SlideShare a Scribd company logo
Perl Engineer & Evangelist, 10gen
Mike Friedman
#MongoDBdays
Schema Design
Four Real-World Use
Cases
Single Table En
Agenda
• Why is schema design important
• 4 Real World Schemas
– Inbox
– History
– IndexedAttributes
– Multiple Identities
• Conclusions
Why is Schema Design
important?
• Largest factor for a performant system
• Schema design with MongoDB is different
• RDBMS – "What answers do I have?"
• MongoDB – "What question will I have?"
#1 - Message Inbox
Let’s get
Social
Sending Messages
?
Design Goals
• Efficiently send new messages to recipients
• Efficiently read inbox
Reading my Inbox
?
3 Approaches (there are
more)
• Fan out on Read
• Fan out on Write
• Fan out on Write with Bucketing
// Shard on "from"
db.shardCollection( "mongodbdays.inbox", { from: 1 } )
// Make sure we have an index to handle inbox reads
db.inbox.ensureIndex( { to: 1, sent: 1 } )
msg = {
from: "Joe",
to: [ "Bob", "Jane" ],
sent: new Date(),
message: "Hi!",
}
// Send a message
db.inbox.save( msg )
// Read my inbox
db.inbox.find( { to: "Joe" } ).sort( { sent: -1 } )
Fan out on read
Fan out on read – Send
Message
Shard 1 Shard 2 Shard 3
Send
Message
Fan out on read – Inbox Read
Shard 1 Shard 2 Shard 3
Read
Inbox
Considerations
• One document per message sent
• Reading an inbox means finding all messages
with my own name in the recipient field
• Requires scatter-gather on sharded cluster
• Then a lot of random IO on a shard to find
everything
// Shard on “recipient” and “sent”
db.shardCollection( "mongodbdays.inbox", { ”recipient”: 1, ”sent”: 1 } )
msg = {
from: "Joe",
to: [ "Bob", "Jane" ],
sent: new Date(),
message: "Hi!",
}
// Send a message
for ( recipient in msg.to ) {
msg.recipient = msg.to[recipient]
db.inbox.save( msg );
}
// Read my inbox
db.inbox.find( { recipient: "Joe" } ).sort( { sent: -1 } )
Fan out on write
Fan out on write – Send
Message
Shard 1 Shard 2 Shard 3
Send
Message
Fan out on write– Read Inbox
Shard 1 Shard 2 Shard 3
Read
Inbox
Considerations
• One document per recipient
• Reading my inbox is just finding all of the
messages with me as the recipient
• Can shard on recipient, so inbox reads hit one
shard
• But still lots of random IO on the shard
// Shard on “owner / sequence”
db.shardCollection( "mongodbdays.inbox", { owner: 1, sequence: 1 } )
db.shardCollection( "mongodbdays.users", { user_name: 1 } )
msg = {
from: "Joe",
to: [ "Bob", "Jane" ],
sent: new Date(),
message: "Hi!",
}
Fan out on write with buckets
// Send a message
for( recipient in msg.to) {
count = db.users.findAndModify({
query: { user_name: msg.to[recipient] },
update: { "$inc": { "msg_count": 1 } },
upsert: true,
new: true }).msg_count;
sequence = Math.floor(count / 50);
db.inbox.update({
owner: msg.to[recipient], sequence: sequence },
{ $push: { "messages": msg } },
{ upsert: true } );
}
// Read my inbox
db.inbox.find( { owner: "Joe" } ).sort ( { sequence: -1 } ).limit( 2 )
Fan out on write with buckets
Fan out on write with buckets
• Each “inbox” document is an array of messages
• Append a message onto “inbox” of recipient
• Bucket inboxes so there’s not too many
messages per document
• Can shard on recipient, so inbox reads hit one
shard
• 1 or 2 documents to read the whole inbox
Fan out on write with buckets -
Send
Shard 1 Shard 2 Shard 3
Send
Message
Fan out on write with buckets -
Read
Shard 1 Shard 2 Shard 3
Read
Inbox
#2 – History
MongoDB Schema Design: Four Real-World Examples
Design Goals
• Need to retain a limited amount of history e.g.
– Hours, Days, Weeks
– May be legislative requirement (e.g. HIPPA, SOX, DPA)
• Need to query efficiently by
– match
– ranges
3 Approaches (there are
more)
• Bucket by Number of messages
• Fixed size Array
• Bucket by Date + TTL Collections
db.inbox.find()
{ owner: "Joe", sequence: 25,
messages: [
{ from: "Joe",
to: [ "Bob", "Jane" ],
sent: ISODate("2013-03-01T09:59:42.689Z"),
message: "Hi!"
},
…
] }
// Query with a date range
db.inbox.find ({owner: "friend1",
messages: {
$elemMatch: {sent:{$gte: ISODate("…") }}}})
// Remove elements based on a date
db.inbox.update({owner: "friend1" },
{ $pull: { messages: {
sent: { $gte: ISODate("…") } } } } )
Inbox – Bucket by #
messages
Considerations
• Shrinking documents, space can be reclaimed
with
– db.runCommand ( { compact: '<collection>' } )
• Removing the document after the last element in
the array as been removed
– { "_id" : …, "messages" : [ ], "owner" : "friend1",
"sequence" : 0 }
msg = {
from: "Your Boss",
to: [ "Bob" ],
sent: new Date(),
message: "CALL ME NOW!"
}
// 2.4 Introduces $each, $sort and $slice for $push
db.messages.update(
{ _id: 1 },
{ $push: { messages: { $each: [ msg ],
$sort: { sent: 1 },
$slice: -50 }
}
}
)
Maintain the latest – Fixed
Size Array
Considerations
• Need to compute the size of the array based on
retention period
// messages: one doc per user per day
db.inbox.findOne()
{
_id: 1,
to: "Joe",
sequence: ISODate("2013-02-04T00:00:00.392Z"),
messages: [ ]
}
// Auto expires data after 31536000 seconds = 1 year
db.messages.ensureIndex( { sequence: 1 },
{ expireAfterSeconds: 31536000 } )
TTL Collections
#3 – Indexed Attributes
Design Goal
• Application needs to stored a variable number of
attributes e.g.
– User defined Form
– Meta Data tags
• Queries needed
– Equality
– Range based
• Need to be efficient, regardless of the number of
attributes
2 Approaches (there are
more)
• Attributes as Embedded Document
• Attributes as Objects in an Array
db.files.insert( { _id: "local.0",
attr: { type: "text", size: 64,
created: ISODate("..." } } )
db.files.insert( { _id: "local.1",
attr: { type: "text", size: 128} } )
db.files.insert( { _id: "mongod",
attr: { type: "binary", size: 256,
created: ISODate("...") } } )
// Need to create an index for each item in the sub-document
db.files.ensureIndex( { "attr.type": 1 } )
db.files.find( { "attr.type": "text"} )
// Can perform range queries
db.files.ensureIndex( { "attr.size": 1 } )
db.files.find( { "attr.size": { $gt: 64, $lte: 16384 } } )
Attributes as a Sub-
Document
Considerations
• Each attribute needs an Index
• Each time you extend, you add an index
• Lots and lots of indexes
db.files.insert( {_id: "local.0",
attr: [ { type: "text" },
{ size: 64 },
{ created: ISODate("...") } ] } )
db.files.insert( { _id: "local.1",
attr: [ { type: "text" },
{ size: 128 } ] } )
db.files.insert( { _id: "mongod",
attr: [ { type: "binary" },
{ size: 256 },
{ created: ISODate("...") } ] } )
db.files.ensureIndex( { attr: 1 } )
Attributes as Objects in Array
Considerations
• Only one index needed on attr
• Can support range queries, etc.
• Index can be used only once per query
#4 – Multiple Identities
Design Goal
• Ability to look up by a number of different
identities e.g.
• Username
• Email address
• FB Handle
• LinkedIn URL
2 Approaches (there are
more)
• Identifiers in a single document
• Separate Identifiers from Content
db.users.findOne()
{ _id: "joe",
email: "joe@example.com,
fb: "joe.smith", // facebook
li: "joe.e.smith", // linkedin
other: {…}
}
// Shard collection by _id
db.shardCollection("mongodbdays.users", { _id: 1 } )
// Create indexes on each key
db.users.ensureIndex( { email: 1} )
db.users.ensureIndex( { fb: 1 } )
db.users.ensureIndex( { li: 1 } )
Single Document by User
Read by _id (shard key)
Shard 1 Shard 2 Shard 3
find( { _id: "joe"} )
Read by email (non-shard
key)
Shard 1 Shard 2 Shard 3
find ( { email: joe@example.com }
)
Considerations
• Lookup by shard key is routed to 1 shard
• Lookup by other identifier is scatter gathered
across all shards
• Secondary keys cannot have a unique index
// Create unique index
db.identities.ensureIndex( { identifier : 1} , { unique: true} )
// Create a document for each users document
db.identities.save(
{ identifier : { hndl: "joe" }, user: "1200-42" } )
db.identities.save(
{ identifier : { email: "joe@abc.com" }, user: "1200-42" } )
db.identities.save(
{ identifier : { li: "joe.e.smith" }, user: "1200-42" } )
// Shard collection by _id
db.shardCollection( "mydb.identities", { identifier : 1 } )
// Create unique index
db.users.ensureIndex( { _id: 1} , { unique: true} )
// Shard collection by _id
db.shardCollection( "mydb.users", { _id: 1 } )
Document per Identity
Read requires 2 reads
Shard 1 Shard 2 Shard 3
db.identities.find({"identifier" : {
"hndl" : "joe" }})
db.users.find( { _id: "1200-42"}
)
Considerations
• Lookup to Identities is a routed query
• Lookup to Users is a routed query
• Unique indexes available
Conclusion
Summary
• Multiple ways to model a domain problem
• Understand the key uses cases of your app
• Balance between ease of query vs. ease of write
• Random IO should be avoided
Perl Engineer & Evangelist, 10gen
Mike Friedman
#MongoDBdays
Thank You

More Related Content

PDF
Mongo DB schema design patterns
PPT
MongoDB Schema Design
PDF
D2 domain driven-design
PPTX
Nosql databases
PPSX
A Seminar on NoSQL Databases.
PPTX
Oracle SQL Developer Tips & Tricks
PPTX
Introducing MongoDB Atlas
PPTX
Mongodb basics and architecture
Mongo DB schema design patterns
MongoDB Schema Design
D2 domain driven-design
Nosql databases
A Seminar on NoSQL Databases.
Oracle SQL Developer Tips & Tricks
Introducing MongoDB Atlas
Mongodb basics and architecture

What's hot (20)

PPTX
introduction to NOSQL Database
PPT
Introduction to mongodb
PPTX
Indexing with MongoDB
PDF
Data Modeling for MongoDB
PPTX
APEX Low Code
PPTX
Introduction to MongoDB
PPTX
Introduction to MongoDB and CRUD operations
PPT
9. Document Oriented Databases
PDF
mysql 8.0 architecture and enhancement
PPTX
Mongodb vs mysql
PDF
From Postgres to Event-Driven: using docker-compose to build CDC pipelines in...
PPTX
Welcome to React.pptx
PPTX
Sql vs NoSQL-Presentation
PDF
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
PDF
NOSQL- Presentation on NoSQL
PPTX
MongoDB
PPTX
Introduction to NoSQL
PPTX
What is NoSQL and CAP Theorem
PPTX
re:Invent 2022 DAT326 Deep dive into Amazon Aurora and its innovations
introduction to NOSQL Database
Introduction to mongodb
Indexing with MongoDB
Data Modeling for MongoDB
APEX Low Code
Introduction to MongoDB
Introduction to MongoDB and CRUD operations
9. Document Oriented Databases
mysql 8.0 architecture and enhancement
Mongodb vs mysql
From Postgres to Event-Driven: using docker-compose to build CDC pipelines in...
Welcome to React.pptx
Sql vs NoSQL-Presentation
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
NOSQL- Presentation on NoSQL
MongoDB
Introduction to NoSQL
What is NoSQL and CAP Theorem
re:Invent 2022 DAT326 Deep dive into Amazon Aurora and its innovations
Ad

Viewers also liked (12)

PDF
Salary Negotiation Cheat Sheet
PDF
Enterprise UX Industry Report 2017–2018
PDF
What Game Developers Look for in a New Graduate: Interviews and Surveys at On...
PDF
MBA CSEA 2017 Attendees
PDF
UI Design Patterns for the Web, Part 1
PDF
Facebook Rotational Product Manager Interview: Jewel Lim's Tips on Getting an...
DOC
Performance Based Interviewing (PBI) Questions
PDF
Creating social features at BranchOut using MongoDB
PPTX
MongoDB Best Practices
PDF
2016 VC Executive Compensation Trend Report
PDF
UI Design Patterns for the Web, Part 2
PDF
Book Summary: Decode and Conquer by Lewis C. Lin
Salary Negotiation Cheat Sheet
Enterprise UX Industry Report 2017–2018
What Game Developers Look for in a New Graduate: Interviews and Surveys at On...
MBA CSEA 2017 Attendees
UI Design Patterns for the Web, Part 1
Facebook Rotational Product Manager Interview: Jewel Lim's Tips on Getting an...
Performance Based Interviewing (PBI) Questions
Creating social features at BranchOut using MongoDB
MongoDB Best Practices
2016 VC Executive Compensation Trend Report
UI Design Patterns for the Web, Part 2
Book Summary: Decode and Conquer by Lewis C. Lin
Ad

Similar to MongoDB Schema Design: Four Real-World Examples (20)

PPTX
Choosing a Shard key
PPTX
Data Modeling for the Real World
PPTX
Data Modeling Examples from the Real World
PPTX
Webinar: Data Modeling Examples in the Real World
PPTX
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
PPTX
Data Modeling Deep Dive
PPTX
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
PPTX
Schema Design - Real world use case
PDF
10gen Presents Schema Design and Data Modeling
KEY
MongoDB Strange Loop 2009
KEY
Managing Social Content with MongoDB
KEY
Schema Design (Mongo Austin)
KEY
Schema Design with MongoDB
KEY
Mongodb intro
PDF
Intro to MongoDB and datamodeling
PDF
Full metal mongo
PDF
MongoDB for Coder Training (Coding Serbia 2013)
KEY
MongoDB at GUL
KEY
MongoDB at RuPy
KEY
Schema design
Choosing a Shard key
Data Modeling for the Real World
Data Modeling Examples from the Real World
Webinar: Data Modeling Examples in the Real World
MongoDB London 2013: Data Modeling Examples from the Real World presented by ...
Data Modeling Deep Dive
MongoDB San Francisco 2013: Data Modeling Examples From the Real World presen...
Schema Design - Real world use case
10gen Presents Schema Design and Data Modeling
MongoDB Strange Loop 2009
Managing Social Content with MongoDB
Schema Design (Mongo Austin)
Schema Design with MongoDB
Mongodb intro
Intro to MongoDB and datamodeling
Full metal mongo
MongoDB for Coder Training (Coding Serbia 2013)
MongoDB at GUL
MongoDB at RuPy
Schema design

More from Lewis Lin 🦊 (20)

PDF
Gaskins' memo pitching PowerPoint
PDF
P&G Memo: Creating Modern Day Brand Management
PDF
Jeffrey Katzenberg on Disney Studios
PDF
Carnegie Mellon MS PM Internships 2020
PDF
Gallup's Notes on Reinventing Performance Management
PDF
Twitter Job Opportunities for Students
PDF
Facebook's Official Guide to Technical Program Management Candidates
PDF
Performance Management at Google
PDF
Google Interview Prep Guide Software Engineer
PDF
Google Interview Prep Guide Product Manager
PDF
Skills Assessment Offering by Lewis C. Lin
PDF
How Men and Women Differ Across Leadership Traits
PDF
Product Manager Skills Survey
PDF
Uxpin Why Build a Design System
PDF
Sourcing on GitHub
PDF
30-Day Google PM Interview Study Guide
PDF
30-Day Facebook PM Interview Study Guide
PDF
36-Day Amazon PM Interview Study Guide
PDF
McKinsey's Assessment on PM Careers
PDF
Five Traits of Great Product Managers
Gaskins' memo pitching PowerPoint
P&G Memo: Creating Modern Day Brand Management
Jeffrey Katzenberg on Disney Studios
Carnegie Mellon MS PM Internships 2020
Gallup's Notes on Reinventing Performance Management
Twitter Job Opportunities for Students
Facebook's Official Guide to Technical Program Management Candidates
Performance Management at Google
Google Interview Prep Guide Software Engineer
Google Interview Prep Guide Product Manager
Skills Assessment Offering by Lewis C. Lin
How Men and Women Differ Across Leadership Traits
Product Manager Skills Survey
Uxpin Why Build a Design System
Sourcing on GitHub
30-Day Google PM Interview Study Guide
30-Day Facebook PM Interview Study Guide
36-Day Amazon PM Interview Study Guide
McKinsey's Assessment on PM Careers
Five Traits of Great Product Managers

Recently uploaded (20)

PPT
Introduction Database Management System for Course Database
PPTX
Operating system designcfffgfgggggggvggggggggg
PDF
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
PDF
Understanding Forklifts - TECH EHS Solution
PPTX
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
PPTX
ai tools demonstartion for schools and inter college
PDF
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
PDF
AI in Product Development-omnex systems
PDF
Which alternative to Crystal Reports is best for small or large businesses.pdf
PPTX
CHAPTER 12 - CYBER SECURITY AND FUTURE SKILLS (1) (1).pptx
PPTX
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
PDF
Upgrade and Innovation Strategies for SAP ERP Customers
PDF
Digital Strategies for Manufacturing Companies
PDF
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learnin. Overview ...
PDF
Navsoft: AI-Powered Business Solutions & Custom Software Development
PPTX
ManageIQ - Sprint 268 Review - Slide Deck
PDF
Raksha Bandhan Grocery Pricing Trends in India 2025.pdf
PPTX
ISO 45001 Occupational Health and Safety Management System
PPTX
VVF-Customer-Presentation2025-Ver1.9.pptx
PDF
2025 Textile ERP Trends: SAP, Odoo & Oracle
Introduction Database Management System for Course Database
Operating system designcfffgfgggggggvggggggggg
T3DD25 TYPO3 Content Blocks - Deep Dive by André Kraus
Understanding Forklifts - TECH EHS Solution
Oracle E-Business Suite: A Comprehensive Guide for Modern Enterprises
ai tools demonstartion for schools and inter college
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
AI in Product Development-omnex systems
Which alternative to Crystal Reports is best for small or large businesses.pdf
CHAPTER 12 - CYBER SECURITY AND FUTURE SKILLS (1) (1).pptx
Agentic AI Use Case- Contract Lifecycle Management (CLM).pptx
Upgrade and Innovation Strategies for SAP ERP Customers
Digital Strategies for Manufacturing Companies
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learnin. Overview ...
Navsoft: AI-Powered Business Solutions & Custom Software Development
ManageIQ - Sprint 268 Review - Slide Deck
Raksha Bandhan Grocery Pricing Trends in India 2025.pdf
ISO 45001 Occupational Health and Safety Management System
VVF-Customer-Presentation2025-Ver1.9.pptx
2025 Textile ERP Trends: SAP, Odoo & Oracle

MongoDB Schema Design: Four Real-World Examples

  • 1. Perl Engineer & Evangelist, 10gen Mike Friedman #MongoDBdays Schema Design Four Real-World Use Cases
  • 2. Single Table En Agenda • Why is schema design important • 4 Real World Schemas – Inbox – History – IndexedAttributes – Multiple Identities • Conclusions
  • 3. Why is Schema Design important? • Largest factor for a performant system • Schema design with MongoDB is different • RDBMS – "What answers do I have?" • MongoDB – "What question will I have?"
  • 4. #1 - Message Inbox
  • 7. Design Goals • Efficiently send new messages to recipients • Efficiently read inbox
  • 9. 3 Approaches (there are more) • Fan out on Read • Fan out on Write • Fan out on Write with Bucketing
  • 10. // Shard on "from" db.shardCollection( "mongodbdays.inbox", { from: 1 } ) // Make sure we have an index to handle inbox reads db.inbox.ensureIndex( { to: 1, sent: 1 } ) msg = { from: "Joe", to: [ "Bob", "Jane" ], sent: new Date(), message: "Hi!", } // Send a message db.inbox.save( msg ) // Read my inbox db.inbox.find( { to: "Joe" } ).sort( { sent: -1 } ) Fan out on read
  • 11. Fan out on read – Send Message Shard 1 Shard 2 Shard 3 Send Message
  • 12. Fan out on read – Inbox Read Shard 1 Shard 2 Shard 3 Read Inbox
  • 13. Considerations • One document per message sent • Reading an inbox means finding all messages with my own name in the recipient field • Requires scatter-gather on sharded cluster • Then a lot of random IO on a shard to find everything
  • 14. // Shard on “recipient” and “sent” db.shardCollection( "mongodbdays.inbox", { ”recipient”: 1, ”sent”: 1 } ) msg = { from: "Joe", to: [ "Bob", "Jane" ], sent: new Date(), message: "Hi!", } // Send a message for ( recipient in msg.to ) { msg.recipient = msg.to[recipient] db.inbox.save( msg ); } // Read my inbox db.inbox.find( { recipient: "Joe" } ).sort( { sent: -1 } ) Fan out on write
  • 15. Fan out on write – Send Message Shard 1 Shard 2 Shard 3 Send Message
  • 16. Fan out on write– Read Inbox Shard 1 Shard 2 Shard 3 Read Inbox
  • 17. Considerations • One document per recipient • Reading my inbox is just finding all of the messages with me as the recipient • Can shard on recipient, so inbox reads hit one shard • But still lots of random IO on the shard
  • 18. // Shard on “owner / sequence” db.shardCollection( "mongodbdays.inbox", { owner: 1, sequence: 1 } ) db.shardCollection( "mongodbdays.users", { user_name: 1 } ) msg = { from: "Joe", to: [ "Bob", "Jane" ], sent: new Date(), message: "Hi!", } Fan out on write with buckets
  • 19. // Send a message for( recipient in msg.to) { count = db.users.findAndModify({ query: { user_name: msg.to[recipient] }, update: { "$inc": { "msg_count": 1 } }, upsert: true, new: true }).msg_count; sequence = Math.floor(count / 50); db.inbox.update({ owner: msg.to[recipient], sequence: sequence }, { $push: { "messages": msg } }, { upsert: true } ); } // Read my inbox db.inbox.find( { owner: "Joe" } ).sort ( { sequence: -1 } ).limit( 2 ) Fan out on write with buckets
  • 20. Fan out on write with buckets • Each “inbox” document is an array of messages • Append a message onto “inbox” of recipient • Bucket inboxes so there’s not too many messages per document • Can shard on recipient, so inbox reads hit one shard • 1 or 2 documents to read the whole inbox
  • 21. Fan out on write with buckets - Send Shard 1 Shard 2 Shard 3 Send Message
  • 22. Fan out on write with buckets - Read Shard 1 Shard 2 Shard 3 Read Inbox
  • 25. Design Goals • Need to retain a limited amount of history e.g. – Hours, Days, Weeks – May be legislative requirement (e.g. HIPPA, SOX, DPA) • Need to query efficiently by – match – ranges
  • 26. 3 Approaches (there are more) • Bucket by Number of messages • Fixed size Array • Bucket by Date + TTL Collections
  • 27. db.inbox.find() { owner: "Joe", sequence: 25, messages: [ { from: "Joe", to: [ "Bob", "Jane" ], sent: ISODate("2013-03-01T09:59:42.689Z"), message: "Hi!" }, … ] } // Query with a date range db.inbox.find ({owner: "friend1", messages: { $elemMatch: {sent:{$gte: ISODate("…") }}}}) // Remove elements based on a date db.inbox.update({owner: "friend1" }, { $pull: { messages: { sent: { $gte: ISODate("…") } } } } ) Inbox – Bucket by # messages
  • 28. Considerations • Shrinking documents, space can be reclaimed with – db.runCommand ( { compact: '<collection>' } ) • Removing the document after the last element in the array as been removed – { "_id" : …, "messages" : [ ], "owner" : "friend1", "sequence" : 0 }
  • 29. msg = { from: "Your Boss", to: [ "Bob" ], sent: new Date(), message: "CALL ME NOW!" } // 2.4 Introduces $each, $sort and $slice for $push db.messages.update( { _id: 1 }, { $push: { messages: { $each: [ msg ], $sort: { sent: 1 }, $slice: -50 } } } ) Maintain the latest – Fixed Size Array
  • 30. Considerations • Need to compute the size of the array based on retention period
  • 31. // messages: one doc per user per day db.inbox.findOne() { _id: 1, to: "Joe", sequence: ISODate("2013-02-04T00:00:00.392Z"), messages: [ ] } // Auto expires data after 31536000 seconds = 1 year db.messages.ensureIndex( { sequence: 1 }, { expireAfterSeconds: 31536000 } ) TTL Collections
  • 32. #3 – Indexed Attributes
  • 33. Design Goal • Application needs to stored a variable number of attributes e.g. – User defined Form – Meta Data tags • Queries needed – Equality – Range based • Need to be efficient, regardless of the number of attributes
  • 34. 2 Approaches (there are more) • Attributes as Embedded Document • Attributes as Objects in an Array
  • 35. db.files.insert( { _id: "local.0", attr: { type: "text", size: 64, created: ISODate("..." } } ) db.files.insert( { _id: "local.1", attr: { type: "text", size: 128} } ) db.files.insert( { _id: "mongod", attr: { type: "binary", size: 256, created: ISODate("...") } } ) // Need to create an index for each item in the sub-document db.files.ensureIndex( { "attr.type": 1 } ) db.files.find( { "attr.type": "text"} ) // Can perform range queries db.files.ensureIndex( { "attr.size": 1 } ) db.files.find( { "attr.size": { $gt: 64, $lte: 16384 } } ) Attributes as a Sub- Document
  • 36. Considerations • Each attribute needs an Index • Each time you extend, you add an index • Lots and lots of indexes
  • 37. db.files.insert( {_id: "local.0", attr: [ { type: "text" }, { size: 64 }, { created: ISODate("...") } ] } ) db.files.insert( { _id: "local.1", attr: [ { type: "text" }, { size: 128 } ] } ) db.files.insert( { _id: "mongod", attr: [ { type: "binary" }, { size: 256 }, { created: ISODate("...") } ] } ) db.files.ensureIndex( { attr: 1 } ) Attributes as Objects in Array
  • 38. Considerations • Only one index needed on attr • Can support range queries, etc. • Index can be used only once per query
  • 39. #4 – Multiple Identities
  • 40. Design Goal • Ability to look up by a number of different identities e.g. • Username • Email address • FB Handle • LinkedIn URL
  • 41. 2 Approaches (there are more) • Identifiers in a single document • Separate Identifiers from Content
  • 42. db.users.findOne() { _id: "joe", email: "joe@example.com, fb: "joe.smith", // facebook li: "joe.e.smith", // linkedin other: {…} } // Shard collection by _id db.shardCollection("mongodbdays.users", { _id: 1 } ) // Create indexes on each key db.users.ensureIndex( { email: 1} ) db.users.ensureIndex( { fb: 1 } ) db.users.ensureIndex( { li: 1 } ) Single Document by User
  • 43. Read by _id (shard key) Shard 1 Shard 2 Shard 3 find( { _id: "joe"} )
  • 44. Read by email (non-shard key) Shard 1 Shard 2 Shard 3 find ( { email: joe@example.com } )
  • 45. Considerations • Lookup by shard key is routed to 1 shard • Lookup by other identifier is scatter gathered across all shards • Secondary keys cannot have a unique index
  • 46. // Create unique index db.identities.ensureIndex( { identifier : 1} , { unique: true} ) // Create a document for each users document db.identities.save( { identifier : { hndl: "joe" }, user: "1200-42" } ) db.identities.save( { identifier : { email: "joe@abc.com" }, user: "1200-42" } ) db.identities.save( { identifier : { li: "joe.e.smith" }, user: "1200-42" } ) // Shard collection by _id db.shardCollection( "mydb.identities", { identifier : 1 } ) // Create unique index db.users.ensureIndex( { _id: 1} , { unique: true} ) // Shard collection by _id db.shardCollection( "mydb.users", { _id: 1 } ) Document per Identity
  • 47. Read requires 2 reads Shard 1 Shard 2 Shard 3 db.identities.find({"identifier" : { "hndl" : "joe" }}) db.users.find( { _id: "1200-42"} )
  • 48. Considerations • Lookup to Identities is a routed query • Lookup to Users is a routed query • Unique indexes available
  • 50. Summary • Multiple ways to model a domain problem • Understand the key uses cases of your app • Balance between ease of query vs. ease of write • Random IO should be avoided
  • 51. Perl Engineer & Evangelist, 10gen Mike Friedman #MongoDBdays Thank You