SlideShare a Scribd company logo
Advanced calculus MTH 3101
                                      Chapter 1, Mean value theorem and continuity

                                  CHAPTER 1
Calculus - Reviewed
1.1 ROLLE AND THE MEAN VALUE THEOREM
We can combine the definition of derivative with the Intermediate Value
Theorem to give a useful result which is in fact the basis of most elementary
applications of the differential calculus. Like the results of continuous
functions we need continuity and differentiability on a whole interval.
To arrive at the Mean Value theorem we first need the Roll’s Theorem
Theorem 1 (Rolle's Theorem) Let f be a continuous function on [a, b], and
differentiable on (a,b), and suppose that                 f (a ) = f (b) (possible
 f (a ) = f (b) = 0 ). Then there is a number c with a<c<b such that f ′(c) = 0 .
Note: The theorem guarantees that the point c exists somewhere. It gives
no indication of how to find c. Here is the diagram to make the point
geometrically:




                                   Figure 1:
If f crosses the axis twice, somewhere between the two crossings, the
function is flat. The accurate statement of this “obvious” observation is
Rolle's Theorem. Before proof the Roll’s Theorem we state the following
Theorems:
Theorem A: (The Intermediate Value Theorem) Suppose that f is
continuous on the closed interval [a,b] and let M be any number between
f(a) and f(b), where f (a ) ≠ f (b) . Then there exists a number c in (a,b) s.t.
f(c)=M.
Remarks: The Intermediate Value Theorem can be used for finding the
roots of equations.
Example: Show that there is a root of the equation between 1 and 2.
             4x3-6x2+3x-2=0
Solution: Let f(x)= 4x3-6x2+3x-2. We are looking for a solution of the given
equation, that is a number c∈(1,2) s.t. f(c)=0. Therefore we take a=1, b=2,
and M=0 in Theorem A. For the function f(x) we have
             f(1)=-1<0 and f(2)=12>0


                                                                                     1
Advanced calculus MTH 3101
                                                 Chapter 1, Mean value theorem and continuity
Thus M=0 is a number between f(1) and f(2). Now f(x) is continuous since it
is polynomial, so the Intermediate Value Theorem says there is a number
c∈(1,2) s.t. f(c)=0. In other words the equation 4x3-6x2+3x-2=0 has at least
one root c in the interval (1,2).
Theorem B: (The Extreme Value Theorem) If f is continuous on the closed
interval [a,b] then f attains an absolute maximum value f(c) and absolute
minimum value f(d) at some numbers c and d in [a,b].
Theorem C: (Fermet’s Theorem) If f has a local maximum or minimum at c,
and if f '(c) exists, then f '(c) = 0 .
PROOF: Since f is continuous on the compact interval [a, b], it has both a
global maximum and a global minimum (by The Extreme Value Theorem).
Assume first that the global maximum occurs at an interior point c ∈ (a, b)
i.e. f ( x) ≤ f (c) for some x ∈ (a, b) . Now we pick up h small enough so that
 c + h always lies in (a, 222222222b). Then f (c + h) ≤ f (c) .
If h > 0 ,
                f (c + h ) − f (c )
                                    ≤0,
                        h
and since we know the limit exists, so
                      f ( c + h ) − f (c )
               lim                         = f '( c) ≤ 0 ,
                  +
               h →0            h
Similarly, if h < 0 ,
                f (c + h ) − f (c )
                                    ≥0,
                        h
and so
                      f ( c + h ) − f (c )
               lim                         = f '( c) ≥ 0 ,
                  +
               h →0            h
Combining these, we see that f'(c)=0, and we have the result in this case. A
similar argument applies if, instead, the global minimum occurs at the
interior point c.
The remaining situation occurs if both the global maximum and global
minimum occur at the end points; since f(a)=f(b), it follows that f is constant,
and any c ∈ (a, b) will do.
Example 1: Investigate the number of roots of each of the polynomials
               p(x)=x3+3x+1 and q(x)=x3-3x+1.
SOLUTION: Since p'(x)=3(x2+1)>0 for all x ∈ R and p(-∞)<0, p(∞)>0, we see
that p has at most one root; for if it had two (or more) roots there would be a
root of p'(x)=0 between them by Rolle’s Theorem. Since p(0)=1>0, while



                                                                                                2
Advanced calculus MTH 3101
                                              Chapter 1, Mean value theorem and continuity
p(-1)=-3<0, there is at least one root by the Intermediate Value Theorem.
Hence p has exactly one root.
For the second q(x) function we have q'(x)=3(x2-1)=0 when x=±1. Since
q(-1)=3>0 and q(1)=-1<0, there is a root of q(x) between -1 and 1 by the
Intermediate Value Theorem. Letting x → ∞ and x → −∞ one can find that
there are two more roots of q(x) on the intervals (-∞,-1) and (1,∞).
Exercise 1 Show that the equation x − e − x = 0 has exactly one root in the
interval (0, 1).
Our version of Rolle's Theorem is valuable as far as it goes, but the
requirement that f(a)=f(b) is sufficiently strong that it can be quite hard to
apply sometimes. Fortunately the geometrical description of the result, that
somewhere the tangent is parallel to the axis, does have a more general
restatement.




                                           Figure 2
Figure 2: Somewhere inside a chord, the tangent to f will be parallel to the
chord. The accurate statement of this common-sense observation is the
Mean Value Theorem.
Theorem 2 (The Mean Value Theorem) Let f be continuous on [a, b], and
differentiable on (a, b). Then there is some c with a < c < b such that
              f (b ) − f (a )
                              = f ′(c)
                  b−a
or equivalently
             f (b) = f (a ) + (b − a ) f ′(c)
PROOF: We apply Rolle’s Theorem to a suitable function; let
                                         f (b) − f (a )
             h( x) = f (b) − f ( x) −                   (b − x)
                                             b−a
Then h is continuous on the interval [a, b], since f is, and in the same way, it
is differentiable on the open interval (a, b). Also, h(b) = 0 and h(a) = 0. We
can thus apply Rolle's Theorem to h to deduce there is some point c with
a < c < b such that h'(c) = 0. Thus we have



                                                                                             3
Advanced calculus MTH 3101
                                               Chapter 1, Mean value theorem and continuity
                                       f (b ) − f (a )
             0 = h′(c) = − f ′(c) +
                                           b−a
which is the required result.
                                                           1
Example 2 The function f satisfies f ′( x) =                    and f (0) = 2 . Use the
                                                         5 − x2
Mean Value Theorem to estimate f (1).
SOLUTION: We first estimate the given derivative for values of x satisfying
0<x<1. Since for such x, we have 0<x2<1, or -1<–x2<0 and so 4< 5-x2 <5.
Inverting this we see that
             1
             5   < f ′( x) <   1
                               4   when 0 < x < 1.
Now apply the Mean Value theorem to f on the interval [0, 1] to obtain some
c with 0 < c < 1 such that
              f (1) − f (0)
                            = f '(c)
                  1− 0
or
             f (1) = f (0) + f '(c) = 2 + f '(c)
From the given value of f (0), we see that 2.2 < f (1) < 2.25
                                                              1
Exercise 3 The function f satisfies f ′( x) =                       and f(0)=0. Use the
                                                          5 + sin x
Mean Value theorem to estimate f(π/2).
Note that if the derivative doesn't change much on x∈[0,π/2], the function
f(x) will behave linearly. This leads to the approximation
             f (a + h) ≈ f (a ) + hf ′(a ) .
We now see that the accurate version of this replaces f'(a) by f'(c) for some
c between a and a+h. To estimate f(π/2) we do the followings. Since
-1≤ sinx ≤1 and 4≤ 5+sinx ≤6, inverting yields
             1     1     1  1           1
               ≤        ≤ or ≤ f '(c) ≤
             6 5 + sin x 4  6           4
Due to Mean Value theorem and f(0)=0 we have
               π  π
             f   = f '( c)
               2 2
And so
             π        π  π
                ≤   f  ≤     .
             72        2  48




                                                                                              4
Advanced calculus MTH 3101
                                             Chapter 1, Mean value theorem and continuity
Theorem 3 (The Cauchy Mean Value Theorem) Let f and g be both
continuous on [a, b] and differentiable on (a, b). Then there is some point c
with a < c < b such that
             g'(c) (f (b) - f (a)) = f'(c)( g(b) - g(a)).
In particular, whenever the quotients make sense, we have
             f (b ) − f (a ) f ′(c )
                            =
             g (b) − g (a ) g ′(c)
PROOF: Let
             h(x) = f (x)(g(b) - g(a)) - g(x)(f (b) - f (a)),
and apply Rolle's theorem exactly as we did for the Mean Value Theorem.
Note first that since both f and g are continuous on [a, b], and differentiable
on (a, b), it follows that h has these properties. Also
             h(a) = f(a)g(b) - g(a)f(b) = h(b).
Thus we may apply Rolle to h, to deduce there is some point c with a < c <
b such that h'(c) = 0. But
             h'(c) = f'(c)(g(b) - g(a)) - g'(c)(f (b) - f (a))
Thus
             f'(c)(g(b) - g(a)) = g'(c)(f (b) - f (a))
This is one form of the Cauchy Mean Value Theorem for f and g. If g'(c) ≠ 0
for any possible c, then the Mean Value theorem shows that g(b) - g(a) ≠ 0,
and so we can divide the above result to get
             f (b ) − f (a ) f ′(c )
                            =        ,
             g (b) − g (a ) g ′(c)
giving a second form of the result.
Note: Taking g(x)=x recovers the Mean Value Theorem.


1.2 TAYLOR'S THEOREM
We have so far explored the Mean Value theorem, which can be rewritten
as
             f(a+h)=f(a) + hf'(c)
where c is some point between a and a + h . [By writing the definition of c in
this way, we have a statement that works whether h>0 or h<0.] We have
already met the approximation
             f (a + h) ≈ f (a ) + hf ′(a )
when we have studied the Newton-Raphson method for solving an equation,
and have already observed that the Mean Value Theorem provides a more


                                                                                            5
Advanced calculus MTH 3101
                                                   Chapter 1, Mean value theorem and continuity
accurate version of this. Now consider what happens when f is a polynomial
of degree n,
             f(x) = a0 + a1x + a2x2 +...+ an-1xn-1 + anxn.
Note that f (0) = a0. Differentiating gives
              f ′( x) = a1 + 2a2 x + 3a3 x 2 + ... + (n − 1)an −1 x n −2 + nan x n −1
and so
             f'(0) = a1.
Again, we have
             f''(x) = 2a2 + 3.2a3x+...+ (n-1)(n-2)an-1xn-3 + n(n-1)anxn-2,
and
             f''(0)=2a2.
After the next differentiation, we get
             f'''(0) = 3!a3,
while after k differentiations, we get,
             f(k)(0) = k!ak,
provided k ≤ n . Thus we can rewrite the polynomial, using its value, and the
value of its derivatives at 0, as
                                                 f ′′(0) 2 f ′′′(0) 3        f ( n −1) (0) n−1 f ( n ) n
                 f ( x) = f (0) + f ′(0) x +            x +        x + ... +              x +         x
                                                    2!        3!             ( n − 1)!          n!
This opens up the possibility of representing more general functions than
polynomials in this way, and so getting a generalisation of the Mean Value
Theorem.
Theorem 2 (Taylors Theorem - Lagrange form of Remainder) Let f be
continuous on [a, x], and assume that each of f', f'',..., f(n+1) is defined on
[a, x]. Then we can write
             f(x) = Pn(x) + Rn(x),
where Pn(x), the Taylor polynomial of degree n about a, and Rn(x), the
corresponding remainder, are given by
                                                       f ′′(a )                     f ( n ) (a)
             Pn ( x) = f (a ) + f ′(a )( x − a ) +              ( x − a ) 2 + ... +             ( x − a)n
                                                          2!                            n!
and
                        f ( n +1) (c)
              Rn ( x) =               ( x − a ) n +1
                        (n + 1)!
where c is some point between a and x.




                                                                                                            6
Advanced calculus MTH 3101
                                               Chapter 1, Mean value theorem and continuity
We make no attempt to prove this, although the proof can be done with the
tools we have at our disposal. Some quick comments:
   The theorem is also true for x < a; just restate it for the interval [x, a] etc;
   If n = 0, we have
               f ( x) = f (a ) + ( x − a ) f ′(c)
for some c between a and x; this is a restatement of the Mean Value
Theorem;
   If n = 1, we have
                                                     f (c )
               f ( x) = f (a) + ( x - a) f '( x) +          ( x - a)2
                                                      2!
for some c between a and x; this often called the Second Mean Value
Theorem;
   in general we can restate Taylor's Theorem as
                                                 f ′′(a )
               f ( x) = f (a ) + f ′(a )( x − a) +        ( x − a )2 + ...
                                                    2!
                        (n)                ( n +1)
                       f (a)             f         (c )
                     +       ( x − a)n +                ( x − a)n +1
                         n!              (n + 1)!
for some c between a and x
   the special case in which a=0 has a special name; it is called
    Maclaurin's Theorem;
   just as with Rolle’s, or the Mean Value Theorem, there is no useful
    information about the point c.
We now explore the meaning and content of the theorem with a number of
examples.
Example 3 Find the Taylor polynomial of order n about 0 for f ( x) = e x , and
write down the corresponding remainder term.
Solution: There is no difficulty here in calculating derivatives. Clearly
f ( k ) ( x) = e x for all k, and so f ( k ) (0) = 1 . Thus by Taylor's theorem,

                         x 2 x3 x 4  xn    x n+1 c
              e = 1 + x + + + + ... + +
                x
                                                  e
                         2! 3! 4!    n ! (n + 1)!
for some point c between 0 and x. In particular,
                               x 2 x3 x 4   xn                 x n +1 c
              Pn ( x) = 1 + x + + + + ... +    and Rn ( x) =          e
                               2! 3! 4!     n!               (n + 1)!
We can actually say a little more about this example if we recall that x is
fixed. We have



                                                                                              7
Advanced calculus MTH 3101
                                                Chapter 1, Mean value theorem and continuity
                                                 x n+1 c
             e = Pn ( x) + Rn ( x) = Pn ( x) +
              x
                                                        e
                                               (n + 1)!
We show that Rn(x)→ 0 as n→∞, so that (again for fixed x), the sequence
Pn(x)→ex as n→∞. If x<0, ec < 1 , because c∈(x,0) while if x ≥ 1 , then since
c<x, we have ec < e x . Thus
                                         n +1
                        x n +1 c     x
            Rn ( x) =          e ≤          max(e x ,1) → 0             as n → ∞ .
                      (n + 1)!     (n + 1)!
We think of the limit of the polynomial as forming a series, the Taylor series
for ex. We study series (and then Taylor series) in Section 3.
Example 4 Find the Taylor polynomial of order 1 about a for f ( x) = e x , and
write down the corresponding remainder term.
SOLUTION: Using the derivatives computed above, by Taylor's theorem,
                                  ( x − a)2 c
             e = e + ( x − a )e +
              x     a              a
                                           e
                                      2!
for some point c between a and x. In particular,
                                                         ( x − a)2 c
             P ( x) = e a + ( x − a )e a and R1 ( x) =
              1                                                   e .
                                                             2!
Example 5 Find the Maclaurin polynomial of order n>3 about 0 for
f(x)=(1+x)3, and write down the corresponding remainder term.
SOLUTION: We have
             f (x) = (1 + x)3 , f'(x) = 3(1 + x)2 ,
             f''(x) = 6(1 + x), f'''(x) = 6,
             f(n)(x) = 0   if n > 3.
             f(0=1), f′(x)=3, f′′(x)=6,
and so, by Taylor's theorem
                                   6 2 6 3
             (1 + x)3 = 1 + 3x +      x + x
                                   2!    3!
a result we could have got directly, but which is at least reassuring.
Example 6 Find the Taylor polynomial of order n about 0 for f ( x) = sin x ,
and write down the corresponding remainder term.
SOLUTION: There is no difficulty here in calculating derivatives: we have
             f(x) = sinx, f'(x) = cosx, f''(x) = - sinx,
             f'''(x) = - cosx, f(4)(x) = sinx
and so on


                                                                                               8
Advanced calculus MTH 3101
                                            Chapter 1, Mean value theorem and continuity
             f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1
Thus by Taylor's theorem,
                         x3 x5 x 7         n +1   x 2 n+1
              sin x = x − + − + ... + (−1)                + ... x ∈ R
                         3! 5! 7!               (2n + 1)!
Writing down the remainder term isn't particularly useful, but the important
point is that
                               x 2 n +3
              R2 n +1 ( x) ≤            → 0 as n → ∞ .
                             (2n + 3)!

                                  e x + e− x                     e x − e− x
Exercise 7 Recall that cosh x =              , and that sinh x =            . Now
                                      2                              2
check the shape of the following Taylor polynomials:
                            x2 x4              x 2n
              cos x = 1 −     + + ... + (−1) n      + ...
                            2! 4!              2n !
                             x3 x 5        x 2 n +1
              sinh x = x +     + + ... +            + ...
                             3! 5!       (2n + 1)!
                             x2 x4        x2n
              cosh x = 1 +     + + ... +       + ...
                             2! 4!       (2n)!
Example 8 Find the maximum error in the approximation
                            x3
              sin x ≈ x −
                            3!
given that | x| < 1/2.
SOLUTION: We use the Taylor polynomial for sin x of order 4 about 0,
together with the corresponding remainder. Thus
                         x3 x5
              sin x = x − + cos c
                         3! 5!
for some c with 0 < c < 1/ 2 or −1/ 2 < c < 0 . In any case, since x < 1/ 2 ,

               x5         x5    1      1
                  cos c ≤    ≤ 5   ≤
               5!         5! 2 ⋅ 5! 120 ⋅ 32
Warning: The Taylor polynomial always exists, providing f is suitably
differentiable. But it need not be useful. Consider the example
                        exp(−1/ x 2 ) if x > 0
              f ( x) = 
                       0,             if x ≤ 0
The interest in f is at 0; it is well behaved everywhere else. It turns out that



                                                                                           9
Advanced calculus MTH 3101
                                               Chapter 1, Mean value theorem and continuity
             f (0) = f'(0) = f''(0) =...= f(n)(0) =...= 0.
So the Taylor polynomial of degree n for f about 0 is Pn(x) = 0 + 0x + 0x2 +...
+ 0 xn = 0, and so for every n, Rn(x) = f (x). Clearly in this case, Pn tells us
nothing useful about the function.
Example 9. Find the Taylor polynomial of order n about 0 for f ( x) = (1 + x)α ,
and note that this gives a derivation of the binomial theorem. In fact, the
remainder | Rn(x)|→0 as n → ∞ , provided |x| < 1.
SOLUTION: There is again no difficulty here in calculating derivatives. We
have
             f ( x) = (1 + x)α
             f ′( x) = α (1 + x)α −1
             f ′′( x) = α (α − 1)(1 + x)α −2
             f ′′′( x) = α (α − 1)(α − 2)(1 + x)α −3
             f ( n ) ( x) = α (α − 1)...(α − n + 1)(1 + x)α −n
             f (0) = 1
             f ′(0) = α
             f ′′(0) = α (α − 1)
             f ′′′(0) = α (α − 1)(α − 2)
             f ( n ) (0) = α (α − 1)...(α − n + 1)
Thus by Taylor's theorem,
                                 α (α − 1) 2 α (α − 1)(α − 2)
             (1 + x)α = 1 + α x −           x +               + ...
                                      2!               3!
                        α (α − 1)...(α − n + 1) n
                      +                        x + ...
                                   n!
The remainder is not hard to deal with, but we omit the proof; in fact
             |Rn(x)|→0 when n → ∞ .
Note also that if α > 0 is an integer, say α = n | Rn(x)| = 0 and f (x) = Pn(x).
This is another way to get the Binomial theorem.




                                                                                          10
Advanced calculus MTH 3101
                                        Chapter 1, Mean value theorem and continuity

Continuity of a Real Function
Mathematicly a function f is said to be continuous at the point x=a if for
every ε>0 there exist δ>0 such that
                         f(x) – f(a) < ε whenever x – a <δ
A function f is continuous at x = a if for any ε > 0 we can find δ > 0 such
that f ( x) − f (a ) < ε whenever x − a < δ .
Example Prove that f ( x) = x 2 is continuous at x0 = 2 .
Solution We must show that given any ε > 0 , we can find δ > 0 (depending
on ε ) such that
 f ( x) − f (2) = x 2 − 4 < ε when x − 2 < δ .

Choose δ ≤ 1 so that 0 <| x − 2 |< 1 or 1 < x < 3, x ≠ 2
Then
             x2 – 22 = x +2 x – 2 < δ x + 2 < 5δ
Take δ as 1 or ε / 5 , whichever is smaller. Then we have x − 4 < ε
                                                            2


whenever 0 <| x − 2 |< δ and the required result is proved.
Now we pose the question: What does delta depend on?
Clearly we expect that the smaller epsilon is, the smaller we will have to
take delta. But since x0 was set before we started to look for delta, the
chances are that the value of x0 we are given will affect what delta we need
just as much as epsilon does. The next example shows exactly how that
sort of thing can happen:
Example
    The function f(x) is certainly continuous on R. Suppose we are given
x0=0 and ε=0.1. In this case δ=0.1 is good enough, because when
                                   |x-x0|=|x|<0.1
then this means that
                               |x2-x02|=|x|2<0.01<0.1
Now suppose that we try to use the same values of ε and δfor a different x0,
say x0=20. In this case we can find values of x which go wrong. For
example, take x=20.05. Certainly |x-x0|<0.1, but nevertheless
                       |x2-x02|=|x-x0||x+x0|=0.05×40.05>0.1
Remarkably enough, oftentimes for functions that crop up in practice it is
possible to find values of delta which work for a given epsilon and for all x0.
When this happens we say that the function is uniformly continuous.




                                                                                   11
Advanced calculus MTH 3101
                                          Chapter 1, Mean value theorem and continuity
The reason that this remarkable, and frequently useful, property is fairly
common, is tied up in sequential compactness. We start with a formal
definition of uniform continuity


UNIFORMLY CONTINUOUS FUNCTION
Definition A function f ( x) is uniformly continuous in an interval if for any
ε > 0 we can find δ > 0 such that f ( x1 ) − f ( x2 ) < ε whenever x1 − x2 < δ
where x1 and x2 are any two points in the interval.
Example
The function f(x)=x2 is uniformly continuous on X=[0,1].
Proof We need to estimate




(since |x|, |y|≤1). Thus given ε>0 we take δ=ε/2 and
|f(x)-f(y)|<ε for all x,y ∈[0,1] with |x-y|<δ.
Graphical interpretation of uniform continuity
A function is continuous at a point x0 if, given a fixed height epsilon, we
could always choose a narrow enough width delta, so that the curve never
passed through the ceiling or floor of the box of height epsilon, and width
delta, centered on (x0, f(x0)).
By the same taken, we can say that f is uniformly continuous if, given a
diameter of epsilon we can always cut a tube of diameter epsilon to short
enough a length (namely, delta) that it can run freely along the curve without
bumping into the sides of the tube. The following picture illustrates this idea:




From this point of view, it is clear that one thing which could cause a
continuous function to fail to be uniformly continuous would be is the slope
of the line becomes too large. The following theorem shows that,
conversely, if the slope is never too large, the function must be uniformly
continuous.


                                                                                     12
Advanced calculus MTH 3101
                                     Chapter 1, Mean value theorem and continuity
There is a relationship between the properties of the continuity of function in
the closed interval [a, b] with uniform continuity. In the above example we
see the function f(x) = x3 is uniformly continuous in the [0, 20].
Is all continuous function in the closed interval will be uniformly continuous?

Theorem. Let f be a continuous real valued function in the closed interval
[a,b], then f is uniformly continuous in that interval.
Theorem If f ( x) is continuous in a closed interval, it is uniformly
continuous in this interval.
Continuity in the open interval (a,b) of a real function f cannot guarantee
uniform continuity can occur.




                                                                                13

More Related Content

PDF
1.1 Lecture on Limits and Coninuity.pdf
PDF
Lesson 19: The Mean Value Theorem (slides)
PPTX
Laplace periodic function with graph
PDF
Lp assignment
PPT
Chapter 10 - Limit and Continuity
PPTX
APPLICATION OF PARTIAL DIFFERENTIATION
PPT
Derivation of Simpson's 1/3 rule
PDF
Slip boundary conditions for the moving contact line in molecular dynamics an...
1.1 Lecture on Limits and Coninuity.pdf
Lesson 19: The Mean Value Theorem (slides)
Laplace periodic function with graph
Lp assignment
Chapter 10 - Limit and Continuity
APPLICATION OF PARTIAL DIFFERENTIATION
Derivation of Simpson's 1/3 rule
Slip boundary conditions for the moving contact line in molecular dynamics an...

What's hot (14)

PPT
04 optix bws 1600g v100r002 equipment networking and application issue1.21
PPT
1639 vector-linear algebra
PPTX
Bessel’s equation
PPTX
Jacobi iterative method
DOCX
Btech_II_ engineering mathematics_unit5
PDF
Integration in the complex plane
PPTX
Unit 6 electrical and electronic principle capacitor calculations
PPT
Introductory maths analysis chapter 02 official
PPTX
False Position Method.pptx
PPTX
LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS
PPTX
Half range sine cosine fourier series
PDF
Digital Signal Processing[ECEG-3171]-Ch1_L07
PDF
Inverse Laplace Transform
PPTX
Indeterminate Forms and L' Hospital Rule
04 optix bws 1600g v100r002 equipment networking and application issue1.21
1639 vector-linear algebra
Bessel’s equation
Jacobi iterative method
Btech_II_ engineering mathematics_unit5
Integration in the complex plane
Unit 6 electrical and electronic principle capacitor calculations
Introductory maths analysis chapter 02 official
False Position Method.pptx
LINEAR RECURRENCE RELATIONS WITH CONSTANT COEFFICIENTS
Half range sine cosine fourier series
Digital Signal Processing[ECEG-3171]-Ch1_L07
Inverse Laplace Transform
Indeterminate Forms and L' Hospital Rule
Ad

Similar to Mth3101 Advanced Calculus Chapter 1 (20)

PDF
Rolle's theorem, mean value theorem
PPT
Chap4_Sec2.ppt
PDF
PDF
PPT
5.7 rolle's thrm & mv theorem
PPTX
Understanding Mean Value Theorem and Rolle’s Theorem: Key Concepts, Applicati...
PDF
Lesson 19: The Mean Value Theorem (slides)
PPTX
Mean Value Theorem explained with examples.pptx
PDF
MVT mean value theorem نظرية القيمة المتوسطة
PPT
2010 calculusmvt3.2
PDF
differentiate free
PPT
Roll's theorem
PDF
Optimization
PDF
PPTX
Calculus Homework Help
PPTX
Differential Equations Assignment Help
PPTX
Calculus Assignment Help
DOCX
Limits and continuity[1]
PPTX
Differential Equations Homework Help
Rolle's theorem, mean value theorem
Chap4_Sec2.ppt
5.7 rolle's thrm & mv theorem
Understanding Mean Value Theorem and Rolle’s Theorem: Key Concepts, Applicati...
Lesson 19: The Mean Value Theorem (slides)
Mean Value Theorem explained with examples.pptx
MVT mean value theorem نظرية القيمة المتوسطة
2010 calculusmvt3.2
differentiate free
Roll's theorem
Optimization
Calculus Homework Help
Differential Equations Assignment Help
Calculus Assignment Help
Limits and continuity[1]
Differential Equations Homework Help
Ad

Recently uploaded (20)

PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
RMMM.pdf make it easy to upload and study
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
Complications of Minimal Access Surgery at WLH
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PDF
A systematic review of self-coping strategies used by university students to ...
PDF
Computing-Curriculum for Schools in Ghana
PPTX
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
01-Introduction-to-Information-Management.pdf
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE
Pharmacology of Heart Failure /Pharmacotherapy of CHF
RMMM.pdf make it easy to upload and study
202450812 BayCHI UCSC-SV 20250812 v17.pptx
Anesthesia in Laparoscopic Surgery in India
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Cell Structure & Organelles in detailed.
Complications of Minimal Access Surgery at WLH
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf
A systematic review of self-coping strategies used by university students to ...
Computing-Curriculum for Schools in Ghana
Introduction-to-Literarature-and-Literary-Studies-week-Prelim-coverage.pptx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
01-Introduction-to-Information-Management.pdf
O7-L3 Supply Chain Operations - ICLT Program
Tissue processing ( HISTOPATHOLOGICAL TECHNIQUE

Mth3101 Advanced Calculus Chapter 1

  • 1. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity CHAPTER 1 Calculus - Reviewed 1.1 ROLLE AND THE MEAN VALUE THEOREM We can combine the definition of derivative with the Intermediate Value Theorem to give a useful result which is in fact the basis of most elementary applications of the differential calculus. Like the results of continuous functions we need continuity and differentiability on a whole interval. To arrive at the Mean Value theorem we first need the Roll’s Theorem Theorem 1 (Rolle's Theorem) Let f be a continuous function on [a, b], and differentiable on (a,b), and suppose that f (a ) = f (b) (possible f (a ) = f (b) = 0 ). Then there is a number c with a<c<b such that f ′(c) = 0 . Note: The theorem guarantees that the point c exists somewhere. It gives no indication of how to find c. Here is the diagram to make the point geometrically: Figure 1: If f crosses the axis twice, somewhere between the two crossings, the function is flat. The accurate statement of this “obvious” observation is Rolle's Theorem. Before proof the Roll’s Theorem we state the following Theorems: Theorem A: (The Intermediate Value Theorem) Suppose that f is continuous on the closed interval [a,b] and let M be any number between f(a) and f(b), where f (a ) ≠ f (b) . Then there exists a number c in (a,b) s.t. f(c)=M. Remarks: The Intermediate Value Theorem can be used for finding the roots of equations. Example: Show that there is a root of the equation between 1 and 2. 4x3-6x2+3x-2=0 Solution: Let f(x)= 4x3-6x2+3x-2. We are looking for a solution of the given equation, that is a number c∈(1,2) s.t. f(c)=0. Therefore we take a=1, b=2, and M=0 in Theorem A. For the function f(x) we have f(1)=-1<0 and f(2)=12>0 1
  • 2. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity Thus M=0 is a number between f(1) and f(2). Now f(x) is continuous since it is polynomial, so the Intermediate Value Theorem says there is a number c∈(1,2) s.t. f(c)=0. In other words the equation 4x3-6x2+3x-2=0 has at least one root c in the interval (1,2). Theorem B: (The Extreme Value Theorem) If f is continuous on the closed interval [a,b] then f attains an absolute maximum value f(c) and absolute minimum value f(d) at some numbers c and d in [a,b]. Theorem C: (Fermet’s Theorem) If f has a local maximum or minimum at c, and if f '(c) exists, then f '(c) = 0 . PROOF: Since f is continuous on the compact interval [a, b], it has both a global maximum and a global minimum (by The Extreme Value Theorem). Assume first that the global maximum occurs at an interior point c ∈ (a, b) i.e. f ( x) ≤ f (c) for some x ∈ (a, b) . Now we pick up h small enough so that c + h always lies in (a, 222222222b). Then f (c + h) ≤ f (c) . If h > 0 , f (c + h ) − f (c ) ≤0, h and since we know the limit exists, so f ( c + h ) − f (c ) lim = f '( c) ≤ 0 , + h →0 h Similarly, if h < 0 , f (c + h ) − f (c ) ≥0, h and so f ( c + h ) − f (c ) lim = f '( c) ≥ 0 , + h →0 h Combining these, we see that f'(c)=0, and we have the result in this case. A similar argument applies if, instead, the global minimum occurs at the interior point c. The remaining situation occurs if both the global maximum and global minimum occur at the end points; since f(a)=f(b), it follows that f is constant, and any c ∈ (a, b) will do. Example 1: Investigate the number of roots of each of the polynomials p(x)=x3+3x+1 and q(x)=x3-3x+1. SOLUTION: Since p'(x)=3(x2+1)>0 for all x ∈ R and p(-∞)<0, p(∞)>0, we see that p has at most one root; for if it had two (or more) roots there would be a root of p'(x)=0 between them by Rolle’s Theorem. Since p(0)=1>0, while 2
  • 3. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity p(-1)=-3<0, there is at least one root by the Intermediate Value Theorem. Hence p has exactly one root. For the second q(x) function we have q'(x)=3(x2-1)=0 when x=±1. Since q(-1)=3>0 and q(1)=-1<0, there is a root of q(x) between -1 and 1 by the Intermediate Value Theorem. Letting x → ∞ and x → −∞ one can find that there are two more roots of q(x) on the intervals (-∞,-1) and (1,∞). Exercise 1 Show that the equation x − e − x = 0 has exactly one root in the interval (0, 1). Our version of Rolle's Theorem is valuable as far as it goes, but the requirement that f(a)=f(b) is sufficiently strong that it can be quite hard to apply sometimes. Fortunately the geometrical description of the result, that somewhere the tangent is parallel to the axis, does have a more general restatement. Figure 2 Figure 2: Somewhere inside a chord, the tangent to f will be parallel to the chord. The accurate statement of this common-sense observation is the Mean Value Theorem. Theorem 2 (The Mean Value Theorem) Let f be continuous on [a, b], and differentiable on (a, b). Then there is some c with a < c < b such that f (b ) − f (a ) = f ′(c) b−a or equivalently f (b) = f (a ) + (b − a ) f ′(c) PROOF: We apply Rolle’s Theorem to a suitable function; let f (b) − f (a ) h( x) = f (b) − f ( x) − (b − x) b−a Then h is continuous on the interval [a, b], since f is, and in the same way, it is differentiable on the open interval (a, b). Also, h(b) = 0 and h(a) = 0. We can thus apply Rolle's Theorem to h to deduce there is some point c with a < c < b such that h'(c) = 0. Thus we have 3
  • 4. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity f (b ) − f (a ) 0 = h′(c) = − f ′(c) + b−a which is the required result. 1 Example 2 The function f satisfies f ′( x) = and f (0) = 2 . Use the 5 − x2 Mean Value Theorem to estimate f (1). SOLUTION: We first estimate the given derivative for values of x satisfying 0<x<1. Since for such x, we have 0<x2<1, or -1<–x2<0 and so 4< 5-x2 <5. Inverting this we see that 1 5 < f ′( x) < 1 4 when 0 < x < 1. Now apply the Mean Value theorem to f on the interval [0, 1] to obtain some c with 0 < c < 1 such that f (1) − f (0) = f '(c) 1− 0 or f (1) = f (0) + f '(c) = 2 + f '(c) From the given value of f (0), we see that 2.2 < f (1) < 2.25 1 Exercise 3 The function f satisfies f ′( x) = and f(0)=0. Use the 5 + sin x Mean Value theorem to estimate f(π/2). Note that if the derivative doesn't change much on x∈[0,π/2], the function f(x) will behave linearly. This leads to the approximation f (a + h) ≈ f (a ) + hf ′(a ) . We now see that the accurate version of this replaces f'(a) by f'(c) for some c between a and a+h. To estimate f(π/2) we do the followings. Since -1≤ sinx ≤1 and 4≤ 5+sinx ≤6, inverting yields 1 1 1 1 1 ≤ ≤ or ≤ f '(c) ≤ 6 5 + sin x 4 6 4 Due to Mean Value theorem and f(0)=0 we have π  π f   = f '( c) 2 2 And so π π  π ≤ f  ≤ . 72  2  48 4
  • 5. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity Theorem 3 (The Cauchy Mean Value Theorem) Let f and g be both continuous on [a, b] and differentiable on (a, b). Then there is some point c with a < c < b such that g'(c) (f (b) - f (a)) = f'(c)( g(b) - g(a)). In particular, whenever the quotients make sense, we have f (b ) − f (a ) f ′(c ) = g (b) − g (a ) g ′(c) PROOF: Let h(x) = f (x)(g(b) - g(a)) - g(x)(f (b) - f (a)), and apply Rolle's theorem exactly as we did for the Mean Value Theorem. Note first that since both f and g are continuous on [a, b], and differentiable on (a, b), it follows that h has these properties. Also h(a) = f(a)g(b) - g(a)f(b) = h(b). Thus we may apply Rolle to h, to deduce there is some point c with a < c < b such that h'(c) = 0. But h'(c) = f'(c)(g(b) - g(a)) - g'(c)(f (b) - f (a)) Thus f'(c)(g(b) - g(a)) = g'(c)(f (b) - f (a)) This is one form of the Cauchy Mean Value Theorem for f and g. If g'(c) ≠ 0 for any possible c, then the Mean Value theorem shows that g(b) - g(a) ≠ 0, and so we can divide the above result to get f (b ) − f (a ) f ′(c ) = , g (b) − g (a ) g ′(c) giving a second form of the result. Note: Taking g(x)=x recovers the Mean Value Theorem. 1.2 TAYLOR'S THEOREM We have so far explored the Mean Value theorem, which can be rewritten as f(a+h)=f(a) + hf'(c) where c is some point between a and a + h . [By writing the definition of c in this way, we have a statement that works whether h>0 or h<0.] We have already met the approximation f (a + h) ≈ f (a ) + hf ′(a ) when we have studied the Newton-Raphson method for solving an equation, and have already observed that the Mean Value Theorem provides a more 5
  • 6. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity accurate version of this. Now consider what happens when f is a polynomial of degree n, f(x) = a0 + a1x + a2x2 +...+ an-1xn-1 + anxn. Note that f (0) = a0. Differentiating gives f ′( x) = a1 + 2a2 x + 3a3 x 2 + ... + (n − 1)an −1 x n −2 + nan x n −1 and so f'(0) = a1. Again, we have f''(x) = 2a2 + 3.2a3x+...+ (n-1)(n-2)an-1xn-3 + n(n-1)anxn-2, and f''(0)=2a2. After the next differentiation, we get f'''(0) = 3!a3, while after k differentiations, we get, f(k)(0) = k!ak, provided k ≤ n . Thus we can rewrite the polynomial, using its value, and the value of its derivatives at 0, as f ′′(0) 2 f ′′′(0) 3 f ( n −1) (0) n−1 f ( n ) n f ( x) = f (0) + f ′(0) x + x + x + ... + x + x 2! 3! ( n − 1)! n! This opens up the possibility of representing more general functions than polynomials in this way, and so getting a generalisation of the Mean Value Theorem. Theorem 2 (Taylors Theorem - Lagrange form of Remainder) Let f be continuous on [a, x], and assume that each of f', f'',..., f(n+1) is defined on [a, x]. Then we can write f(x) = Pn(x) + Rn(x), where Pn(x), the Taylor polynomial of degree n about a, and Rn(x), the corresponding remainder, are given by f ′′(a ) f ( n ) (a) Pn ( x) = f (a ) + f ′(a )( x − a ) + ( x − a ) 2 + ... + ( x − a)n 2! n! and f ( n +1) (c) Rn ( x) = ( x − a ) n +1 (n + 1)! where c is some point between a and x. 6
  • 7. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity We make no attempt to prove this, although the proof can be done with the tools we have at our disposal. Some quick comments:  The theorem is also true for x < a; just restate it for the interval [x, a] etc;  If n = 0, we have f ( x) = f (a ) + ( x − a ) f ′(c) for some c between a and x; this is a restatement of the Mean Value Theorem;  If n = 1, we have f (c ) f ( x) = f (a) + ( x - a) f '( x) + ( x - a)2 2! for some c between a and x; this often called the Second Mean Value Theorem;  in general we can restate Taylor's Theorem as f ′′(a ) f ( x) = f (a ) + f ′(a )( x − a) + ( x − a )2 + ... 2! (n) ( n +1) f (a) f (c ) + ( x − a)n + ( x − a)n +1 n! (n + 1)! for some c between a and x  the special case in which a=0 has a special name; it is called Maclaurin's Theorem;  just as with Rolle’s, or the Mean Value Theorem, there is no useful information about the point c. We now explore the meaning and content of the theorem with a number of examples. Example 3 Find the Taylor polynomial of order n about 0 for f ( x) = e x , and write down the corresponding remainder term. Solution: There is no difficulty here in calculating derivatives. Clearly f ( k ) ( x) = e x for all k, and so f ( k ) (0) = 1 . Thus by Taylor's theorem, x 2 x3 x 4 xn x n+1 c e = 1 + x + + + + ... + + x e 2! 3! 4! n ! (n + 1)! for some point c between 0 and x. In particular, x 2 x3 x 4 xn x n +1 c Pn ( x) = 1 + x + + + + ... + and Rn ( x) = e 2! 3! 4! n! (n + 1)! We can actually say a little more about this example if we recall that x is fixed. We have 7
  • 8. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity x n+1 c e = Pn ( x) + Rn ( x) = Pn ( x) + x e (n + 1)! We show that Rn(x)→ 0 as n→∞, so that (again for fixed x), the sequence Pn(x)→ex as n→∞. If x<0, ec < 1 , because c∈(x,0) while if x ≥ 1 , then since c<x, we have ec < e x . Thus n +1 x n +1 c x Rn ( x) = e ≤ max(e x ,1) → 0 as n → ∞ . (n + 1)! (n + 1)! We think of the limit of the polynomial as forming a series, the Taylor series for ex. We study series (and then Taylor series) in Section 3. Example 4 Find the Taylor polynomial of order 1 about a for f ( x) = e x , and write down the corresponding remainder term. SOLUTION: Using the derivatives computed above, by Taylor's theorem, ( x − a)2 c e = e + ( x − a )e + x a a e 2! for some point c between a and x. In particular, ( x − a)2 c P ( x) = e a + ( x − a )e a and R1 ( x) = 1 e . 2! Example 5 Find the Maclaurin polynomial of order n>3 about 0 for f(x)=(1+x)3, and write down the corresponding remainder term. SOLUTION: We have f (x) = (1 + x)3 , f'(x) = 3(1 + x)2 , f''(x) = 6(1 + x), f'''(x) = 6, f(n)(x) = 0 if n > 3. f(0=1), f′(x)=3, f′′(x)=6, and so, by Taylor's theorem 6 2 6 3 (1 + x)3 = 1 + 3x + x + x 2! 3! a result we could have got directly, but which is at least reassuring. Example 6 Find the Taylor polynomial of order n about 0 for f ( x) = sin x , and write down the corresponding remainder term. SOLUTION: There is no difficulty here in calculating derivatives: we have f(x) = sinx, f'(x) = cosx, f''(x) = - sinx, f'''(x) = - cosx, f(4)(x) = sinx and so on 8
  • 9. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1 Thus by Taylor's theorem, x3 x5 x 7 n +1 x 2 n+1 sin x = x − + − + ... + (−1) + ... x ∈ R 3! 5! 7! (2n + 1)! Writing down the remainder term isn't particularly useful, but the important point is that x 2 n +3 R2 n +1 ( x) ≤ → 0 as n → ∞ . (2n + 3)! e x + e− x e x − e− x Exercise 7 Recall that cosh x = , and that sinh x = . Now 2 2 check the shape of the following Taylor polynomials: x2 x4 x 2n cos x = 1 − + + ... + (−1) n + ... 2! 4! 2n ! x3 x 5 x 2 n +1 sinh x = x + + + ... + + ... 3! 5! (2n + 1)! x2 x4 x2n cosh x = 1 + + + ... + + ... 2! 4! (2n)! Example 8 Find the maximum error in the approximation x3 sin x ≈ x − 3! given that | x| < 1/2. SOLUTION: We use the Taylor polynomial for sin x of order 4 about 0, together with the corresponding remainder. Thus x3 x5 sin x = x − + cos c 3! 5! for some c with 0 < c < 1/ 2 or −1/ 2 < c < 0 . In any case, since x < 1/ 2 , x5 x5 1 1 cos c ≤ ≤ 5 ≤ 5! 5! 2 ⋅ 5! 120 ⋅ 32 Warning: The Taylor polynomial always exists, providing f is suitably differentiable. But it need not be useful. Consider the example  exp(−1/ x 2 ) if x > 0 f ( x) =  0, if x ≤ 0 The interest in f is at 0; it is well behaved everywhere else. It turns out that 9
  • 10. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity f (0) = f'(0) = f''(0) =...= f(n)(0) =...= 0. So the Taylor polynomial of degree n for f about 0 is Pn(x) = 0 + 0x + 0x2 +... + 0 xn = 0, and so for every n, Rn(x) = f (x). Clearly in this case, Pn tells us nothing useful about the function. Example 9. Find the Taylor polynomial of order n about 0 for f ( x) = (1 + x)α , and note that this gives a derivation of the binomial theorem. In fact, the remainder | Rn(x)|→0 as n → ∞ , provided |x| < 1. SOLUTION: There is again no difficulty here in calculating derivatives. We have f ( x) = (1 + x)α f ′( x) = α (1 + x)α −1 f ′′( x) = α (α − 1)(1 + x)α −2 f ′′′( x) = α (α − 1)(α − 2)(1 + x)α −3 f ( n ) ( x) = α (α − 1)...(α − n + 1)(1 + x)α −n f (0) = 1 f ′(0) = α f ′′(0) = α (α − 1) f ′′′(0) = α (α − 1)(α − 2) f ( n ) (0) = α (α − 1)...(α − n + 1) Thus by Taylor's theorem, α (α − 1) 2 α (α − 1)(α − 2) (1 + x)α = 1 + α x − x + + ... 2! 3! α (α − 1)...(α − n + 1) n + x + ... n! The remainder is not hard to deal with, but we omit the proof; in fact |Rn(x)|→0 when n → ∞ . Note also that if α > 0 is an integer, say α = n | Rn(x)| = 0 and f (x) = Pn(x). This is another way to get the Binomial theorem. 10
  • 11. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity Continuity of a Real Function Mathematicly a function f is said to be continuous at the point x=a if for every ε>0 there exist δ>0 such that f(x) – f(a) < ε whenever x – a <δ A function f is continuous at x = a if for any ε > 0 we can find δ > 0 such that f ( x) − f (a ) < ε whenever x − a < δ . Example Prove that f ( x) = x 2 is continuous at x0 = 2 . Solution We must show that given any ε > 0 , we can find δ > 0 (depending on ε ) such that f ( x) − f (2) = x 2 − 4 < ε when x − 2 < δ . Choose δ ≤ 1 so that 0 <| x − 2 |< 1 or 1 < x < 3, x ≠ 2 Then x2 – 22 = x +2 x – 2 < δ x + 2 < 5δ Take δ as 1 or ε / 5 , whichever is smaller. Then we have x − 4 < ε 2 whenever 0 <| x − 2 |< δ and the required result is proved. Now we pose the question: What does delta depend on? Clearly we expect that the smaller epsilon is, the smaller we will have to take delta. But since x0 was set before we started to look for delta, the chances are that the value of x0 we are given will affect what delta we need just as much as epsilon does. The next example shows exactly how that sort of thing can happen: Example The function f(x) is certainly continuous on R. Suppose we are given x0=0 and ε=0.1. In this case δ=0.1 is good enough, because when |x-x0|=|x|<0.1 then this means that |x2-x02|=|x|2<0.01<0.1 Now suppose that we try to use the same values of ε and δfor a different x0, say x0=20. In this case we can find values of x which go wrong. For example, take x=20.05. Certainly |x-x0|<0.1, but nevertheless |x2-x02|=|x-x0||x+x0|=0.05×40.05>0.1 Remarkably enough, oftentimes for functions that crop up in practice it is possible to find values of delta which work for a given epsilon and for all x0. When this happens we say that the function is uniformly continuous. 11
  • 12. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity The reason that this remarkable, and frequently useful, property is fairly common, is tied up in sequential compactness. We start with a formal definition of uniform continuity UNIFORMLY CONTINUOUS FUNCTION Definition A function f ( x) is uniformly continuous in an interval if for any ε > 0 we can find δ > 0 such that f ( x1 ) − f ( x2 ) < ε whenever x1 − x2 < δ where x1 and x2 are any two points in the interval. Example The function f(x)=x2 is uniformly continuous on X=[0,1]. Proof We need to estimate (since |x|, |y|≤1). Thus given ε>0 we take δ=ε/2 and |f(x)-f(y)|<ε for all x,y ∈[0,1] with |x-y|<δ. Graphical interpretation of uniform continuity A function is continuous at a point x0 if, given a fixed height epsilon, we could always choose a narrow enough width delta, so that the curve never passed through the ceiling or floor of the box of height epsilon, and width delta, centered on (x0, f(x0)). By the same taken, we can say that f is uniformly continuous if, given a diameter of epsilon we can always cut a tube of diameter epsilon to short enough a length (namely, delta) that it can run freely along the curve without bumping into the sides of the tube. The following picture illustrates this idea: From this point of view, it is clear that one thing which could cause a continuous function to fail to be uniformly continuous would be is the slope of the line becomes too large. The following theorem shows that, conversely, if the slope is never too large, the function must be uniformly continuous. 12
  • 13. Advanced calculus MTH 3101 Chapter 1, Mean value theorem and continuity There is a relationship between the properties of the continuity of function in the closed interval [a, b] with uniform continuity. In the above example we see the function f(x) = x3 is uniformly continuous in the [0, 20]. Is all continuous function in the closed interval will be uniformly continuous? Theorem. Let f be a continuous real valued function in the closed interval [a,b], then f is uniformly continuous in that interval. Theorem If f ( x) is continuous in a closed interval, it is uniformly continuous in this interval. Continuity in the open interval (a,b) of a real function f cannot guarantee uniform continuity can occur. 13