB Atlas Jumpstart
Tableau & MongoDB: Visual Analytics at the Speed of Thought
Spark and MongoDB
Ad

Viewers also liked (20)

PPTX
A Basic Introduction to the Hadoop eco system - no animation
PDF
OCF.tw's talk about "Introduction to spark"
PPTX
Hadoop ecosystem for health/life sciences
PPTX
Get most out of Spark on YARN
PPTX
Hadoop Essential for Oracle Professionals
PPTX
Mapreduce total order sorting technique
PPTX
Developing YARN Applications - Integrating natively to YARN July 24 2014
PPTX
Spark on Yarn
PPTX
Real Time Data Processing Using Spark Streaming
PDF
Hadoop Operations - Best practices from the field
PPTX
January 2015 HUG: Apache Flink: Fast and reliable large-scale data processing
PPTX
How Hadoop Exploits Data Locality
PDF
Spark on yarn
PDF
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
PDF
Hadoop Spark Introduction-20150130
PDF
Spark vs Hadoop
PPTX
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
PDF
Spark in the Hadoop Ecosystem-(Mike Olson, Cloudera)
PDF
What the Spark!? Intro and Use Cases
A Basic Introduction to the Hadoop eco system - no animation
OCF.tw's talk about "Introduction to spark"
Hadoop ecosystem for health/life sciences
Get most out of Spark on YARN
Hadoop Essential for Oracle Professionals
Mapreduce total order sorting technique
Developing YARN Applications - Integrating natively to YARN July 24 2014
Spark on Yarn
Real Time Data Processing Using Spark Streaming
Hadoop Operations - Best practices from the field
January 2015 HUG: Apache Flink: Fast and reliable large-scale data processing
How Hadoop Exploits Data Locality
Spark on yarn
Spark Summit EU 2015: Combining the Strengths of MLlib, scikit-learn, and R
Hadoop Spark Introduction-20150130
Spark vs Hadoop
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
Spark in the Hadoop Ecosystem-(Mike Olson, Cloudera)
What the Spark!? Intro and Use Cases
Ad

Similar to MongoDB Evenings Dallas: What's the Scoop on MongoDB & Hadoop (20)

PDF
Analytics with MongoDB Aggregation Framework and Hadoop Connector
PPTX
Internet of things
PPTX
Webinar: General Technical Overview of MongoDB for Dev Teams
PPTX
Webinar: How Banks Use MongoDB as a Tick Database
PPTX
Eagle6 mongo dc revised
PPTX
Eagle6 Enterprise Situational Awareness
PPT
MongoDB Tick Data Presentation
PDF
MongoDB.local DC 2018: Tutorial - Data Analytics with MongoDB
PDF
Using MongoDB + Hadoop Together
PPTX
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
PDF
Webinar: Managing Real Time Risk Analytics with MongoDB
PDF
Big Data Expo 2015 - Gigaspaces Making Sense of it all
PPTX
Big Data: Guidelines and Examples for the Enterprise Decision Maker
PPTX
Introduction to MongoDB
KEY
Building a Cross Channel Content Delivery Platform with MongoDB
PPTX
Using MongoDB As a Tick Database
PDF
Building your first app with MongoDB
PPTX
MongoDB and Hadoop: Driving Business Insights
PDF
Buildingsocialanalyticstoolwithmongodb
Analytics with MongoDB Aggregation Framework and Hadoop Connector
Internet of things
Webinar: General Technical Overview of MongoDB for Dev Teams
Webinar: How Banks Use MongoDB as a Tick Database
Eagle6 mongo dc revised
Eagle6 Enterprise Situational Awareness
MongoDB Tick Data Presentation
MongoDB.local DC 2018: Tutorial - Data Analytics with MongoDB
Using MongoDB + Hadoop Together
How to leverage MongoDB for Big Data Analysis and Operations with MongoDB's A...
Webinar: Managing Real Time Risk Analytics with MongoDB
Big Data Expo 2015 - Gigaspaces Making Sense of it all
Big Data: Guidelines and Examples for the Enterprise Decision Maker
Introduction to MongoDB
Building a Cross Channel Content Delivery Platform with MongoDB
Using MongoDB As a Tick Database
Building your first app with MongoDB
MongoDB and Hadoop: Driving Business Insights
Buildingsocialanalyticstoolwithmongodb

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...

Recently uploaded (20)

PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Approach and Philosophy of On baking technology
PDF
Network Security Unit 5.pdf for BCA BBA.
PDF
Electronic commerce courselecture one. Pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Encapsulation theory and applications.pdf
PPTX
Big Data Technologies - Introduction.pptx
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
Dropbox Q2 2025 Financial Results & Investor Presentation
Per capita expenditure prediction using model stacking based on satellite ima...
Reach Out and Touch Someone: Haptics and Empathic Computing
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Chapter 3 Spatial Domain Image Processing.pdf
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Shreyas Phanse Resume: Experienced Backend Engineer | Java • Spring Boot • Ka...
Spectral efficient network and resource selection model in 5G networks
Approach and Philosophy of On baking technology
Network Security Unit 5.pdf for BCA BBA.
Electronic commerce courselecture one. Pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Digital-Transformation-Roadmap-for-Companies.pptx
Encapsulation theory and applications.pdf
Big Data Technologies - Introduction.pptx
NewMind AI Weekly Chronicles - August'25 Week I
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Building Integrated photovoltaic BIPV_UPV.pdf

MongoDB Evenings Dallas: What's the Scoop on MongoDB & Hadoop