SlideShare a Scribd company logo
MongoDB and 
The Internet of Things 
Arthur Viegers 
Senior Solutions Architect, MongoDB 
MongoDB IoT City Tour 2014
MongoDB 
* 
Document 
Database 
Open- 
Source 
General 
Purpose
Documents Are Core 
Relational MongoDB 
* 
{ 
first_name: "Paul", 
surname: "Miller", 
city: "London", 
location: [45.123,47.232], 
cars: [ 
{ model: "Bentley", 
year: 1973, 
value: 100000, … }, 
{ model: "Rolls Royce", 
year: 1965, 
value: 330000, … } 
] 
}
Documents Are Core 
* 
Relational MongoDB
MongoDB Scales Horizontally 
*
MongoDB Replication 
*
MongoDB Architecture 
*
Modelling time series data 
in MongoDB
Rexroth NEXO Cordless Nutrunner 
*
Time series schema design goal 
* 
• Store event data 
• Support Analytical Queries 
• Find best compromise of: 
- Memory utilization 
- Write performance 
- Read/Analytical Query Performance 
• Accomplish with realistic amount of hardware
Modelling time series data 
* 
• Document per event 
• Document per minute (average) 
• Document per minute (second) 
• Document per hour
Document per event 
* 
{ 
deviceId: "Test123", 
timestamp: ISODate("2014-07-03T22:07:38.000Z"), 
temperature: 21 
} 
• Relational-centric approach 
• Insert-driven workload
Document per minute (average) 
* 
{ 
deviceId: "Test123", 
timestamp: ISODate("2014-07-03T22:07:00.000Z"), 
temperature_num: 18, 
temperature_sum: 357 
} 
• Pre-aggregate to compute average per minute 
more easily 
• Update-driven workload 
• Resolution at the minute level
Document per minute (by second) 
* 
{ 
deviceId: "Test123", 
timestamp: ISODate("2014-07-03T22:07:00.000Z"), 
temperature: { 0: 18, 1: 18, …, 58: 21, 59: 21 } 
} 
• Store per-second data at the minute level 
• Update-driven workload 
• Pre-allocate structure to avoid document moves
Document per hour (by second) 
{ 
* 
deviceId: "Test123", 
timestamp: ISODate("2014-07-03T22:00:00.000Z"), 
temperature: { 0: 18, 1: 18, …, 3598: 20, 3599: 20 } 
} 
• Store per-second data at the hourly level 
• Update-driven workload 
• Pre-allocate structure to avoid document moves 
• Updating last second requires 3599 steps
Document per hour (by second) 
{ 
* 
deviceId: "Test123", 
timestamp: ISODate("2014-07-03T22:00:00.000Z"), 
temperature: { 
0: { 0: 18, …, 59: 18 }, 
…, 
59: { 0: 21, …, 59: 20 } 
} 
} 
• Store per-second data at the hourly level with nesting 
• Update-driven workload 
• Pre-allocate structure to avoid document moves 
• Updating last second requires 59 + 59 steps
Rexroth NEXO schema 
* 
{ 
assetId: "NEXO 109", 
hour: ISODate("2014-07-03T22:00:00.000Z"), 
status: "Online", 
type: "Nutrunner", 
serialNo : "100-210-ABC", 
ip: "127.0.0.1", 
positions: { 
0: { 
0: { x: "10", y:"40", zone: "itc-1", accuracy: "20” }, 
…, 
59: { x: "15", y: "30", zone: "itc-1", accuracy: "25” } 
}, 
…, 
59: { 
0: { x: "22", y: "27", zone: "itc-1", accuracy: "22” }, 
…, 
59: { x: "18", y: "23", zone: "itc-1", accuracy: "24” } 
} 
} 
}
Summary
Why is MongoDB a good fit for IoT? 
* 
• IoT processes are real-time 
• Relational technologies can simply not compete 
on cost, performance, scalability, and 
manageability 
• IoT data can come in any format, structured or 
unstructured, ranging from text and numbers to 
audio, picture and video 
• Time series data is a natural fit 
• IoT applications often require geographically 
distributed systems
Thank you!

More Related Content

PPTX
MongoDB IoT City Tour STUTTGART: Managing the Database Complexity, by Arthur ...
PDF
Node in Real Time - The Beginning
PDF
CloudModule for Zabbix
PDF
Data Lessons Learned at Scale
PDF
Monitoring your shiny new docker environment
PDF
XWiki: The best wiki for developers
PDF
OpenStack Swift的性能调优
PPTX
InfluxDb and Grafana fighting with data
MongoDB IoT City Tour STUTTGART: Managing the Database Complexity, by Arthur ...
Node in Real Time - The Beginning
CloudModule for Zabbix
Data Lessons Learned at Scale
Monitoring your shiny new docker environment
XWiki: The best wiki for developers
OpenStack Swift的性能调优
InfluxDb and Grafana fighting with data

What's hot (20)

PPTX
Cassandra Lunch #59 Functions in Cassandra
PDF
Towards a self automated CERN Cloud
PDF
Rook: Storage for Containers in Containers – data://disrupted® 2020
PDF
Load balancing in the SRE way
PDF
nebulaconf
PDF
PDF
Android: Recent Text Features
PDF
Supercharge your next Vue app with Nuxt
PDF
Logging for Containers
PPTX
Going Serverless
PDF
Workshop 20140522 BigQuery Implementation
PDF
Cassandra meetup slides - Oct 15 Santa Monica Coloft
DOCX
Vtk point cloud important
PDF
Introducing MagnetoDB, a key-value storage sevice for OpenStack
PPTX
Amazon Web Services lection 4
PPT
New web service oriented ARC
PPT
IPTC News Exchange Working Group 2013 Autumn Meeting
PDF
umeng analytical arch
PPTX
OpenStack
PDF
Containers and Logging
Cassandra Lunch #59 Functions in Cassandra
Towards a self automated CERN Cloud
Rook: Storage for Containers in Containers – data://disrupted® 2020
Load balancing in the SRE way
nebulaconf
Android: Recent Text Features
Supercharge your next Vue app with Nuxt
Logging for Containers
Going Serverless
Workshop 20140522 BigQuery Implementation
Cassandra meetup slides - Oct 15 Santa Monica Coloft
Vtk point cloud important
Introducing MagnetoDB, a key-value storage sevice for OpenStack
Amazon Web Services lection 4
New web service oriented ARC
IPTC News Exchange Working Group 2013 Autumn Meeting
umeng analytical arch
OpenStack
Containers and Logging
Ad

Viewers also liked (20)

PPTX
MongoDB IoT City Tour LONDON: The IoT and the Self in 2024 - What a future of...
PPTX
MongoDB IoT City Tour EINDHOVEN: Sharding in MongoDB
PPT
MongoDB IoT City Tour EINDHOVEN: Analysing the Internet of Things: Davy Nys, ...
PDF
MongoDB IoT City Tour STUTTGART: Industry 4.0 and the Internet of Things: Inm...
PDF
MongoDB IoT City Tour EINDHOVEN: Industry 4.0 and the Internet of Things: Inm...
PDF
DOAN DuyHai – Cassandra: real world best use-cases and worst anti-patterns - ...
PPTX
MongoDB IoT City Tour LONDON: Why your Dad's database won't work for IoT. Joe...
PPTX
NoSQL Database in Azure for IoT and Business
PDF
Apache Cassandra in the Real World
PPTX
Webinar: The Performance Challenge: Providing an Amazing Customer Experience ...
PDF
Apache Cassandra in the Real World
PPTX
Real World Use Case with Cassandra (Eddie Satterly, DataNexus) | C* Summit 2016
PDF
VoltDB and HPE Vertica Present: Building an IoT Architecture for Fast + Big Data
PDF
MongoDB and the Internet of Things
PDF
Koen Kas: The future of healthcare
PPTX
Aeris + Cassandra: An IOT Solution Helping Automakers Make the Connected Car ...
PDF
Data Modeling for Apache Cassandra
PDF
The Digital Future of Healthcare
PDF
Cassandra 3.0 Data Modeling
PPTX
Cassandra on Docker @ Walmart Labs
MongoDB IoT City Tour LONDON: The IoT and the Self in 2024 - What a future of...
MongoDB IoT City Tour EINDHOVEN: Sharding in MongoDB
MongoDB IoT City Tour EINDHOVEN: Analysing the Internet of Things: Davy Nys, ...
MongoDB IoT City Tour STUTTGART: Industry 4.0 and the Internet of Things: Inm...
MongoDB IoT City Tour EINDHOVEN: Industry 4.0 and the Internet of Things: Inm...
DOAN DuyHai – Cassandra: real world best use-cases and worst anti-patterns - ...
MongoDB IoT City Tour LONDON: Why your Dad's database won't work for IoT. Joe...
NoSQL Database in Azure for IoT and Business
Apache Cassandra in the Real World
Webinar: The Performance Challenge: Providing an Amazing Customer Experience ...
Apache Cassandra in the Real World
Real World Use Case with Cassandra (Eddie Satterly, DataNexus) | C* Summit 2016
VoltDB and HPE Vertica Present: Building an IoT Architecture for Fast + Big Data
MongoDB and the Internet of Things
Koen Kas: The future of healthcare
Aeris + Cassandra: An IOT Solution Helping Automakers Make the Connected Car ...
Data Modeling for Apache Cassandra
The Digital Future of Healthcare
Cassandra 3.0 Data Modeling
Cassandra on Docker @ Walmart Labs
Ad

Similar to MongoDB IoT City Tour EINDHOVEN: Managing the Database Complexity (20)

PPTX
MongoDB IoT City Tour LONDON: Managing the Database Complexity, by Arthur Vie...
PPTX
Codemotion Milano 2014 - MongoDB and the Internet of Things
PPTX
MongoDB for Time Series Data
PPTX
MongoDB and the Internet of Things
PPTX
MongoDB for Time Series Data: Setting the Stage for Sensor Management
PPTX
MongoDB Best Practices
PPTX
Webinar: Best Practices for Getting Started with MongoDB
PPTX
High Performance, Scalable MongoDB in a Bare Metal Cloud
PDF
MongoDB Solution for Internet of Things and Big Data
PDF
Lab pratico per la progettazione di soluzioni MongoDB in ambito Internet of T...
PPTX
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
PPTX
Riga dev day: Lambda architecture at AWS
PPTX
MongoDB for Time Series Data: Schema Design
PPTX
Webinar: MongoDB Use Cases within the Oil, Gas, and Energy Industries
POTX
WiredTiger MongoDB Integration
PDF
Mongo db3.0 wired_tiger_storage_engine
PDF
MongoDB .local Houston 2019: Best Practices for Working with IoT and Time-ser...
PPTX
Context Information Management in IoT enabled smart systems - the basics
PPTX
Introduction to MongoDB
PPTX
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
MongoDB IoT City Tour LONDON: Managing the Database Complexity, by Arthur Vie...
Codemotion Milano 2014 - MongoDB and the Internet of Things
MongoDB for Time Series Data
MongoDB and the Internet of Things
MongoDB for Time Series Data: Setting the Stage for Sensor Management
MongoDB Best Practices
Webinar: Best Practices for Getting Started with MongoDB
High Performance, Scalable MongoDB in a Bare Metal Cloud
MongoDB Solution for Internet of Things and Big Data
Lab pratico per la progettazione di soluzioni MongoDB in ambito Internet of T...
MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management
Riga dev day: Lambda architecture at AWS
MongoDB for Time Series Data: Schema Design
Webinar: MongoDB Use Cases within the Oil, Gas, and Energy Industries
WiredTiger MongoDB Integration
Mongo db3.0 wired_tiger_storage_engine
MongoDB .local Houston 2019: Best Practices for Working with IoT and Time-ser...
Context Information Management in IoT enabled smart systems - the basics
Introduction to MongoDB
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...

More from MongoDB (20)

PDF
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
PDF
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
PDF
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
PDF
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
PDF
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
PDF
MongoDB SoCal 2020: MongoDB Atlas Jump Start
PDF
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
PDF
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
PDF
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
PDF
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
PDF
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
PDF
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
PDF
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
PDF
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
PDF
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
PDF
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
PDF
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
PDF
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...
MongoDB SoCal 2020: Migrate Anything* to MongoDB Atlas
MongoDB SoCal 2020: Go on a Data Safari with MongoDB Charts!
MongoDB SoCal 2020: Using MongoDB Services in Kubernetes: Any Platform, Devel...
MongoDB SoCal 2020: A Complete Methodology of Data Modeling for MongoDB
MongoDB SoCal 2020: From Pharmacist to Analyst: Leveraging MongoDB for Real-T...
MongoDB SoCal 2020: Best Practices for Working with IoT and Time-series Data
MongoDB SoCal 2020: MongoDB Atlas Jump Start
MongoDB .local San Francisco 2020: Powering the new age data demands [Infosys]
MongoDB .local San Francisco 2020: Using Client Side Encryption in MongoDB 4.2
MongoDB .local San Francisco 2020: Using MongoDB Services in Kubernetes: any ...
MongoDB .local San Francisco 2020: Go on a Data Safari with MongoDB Charts!
MongoDB .local San Francisco 2020: From SQL to NoSQL -- Changing Your Mindset
MongoDB .local San Francisco 2020: MongoDB Atlas Jumpstart
MongoDB .local San Francisco 2020: Tips and Tricks++ for Querying and Indexin...
MongoDB .local San Francisco 2020: Aggregation Pipeline Power++
MongoDB .local San Francisco 2020: A Complete Methodology of Data Modeling fo...
MongoDB .local San Francisco 2020: MongoDB Atlas Data Lake Technical Deep Dive
MongoDB .local San Francisco 2020: Developing Alexa Skills with MongoDB & Golang
MongoDB .local Paris 2020: Realm : l'ingrédient secret pour de meilleures app...
MongoDB .local Paris 2020: Upply @MongoDB : Upply : Quand le Machine Learning...

Recently uploaded (20)

PDF
Encapsulation theory and applications.pdf
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Unlocking AI with Model Context Protocol (MCP)
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Electronic commerce courselecture one. Pdf
PPTX
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Modernizing your data center with Dell and AMD
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Bridging biosciences and deep learning for revolutionary discoveries: a compr...
Encapsulation theory and applications.pdf
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Dropbox Q2 2025 Financial Results & Investor Presentation
Per capita expenditure prediction using model stacking based on satellite ima...
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Encapsulation_ Review paper, used for researhc scholars
Advanced methodologies resolving dimensionality complications for autism neur...
Building Integrated photovoltaic BIPV_UPV.pdf
Empathic Computing: Creating Shared Understanding
CIFDAQ's Market Insight: SEC Turns Pro Crypto
MYSQL Presentation for SQL database connectivity
Unlocking AI with Model Context Protocol (MCP)
Digital-Transformation-Roadmap-for-Companies.pptx
Electronic commerce courselecture one. Pdf
Effective Security Operations Center (SOC) A Modern, Strategic, and Threat-In...
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
“AI and Expert System Decision Support & Business Intelligence Systems”
Modernizing your data center with Dell and AMD
Understanding_Digital_Forensics_Presentation.pptx
Bridging biosciences and deep learning for revolutionary discoveries: a compr...

MongoDB IoT City Tour EINDHOVEN: Managing the Database Complexity

  • 1. MongoDB and The Internet of Things Arthur Viegers Senior Solutions Architect, MongoDB MongoDB IoT City Tour 2014
  • 2. MongoDB * Document Database Open- Source General Purpose
  • 3. Documents Are Core Relational MongoDB * { first_name: "Paul", surname: "Miller", city: "London", location: [45.123,47.232], cars: [ { model: "Bentley", year: 1973, value: 100000, … }, { model: "Rolls Royce", year: 1965, value: 330000, … } ] }
  • 4. Documents Are Core * Relational MongoDB
  • 8. Modelling time series data in MongoDB
  • 9. Rexroth NEXO Cordless Nutrunner *
  • 10. Time series schema design goal * • Store event data • Support Analytical Queries • Find best compromise of: - Memory utilization - Write performance - Read/Analytical Query Performance • Accomplish with realistic amount of hardware
  • 11. Modelling time series data * • Document per event • Document per minute (average) • Document per minute (second) • Document per hour
  • 12. Document per event * { deviceId: "Test123", timestamp: ISODate("2014-07-03T22:07:38.000Z"), temperature: 21 } • Relational-centric approach • Insert-driven workload
  • 13. Document per minute (average) * { deviceId: "Test123", timestamp: ISODate("2014-07-03T22:07:00.000Z"), temperature_num: 18, temperature_sum: 357 } • Pre-aggregate to compute average per minute more easily • Update-driven workload • Resolution at the minute level
  • 14. Document per minute (by second) * { deviceId: "Test123", timestamp: ISODate("2014-07-03T22:07:00.000Z"), temperature: { 0: 18, 1: 18, …, 58: 21, 59: 21 } } • Store per-second data at the minute level • Update-driven workload • Pre-allocate structure to avoid document moves
  • 15. Document per hour (by second) { * deviceId: "Test123", timestamp: ISODate("2014-07-03T22:00:00.000Z"), temperature: { 0: 18, 1: 18, …, 3598: 20, 3599: 20 } } • Store per-second data at the hourly level • Update-driven workload • Pre-allocate structure to avoid document moves • Updating last second requires 3599 steps
  • 16. Document per hour (by second) { * deviceId: "Test123", timestamp: ISODate("2014-07-03T22:00:00.000Z"), temperature: { 0: { 0: 18, …, 59: 18 }, …, 59: { 0: 21, …, 59: 20 } } } • Store per-second data at the hourly level with nesting • Update-driven workload • Pre-allocate structure to avoid document moves • Updating last second requires 59 + 59 steps
  • 17. Rexroth NEXO schema * { assetId: "NEXO 109", hour: ISODate("2014-07-03T22:00:00.000Z"), status: "Online", type: "Nutrunner", serialNo : "100-210-ABC", ip: "127.0.0.1", positions: { 0: { 0: { x: "10", y:"40", zone: "itc-1", accuracy: "20” }, …, 59: { x: "15", y: "30", zone: "itc-1", accuracy: "25” } }, …, 59: { 0: { x: "22", y: "27", zone: "itc-1", accuracy: "22” }, …, 59: { x: "18", y: "23", zone: "itc-1", accuracy: "24” } } } }
  • 19. Why is MongoDB a good fit for IoT? * • IoT processes are real-time • Relational technologies can simply not compete on cost, performance, scalability, and manageability • IoT data can come in any format, structured or unstructured, ranging from text and numbers to audio, picture and video • Time series data is a natural fit • IoT applications often require geographically distributed systems