SlideShare a Scribd company logo
6
Most read
8
Most read
10
Most read
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 1
Course: B.Tech- II
Subject: Engineering Mathematics II
Unit-5
RAI UNIVERSITY, AHMEDABAD
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 2
Unit-V: VECTOR INTEGRATION
Sr. No. Name of the Topic Page
No.
1 Line Integral 2
2 Surface integral 5
3 Volume Integral 6
4 Green’s theorem (without proof) 8
5 Stoke’s theorem (without proof) 10
6 Gauss’s theorem of divergence (without proof) 13
7 Reference book 16
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 3
Vector integration
1.1 LINE INTEGRAL:
Line integral = ∫ (𝐹̅.
𝑑𝑟⃗⃗⃗⃗⃗
𝑑𝑠
)𝑐
𝑑𝑠 = ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝑐
Note:
1) Work: If 𝐹̅ represents the variable force acting on a particle along arc AB,
then the total work done = ∫ 𝐹̅. 𝑑𝑟̅̅̅𝐵
𝐴
2) Circulation: If 𝑉̅ represents the velocity of a liquid then ∮ 𝑉̅. 𝑑𝑟̅̅̅
𝑐
is called
the circulation of 𝑉 round the closed curve 𝑐.
If the circulation of 𝑉 round every closed curve is zero then 𝑉 is said to be
irrotational there.
3) When the path of integration is a closed curve then notation of integration is
∮ in place of ∫ .
Note:If ∫ 𝐹̅. 𝑑𝑟̅̅̅𝐵
𝐴
is to be proved to be independent of path, then 𝐹̅ = ∇∅
here 𝐹 is called Conservative (irrotational) vector field and ∅ is called the
Scalarpotential. And ∇ × 𝐹̅ = ∇ × ∇∅ = 0
Example 1: Evaluate ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝑐
where 𝐹̅ = 𝑥2
𝑖̂ + 𝑥𝑦𝑗̂ and 𝐶 is the boundary of the
square in the plane 𝑧 = 0 and bounded by the lines 𝑥 = 0, 𝑦 = 0, 𝑥 = 𝑎 𝑎𝑛𝑑
𝑦 = 𝑎.
Solution: ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝑐
= ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝑂𝐴
+ ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐴𝐵
+ ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐵𝐶
+ ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐶𝑂
Here 𝑟̅ = 𝑥𝑖̂ + 𝑦𝑗̂, 𝑑𝑟̅̅̅ = 𝑑𝑥𝑖̂ + 𝑑𝑦𝑗̂, 𝐹̅ = 𝑥2
𝑖̂ + 𝑥𝑦𝑗̂
𝐹̅. 𝑑𝑟̅̅̅ = 𝑥2
𝑑𝑥 + 𝑥𝑦𝑑𝑦 _______(i)
 On 𝑂𝐴, 𝑦 = 0
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 4
∴ 𝐹̅. 𝑑𝑟̅̅̅ = 𝑥2
𝑑𝑥 (From (i))
∫ 𝐹̅. 𝑑𝑟̅̅̅
𝑂𝐴
= ∫ 𝑥2
𝑑𝑥 = [
𝑥3
3
]
0
3
=
𝑎3
3
𝑎
0
_______ (ii)
 On 𝐴𝐵, 𝑥 = 𝑎
∴ 𝑑𝑥 = 0
∴ 𝐹̅. 𝑑𝑟̅̅̅ = 𝑎𝑦 𝑑𝑦 (From (i))
∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐴𝐵
= ∫ 𝑎𝑦 𝑑𝑦 = 𝑎 [
𝑦2
2
]
0
𝑎
=
𝑎3
2
𝑎
0
_______(iii)
 On 𝐵𝐶, 𝑦 = 𝑎
∴ 𝑑𝑦 = 0
∴ 𝐹̅. 𝑑𝑟̅̅̅ = 𝑥2
𝑑𝑥 (From (i))
∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐵𝐶
= ∫ 𝑥2
𝑑𝑥 = [
𝑥3
3
]
𝑎
0
= −
𝑎3
3
0
𝑎
_______(iv)
 On 𝐶𝑂, 𝑥 = 0
∴ 𝐹̅. 𝑑𝑟̅̅̅ = 0 (From (i))
∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐶𝑂
= 0 _______(v)
On adding (ii), (iii), (iv) and (v), we get
∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐶
=
𝑎3
3
+
𝑎3
2
−
𝑎3
3
+ 0 =
𝑎3
2
________ Ans.
Example 2: A vector field is given by
𝐹̅ = (2𝑦 + 3) 𝑖̂ + ( 𝑥𝑧) 𝑗̂ + (𝑦𝑧− 𝑥)𝑘̂. Evaluate ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐶
along the path 𝑐 is 𝑥 =
2𝑡, 𝑦 = 𝑡, 𝑧 = 𝑡3
𝑓𝑟𝑜𝑚 𝑡 = 0 𝑡𝑜 𝑡 = 1.
Solution:
∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐶
= ∫ (2𝑦 + 3) 𝑑𝑥 + ( 𝑥𝑧) 𝑑𝑦 + (𝑦𝑧− 𝑥)𝑑𝑧𝐶
[
𝑠𝑖𝑛𝑐𝑒 𝑥 = 2𝑡 𝑦 = 𝑡 𝑧 = 𝑡3
∴
𝑑𝑥
𝑑𝑡
= 2
𝑑𝑦
𝑑𝑡
= 1
𝑑𝑧
𝑑𝑡
= 3𝑡2 ]
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 5
= ∫ (2𝑡 + 3)(2 𝑑𝑡) + (2𝑡)( 𝑡3) 𝑑𝑡 + ( 𝑡4
− 2𝑡)(3𝑡2
𝑑𝑡)
1
0
= ∫ (4𝑡 + 6 + 2𝑡4
+ 3𝑡6
− 6𝑡3) 𝑑𝑡
1
0
= [4
𝑡2
2
+ 6𝑡 +
2
5
𝑡5
+
3
7
𝑡7
−
6
4
𝑡4
]
0
1
= [2𝑡2
+ 6𝑡 +
2
5
𝑡5
+
3
7
𝑡7
−
3
2
𝑡4
]
0
1
= 2 + 6 +
2
5
+
3
7
−
3
2
= 7.32857 _________Ans.
Example 3: Suppose 𝐹( 𝑥, 𝑦, 𝑧) = 𝑥3
𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ is the force field. Find the work
done by 𝐹 along the line from the (1, 2, 3) to (3, 5, 7).
Solution: Work done= ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝑐
= ∫ (𝑥3
𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂). 𝑑(𝑖̂ 𝑑𝑥 + 𝑗̂ 𝑑𝑦 + 𝑘̂ 𝑑𝑧)
(3,5,7)
(1,2,3)
= ∫ ( 𝑥3
𝑑𝑥 + 𝑦𝑑𝑦 + 𝑧𝑑𝑧)
(3,5,7)
(1,2,3)
= ∫ 𝑥3
𝑑𝑥 + ∫ 𝑦 𝑑𝑦 + ∫ 𝑧 𝑑𝑧
7
3
5
2
3
1
= [
𝑥4
4
]
1
3
+ [
𝑦2
2
]
2
5
+ [
𝑧2
2
]
3
7
= [
81
4
−
1
4
] + [
25
2
−
4
2
] + [
49
2
−
9
2
]
=
80
4
+
21
2
+
40
2
=
202
4
= 50.5 units _______Ans.
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 6
1.2Exercise:
1) If a force 𝐹̅ = 2𝑥2
𝑦𝑖̂ + 3𝑥𝑦𝑗̂ displaces a particle in the 𝑥𝑦-plane from
(0, 0) to (1, 4) along a curve 𝑦 = 4𝑥2
. Find the work done.
2) If 𝐴 = (3𝑥2
+ 6𝑦) 𝑖̂ − 14𝑦𝑧𝑗̂ + 20𝑥𝑧2
𝑘̂, evaluate the line integral
∮ 𝐴 𝑑𝑟⃗⃗⃗⃗ from (0, 0, 0) to (1, 1, 1) along the curve 𝐶.
3) Show that the integral ∫ ( 𝑥𝑦2
+ 𝑦3) 𝑑𝑥 + (𝑥2
𝑦 + 3𝑥𝑦2
)𝑑𝑦
(3,4)
(1,2)
is
independent of the path joining the points (1, 2) and (3, 4). Hence,
evaluate the integral.
2.1 SURFACE INTEGRAL:
Let 𝐹̅ be a vector function and 𝑆 be the given surface.
Surface integral of a vector function 𝐹̅ over the surface 𝑆 is defined as the
integral of the components of 𝐹̅ along the normal to the surface.
Component of 𝐹̅ along the normal= 𝐹̅. 𝑛̂
Where n = unit normal vector to an element 𝑑𝑠 and
𝑛̂ =
𝑔𝑟𝑎𝑑 𝑓
| 𝑔𝑟𝑎𝑑 𝑓|
𝑑𝑠 =
𝑑𝑥 𝑑𝑦
( 𝑛̂.𝑘̂)
Surface integral of F over S
= ∑ 𝐹̅. 𝑛̂ = ∬ ( 𝐹̅. 𝑛̂) 𝑑𝑠𝑆
Note:
1) Flux = ∬ ( 𝐹̅. 𝑛̂) 𝑑𝑠𝑆
where, 𝐹̅ represents the velocity of a liquid.
If ∬ ( 𝐹̅. 𝑛̂) 𝑑𝑠𝑆
= 0, then 𝐹̅ is said to be a Solenoidal vector point function.
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 7
3.1 VOLUME INTEGRAL:
Let 𝐹̅ be a vector point function and volume 𝑉 enclosed by a closed surface.
The volume integral = ∭ 𝐹̅ 𝑑𝑣𝑉
Example 1: Evaluate ∬ (𝑦𝑧𝑖̂ + 𝑧𝑥𝑗̂ + 𝑥𝑦𝑘̂). 𝑑𝑠𝑆
where 𝑆 the surface of the
sphere is 𝑥2
+ 𝑦2
+ 𝑧2
= 𝑎2
in the first octant.
Solution: Here, ∅ = 𝑥2
+ 𝑦2
+ 𝑧2
− 𝑎2
Vector normal to the surface = ∇∅
= 𝑖̂
𝜕∅
𝜕𝑥
+ 𝑗̂
𝜕∅
𝜕𝑦
+ 𝑘̂ 𝜕∅
𝜕𝑧
= (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
)( 𝑥2
+ 𝑦2
+ 𝑧2
− 𝑎2)
= 2𝑥𝑖̂ + 2𝑦𝑗̂ + 2𝑧𝑘̂
𝑛̂ =
∇∅
|∇∅|
=
2𝑥𝑖̂+2𝑦𝑗̂+2𝑧𝑘̂
√4𝑥2+4𝑦2+4𝑧2
=
𝑥𝑖̂+ 𝑦𝑗̂+ 𝑧𝑘̂
√𝑥2+𝑦2+𝑧2
=
𝑥𝑖̂+ 𝑦𝑗̂+ 𝑧𝑘̂
𝑎
[∵ 𝑥2
+ 𝑦2
+ 𝑧2
= 𝑎2]
Here, 𝐹 = 𝑦𝑧𝑖̂ + 𝑧𝑥𝑗̂ + 𝑥𝑦𝑘̂
𝐹. 𝑛̂ = (𝑦𝑧𝑖̂ + 𝑧𝑥𝑗̂ + 𝑥𝑦𝑘̂).(
𝑥𝑖̂+ 𝑦𝑗̂+ 𝑧𝑘̂
𝑎
) =
3𝑥𝑦𝑧
𝑎
Now, ∬ 𝐹. 𝑛̂𝑆
𝑑𝑠 = ∬ (𝐹. 𝑛̂)𝑆
𝑑𝑥 𝑑𝑦
| 𝑘̂.𝑛̂|
= ∫ ∫
3𝑥𝑦𝑧 𝑑𝑥 𝑑𝑦
𝑎 (
𝑧
𝑎
)
√𝑎2−𝑥2
0
𝑎
0
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 8
= 3∫ ∫ 𝑥𝑦 𝑑𝑦 𝑑𝑥
√𝑎2−𝑥2
0
𝑎
0
= 3∫ 𝑥 (
𝑦2
2
)
0
√𝑎2−𝑥2
𝑑𝑥
𝑎
0
=
3
2
∫ 𝑥 (𝑎2
− 𝑥2
)𝑑𝑥
𝑎
0
=
3
2
(
𝑎2 𝑥2
2
−
𝑥4
4
)
0
𝑎
=
3
2
(
𝑎4
2
−
𝑎4
4
)
=
3𝑎4
8
________Ans.
Example 2: If 𝐹̅ = 2𝑧𝑖̂ − 𝑥𝑗̂ + 𝑦𝑘̂, evaluate ∭ 𝐹̅ 𝑑𝑣𝑉
where, 𝑣 is the region
bounded by the surfaces 𝑥 = 0, 𝑦 = 0, 𝑥 = 2, 𝑦 = 4, 𝑧 = 𝑥2
, 𝑧 = 2.
Solution: ∭ 𝐹̅ 𝑑𝑣𝑉
= ∭(2𝑧𝑖̂ − 𝑥𝑗̂ + 𝑦𝑘̂) 𝑑𝑥 𝑑𝑦 𝑑𝑧
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 ∫ (2𝑧𝑖̂ − 𝑥𝑗̂ + 𝑦𝑘̂) 𝑑𝑧
2
𝑥2
4
0
2
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑧2
𝑖̂ − 𝑥𝑧𝑗̂ + 𝑦𝑧𝑘̂] 𝑥2
24
0
2
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [4𝑖̂ − 2𝑥𝑗̂ + 2𝑦𝑘̂ − 𝑥4
𝑖̂ + 𝑥3
𝑗̂ − 𝑥2
𝑦𝑘̂]
4
0
2
0
= ∫ 𝑑𝑥 [4𝑦𝑖̂ − 2𝑥𝑦𝑗̂ + 𝑦2
𝑘̂ − 𝑥4
𝑦𝑖̂ + 𝑥3
𝑦𝑗̂ −
𝑥2 𝑦2
2
𝑘̂]
0
42
0
= ∫ (16𝑖̂ − 8𝑥𝑗̂ + 16𝑘̂ − 4𝑥4
𝑖̂ + 4𝑥3
𝑗̂ − 8𝑥2
𝑘̂)
2
0
𝑑𝑥
= [16𝑥𝑖̂ − 4𝑥2
𝑗̂ + 16𝑥𝑘̂ −
4𝑥5
5
𝑖̂ + 𝑥4
𝑗̂ −
8𝑥3
3
𝑘̂]
0
2
= 32𝑖̂ − 16𝑗̂ + 32𝑘̂ −
128
5
𝑖̂ + 16𝑗̂ −
64
3
𝑘̂
=
32𝑖̂
5
+
32𝑘̂
3
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 9
=
32
15
(3𝑖̂ + 5𝑘̂) _________ Ans.
3.2 Exercise:
1) Evaluate ∬ ( 𝐹̅. 𝑛̂) 𝑑𝑠𝑆
, where, 𝐹 = 18𝑧𝑖̂ − 12𝑗̂ + 3𝑦𝑘̂ and 𝑆 is the surface
of the plane 2𝑥 + 3𝑦 + 6𝑧 = 12 in the first octant.
2) If 𝐹 = (2𝑥2
− 3𝑧) 𝑖̂ − 2𝑥𝑦𝑗̂ − 4𝑥𝑘̂, then evaluate ∭ ∇𝑉
𝐹 𝑑𝑣, where 𝑉 is
bounded by the plane 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4.
4.1 GREEN’S THEOREM:(Without proof)
If ∅( 𝑥, 𝑦),Ψ( 𝑥, 𝑦),
𝜕𝜙
𝜕𝑦
𝑎𝑛𝑑
𝜕Ψ
𝜕𝑥
be continuous functions over a region R
bounded by simple closed curve 𝐶 in 𝑥 − 𝑦 plane, then
∮( 𝜙 𝑑𝑥 + Ψ 𝑑𝑦) = ∬(
𝜕Ψ
𝜕𝑥
−
𝜕𝜙
𝜕𝑦
) 𝑑𝑥 𝑑𝑦
𝑅𝐶
Note:Green’s theorem in vector form
∫ 𝐹̅. 𝑑𝑟̅̅̅ = ∬(∇ × 𝐹̅). 𝑘̂ 𝑑𝑅
𝑅𝑐
Where, 𝐹̅ = ∅𝑖̂ + Ψĵ, r̅ = 𝑥𝑖̂ + 𝑦𝑗̂, 𝑘̂ is a unit vector along 𝑧-axis and 𝑑𝑅 =
𝑑𝑥 𝑑𝑦.
Example 1: Using green’s theorem, evaluate ∫(𝑥2
𝑦 𝑑𝑥 + 𝑥2
𝑑𝑦)𝑐
, where 𝑐
is the boundary described counter clockwise of the triangle with
vertices (0,0),(1,0),(1,1).
Solution: By green’s theorem, we have
∮ ( 𝜙 𝑑𝑥 + Ψ 𝑑𝑦) = ∬ (
𝜕Ψ
𝜕𝑥
−
𝜕𝜙
𝜕𝑦
) 𝑑𝑥 𝑑𝑦𝑅𝐶
∫ ( 𝑥2
𝑦 𝑑𝑥 + 𝑥2
𝑑𝑦) = ∬ (2𝑥 − 𝑥2) 𝑑𝑥 𝑑𝑦𝑅𝑐
= ∫ (2𝑥 − 𝑥2) 𝑑𝑥∫ 𝑑𝑦
𝑥
0
1
0
= ∫ (2𝑥 − 𝑥2) 𝑑𝑥 [ 𝑦]0
𝑥1
0
= ∫ (2𝑥2
− 𝑥3
)𝑑𝑥
1
0
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 10
= (
2𝑥3
3
−
𝑥4
4
)
0
1
= (
2
3
−
1
4
)
=
5
12
_______Ans.
Example 2: Use green’s theorem to evaluate
∫ ( 𝑥2
+ 𝑥𝑦) 𝑑𝑥 + (𝑥2
+ 𝑦2
)𝑑𝑦𝑐
, where c is the square formed by the lines
𝑦 = ±1, 𝑥 = ±1.
Solution: By green’s theorem, we have
∮ ( 𝜙 𝑑𝑥 + Ψ 𝑑𝑦) = ∬ (
𝜕Ψ
𝜕𝑥
−
𝜕𝜙
𝜕𝑦
) 𝑑𝑥 𝑑𝑦𝑅𝐶
= ∫ ∫ [
𝜕
𝜕𝑥
( 𝑥2
+ 𝑦2) −
𝜕
𝜕𝑦
(𝑥2
+ 𝑥𝑦)] 𝑑𝑥 𝑑𝑦
1
−1
1
−1
= ∫ ∫ (2𝑥 − 𝑥) 𝑑𝑥𝑑𝑦
1
−1
1
−1
= ∫ ∫ 𝑥 𝑑𝑥𝑑𝑦
1
−1
1
−1
= ∫ 𝑥 𝑑𝑥 ∫ 𝑑𝑦
1
−1
1
−1
= ∫ 𝑥 𝑑𝑥 (𝑦)−1
11
−1
= ∫ 𝑥 𝑑𝑥 (1 + 1)
1
−1
= ∫ 2𝑥 𝑑𝑥
1
−1
= (𝑥2
)−1
1
= 1 − 1
= 0 ________Ans.
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 11
4.2 Exercise:
1) Apply Green’s theorem to evaluate
∫ [(2𝑥2
− 𝑦2) 𝑑𝑥 + (𝑥2
+ 𝑦2
)𝑑𝑦]𝐶
, where 𝐶 is the boundary of the area
enclosed by the 𝑥-axis and the upper half of circle 𝑥2
+ 𝑦2
= 𝑎2
.
2) A vector field 𝐹̅ is given by 𝐹̅ = sin 𝑦 𝑖̂ + 𝑥 (1 + cos 𝑦) 𝑗̂.
Evaluate the line integral ∫ 𝐹̅. 𝑑𝑟̅̅̅
𝐶
where 𝐶 is the circular path given
by 𝑥2
+ 𝑦2
= 𝑎2
.
5.1 STOKE’S THEOREM:(RelationbetweenLine integral and Surface
integral) (Without Proof)
Surface integral of the component of curl 𝐹̅ along the normal to the
surface 𝑆, taken over the surface 𝑆 bounded by curve 𝐶 is equal to the line
integral of the vector point function 𝐹̅ taken along the closed curve 𝐶.
Mathematically
∮ 𝐹̅. 𝑑𝑟̅̅̅ = ∬ 𝑐𝑢𝑟𝑙𝑆
𝐹̅. 𝑛̂ 𝑑𝑠
Where 𝑛̂ = cos ∝ 𝑖̂ + cos 𝛽 𝑗̂ + cos 𝛾 𝑘̂
is a unit external normal to any surface 𝑑𝑠.
OR
The circulation of vector 𝐹 around a closed curve 𝐶 is equal to the flux of
the curve of the vector through the surface 𝑆 bounded by the curve 𝐶.
∮ 𝐹̅. 𝑑𝑟̅̅̅ = ∬ 𝑐𝑢𝑟𝑙
𝑆
𝐹̅. 𝑛̂ 𝑑𝑠 = ∬ 𝑐𝑢𝑟𝑙
𝑆
𝐹̅. 𝑑𝑆̅
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 12
Example 1: Apply Stoke’s theorem to find the value of
∫ (𝑦 𝑑𝑥 + 𝑧 𝑑𝑦 + 𝑥 𝑑𝑧)𝑐
Where 𝑐 is the curve of intersection of 𝑥2
+ 𝑦2
+ 𝑧2
= 𝑎2
and 𝑥 + 𝑧 = 𝑎.
Solution: ∫ (𝑦 𝑑𝑥 + 𝑧 𝑑𝑦 + 𝑥 𝑑𝑧)𝑐
= ∫ (𝑦 𝑖̂ + 𝑧 𝑗̂ + 𝑥 𝑘̂).(𝑖̂ 𝑑𝑥 + 𝑗̂ 𝑑𝑦 + 𝑘̂ 𝑑𝑧)𝑐
= ∫ (𝑦 𝑖̂ + 𝑧 𝑗̂ + 𝑥 𝑘̂). 𝑑𝑟̅𝑐
= ∬ 𝑐𝑢𝑟𝑙 (𝑦 𝑖̂ + 𝑧 𝑗̂ + 𝑥 𝑘̂). 𝑛̂ 𝑑𝑠𝑆
(By Stoke’s theorem)
= ∬ (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
)×𝑆
(𝑦 𝑖̂ + 𝑧 𝑗̂ + 𝑥 𝑘̂). 𝑛̂ 𝑑𝑠
= ∬ – ( 𝑖̂ + 𝑗̂ + 𝑘̂). 𝑛̂ 𝑑𝑠𝑆
_______(i)
Where 𝑆 is the circle formed by the integration of 𝑥2
+ 𝑦2
+ 𝑧2
= 𝑎2
and
𝑥 + 𝑧 = 𝑎.
𝑛̂ =
∇∅
|∇∅|
=
( 𝑖̂
𝜕
𝜕𝑥
+𝑗̂
𝜕
𝜕𝑦
+𝑘̂ 𝜕
𝜕𝑧
)(𝑥+𝑧−𝑎)
|∇∅|
=
𝑖̂+ 𝑘̂
√1+1
=
𝑖̂
√2
+
𝑘̂
√2
Putting the value of 𝑛̂ in (i), we have
= ∬ –( 𝑖̂ + 𝑗̂ + 𝑘̂). (
𝑖̂
√2
+
𝑘̂
√2
)𝑆
𝑑𝑠
= ∬ −𝑆
(
1
√2
+
1
√2
)𝑑𝑠 [𝑈𝑠𝑒 𝑟2
= 𝑅2
− 𝑝2
= 𝑎2
−
𝑎2
2
=
𝑎2
2
]
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 13
= −
2
√2
∬ 𝑑𝑠 = −
2
√2
𝜋 (
𝑎
√2
)
2
= −
𝜋𝑎2
√2𝑆
______Ans.
Example 2: Evaluate ∮ 𝐹̅. 𝑑𝑟̅̅̅
𝐶
by stoke’s theorem, where
𝐹̅ = 𝑦2
𝑖̂ + 𝑥2
𝑗̂ − (𝑥 + 𝑧)𝑘̂ and 𝐶 is the boundary of triangle with vertices at
(0,0,0),(1,0,0) and (1,1,0).
Solution: We have, curl 𝐹̅ = ∇ × 𝐹̅
= ||
𝑖̂ 𝑗̂ 𝑘̂
𝜕
𝜕𝑥
𝜕
𝜕𝑦
𝜕
𝜕𝑧
𝑦2
𝑥2
−(𝑥 + 𝑧)
||
= 0. 𝑖̂ + 𝑗̂ + 2(𝑥 − 𝑦)𝑘̂
We observethat z co-ordinate of each vertex of the triangle is zero.
Therefore, the triangle lies in the 𝑥𝑦-plane.
∴ 𝑛̂ = 𝑘̂
∴ 𝑐𝑢𝑟𝑙 𝐹̅. 𝑛̂ = [𝑗̂ + 2(𝑥 − 𝑦)𝑘̂]. 𝑘̂ = 2( 𝑥 − 𝑦).
In the figure, only 𝑥𝑦-plane is considered.
The equation of the line OB is 𝑦 = 𝑥
By Stoke’s theorem, we have
∮ 𝐹̅. 𝑑𝑟̅̅̅ = ∬ (𝑐𝑢𝑟𝑙 𝐹̅. 𝑛̂)𝑑𝑠𝑆𝐶
= ∫ ∫ 2( 𝑥 − 𝑦) 𝑑𝑥𝑑𝑦
𝑥
𝑦=0
1
𝑥=0
= 2∫ [𝑥2
−
𝑥2
2
]
1
0
𝑑𝑥
= 2 ∫
𝑥2
2
1
0
𝑑𝑥
= ∫ 𝑥2
𝑑𝑥
1
0
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 14
= [
𝑥3
3
]
0
1
=
1
3
________ Ans.
5.2 Exercise:
1) Use the Stoke’s theorem to evaluate ∫ [( 𝑥 + 2𝑦) 𝑑𝑥 + ( 𝑥 − 𝑧) 𝑑𝑦 +𝐶
(𝑦 − 𝑧)𝑑𝑧] where 𝐶 is the boundary of the triangle with vertices
(2,0,0),(0,3,0) 𝑎𝑛𝑑 (0,0,6) oriented in the anti-clockwise direction.
2) Apply Stoke’s theorem to calculate ∫ 4 𝑦 𝑑𝑥 + 2𝑧 𝑑𝑦 + 6𝑦 𝑑𝑧𝑐
Where 𝑐 is the curve of intersection of 𝑥2
+ 𝑦2
+ 𝑧2
= 6𝑧 and 𝑧 =
𝑥 + 3
3) Use the Stoke’s theorem to evaluate ∫ 𝑦2
𝑑𝑥 + 𝑥𝑦 𝑑𝑦 + 𝑥𝑧 𝑑𝑧𝐶
,
where 𝐶 is the bounding curve of the hemisphere 𝑥2
+ 𝑦2
+ 𝑧2
= 1,
𝑧 ≥ 0, oriented in the positive direction.
6.1 GAUSS’S THEOREM OF DIVERGENCE:(Without Proof)
The surface integral of the normal component of a vector function 𝐹 taken
around a closed surface 𝑆 is equal to the integral of the divergence of 𝐹
taken over the volume 𝑉enclosed by the surface 𝑆.
Mathematically
∬ 𝐹. 𝑛̂ 𝑑𝑠 = ∭ 𝑑𝑖𝑣 𝐹 𝑑𝑣
𝑉𝑆
Example 1: Evaluate ∬ 𝐹. 𝑛̂ 𝑑𝑠𝑆
where 𝐹 = 4𝑥𝑧𝑖̂ − 𝑦2
𝑗̂ + 𝑦𝑧𝑘̂ and 𝑆 is the
surface of the cube bounded by 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1.
Solution: By Gauss’s divergence theorem,
∬ 𝐹. 𝑛̂ 𝑑𝑠 = ∭ (∇. 𝐹) 𝑑𝑣𝑉𝑆
= ∭ (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
).𝑣
(4𝑥𝑧𝑖̂ − 𝑦2
𝑗̂ + 𝑦𝑧𝑘̂) 𝑑𝑣
= ∭ [
𝜕
𝜕𝑥
(4𝑥𝑧) +
𝜕
𝜕𝑦
(−𝑦2
) +
𝜕
𝜕𝑧
(𝑦𝑧)] 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑣
= ∭ (4𝑧− 2𝑦 + 𝑦) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑣
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 15
= ∭ (4𝑧− 𝑦)𝑣
𝑑𝑥 𝑑𝑦 𝑑𝑧
= ∫ ∫ (
4𝑧2
2
− 𝑦𝑧)
0
1
1
0
1
0
𝑑𝑥 𝑑𝑦
= ∫ ∫ (2𝑧2
− 𝑦𝑧)0
11
0
𝑑𝑥 𝑑𝑦
1
0
= ∫ ∫ (2 − 𝑦)
1
0
𝑑𝑥 𝑑𝑦
1
0
= ∫ (2𝑦 −
𝑦2
2
)
0
1
𝑑𝑥
1
0
=
3
2
∫ 𝑑𝑥
1
0
=
3
2
[ 𝑥]0
1
=
3
2
(1)
=
3
2
________ Ans.
Example 2: Evaluate surface integral ∬ 𝐹. 𝑛̂ 𝑑𝑠, where 𝐹 = ( 𝑥2
+ 𝑦2
+
𝑧2)(𝑖̂ + 𝑗̂ + 𝑘̂), 𝑆 is the surface of the tetrahedron 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝑥 +
𝑦 + 𝑧 = 2 and n is the unit normal in the outward direction to the closed
surface 𝑆.
Solution: By gauss’s divergence theorem,
∬ 𝐹. 𝑛̂ 𝑑𝑠 = ∭ 𝑑𝑖𝑣 𝐹. 𝑑𝑣
𝑉𝑆
Where 𝑆 is the surface of tetrahedron 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝑥 + 𝑦 + 𝑧 = 2
= ∭ (𝑖̂
𝜕
𝜕𝑥
+ 𝑗̂
𝜕
𝜕𝑦
+ 𝑘̂ 𝜕
𝜕𝑧
). ( 𝑥2
+ 𝑦2
+ 𝑧2)(𝑖̂ + 𝑗̂ + 𝑘̂)𝑑𝑣𝑉
= ∭ (2𝑥 + 2𝑦 + 2𝑧)𝑑𝑣𝑉
= 2∭ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉
= 2∫ 𝑑𝑥 ∫ 𝑑𝑦
2−𝑥
0
∫ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑧
2−𝑥−𝑦
0
2
0
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 16
= 2∫ 𝑑𝑥 ∫ 𝑑𝑦
2−𝑥
0
(𝑥𝑧 + 𝑦𝑧 +
𝑧2
2
)
0
2−𝑥−𝑦
2
0
= 2∫ 𝑑𝑥 ∫ 𝑑𝑦
2−𝑥
0
[2𝑥 − 𝑥2
− 𝑥𝑦 + 2𝑦 − 𝑥𝑦 − 𝑦2
+
(2−𝑥−𝑦)2
2
]
2
0
= 2∫ 𝑑𝑥 [2𝑥𝑦 − 𝑥2
𝑦 − 𝑥𝑦2
+ 𝑦2
−
𝑦3
3
−
(2−𝑥−𝑦)3
6
]
0
2−𝑥
2
0
= 2∫ 𝑑𝑥 [2𝑥(2− 𝑥) − 𝑥2(2 − 𝑥) − 𝑥(2 − 𝑥)2
+ (2 − 𝑥)2
−
(2−𝑥)3
3
+
2
0
(2−𝑥)3
6
]
= 2∫ [4𝑥 − 2𝑥2
− 2𝑥2
+ 𝑥3
− 4𝑥 + 4𝑥2
− 𝑥3
+ (2 − 𝑥)2
−
(2−𝑥)3
3
+
2
0
(2−𝑥)3
6
]
= 2[2𝑥2
−
4𝑥3
3
+
𝑥4
4
− 2𝑥2
+
4𝑥3
3
−
𝑥4
4
−
(2−𝑥)3
3
+
(2−𝑥)4
12
−
(2−𝑥)4
24
]
0
2
= 2[−
(2−𝑥)3
3
+
(2−𝑥)4
12
−
(2−𝑥)4
24
]
0
2
= 2[
8
3
−
16
12
+
16
24
]
= 4 ________Ans.
6.2 Exercise:
1) Evaluate ∬ 𝐹. 𝑛̂ 𝑑𝑠𝑆
where 𝑆 is the surface of the sphere 𝑥2
+ 𝑦2
+
𝑧2
= 16 and 𝐹 = 3𝑥𝑖̂ + 4𝑦𝑗̂ + 5𝑧𝑘̂.
2) Find ∬ 𝐹. 𝑛̂ 𝑑𝑠𝑆
, where 𝐹 = (2𝑥 + 3𝑧) 𝑖̂ − ( 𝑥𝑧 + 𝑦) 𝑗̂ + (𝑦2
+ 2𝑧)𝑘̂
and 𝑆 is the surface of the sphere having centre (3,-1, 2) and radius 3.
3) Use divergence theorem to evaluate ∬ 𝐴. 𝑑𝑠⃗⃗⃗⃗
𝑆
, where 𝐴 = 𝑥3
𝑖̂ +
𝑦3
𝑗̂ + 𝑧3
𝑘̂ and 𝑆 is the surface of the sphere 𝑥2
+ 𝑦2
+ 𝑧2
= 𝑎2
.
Unit-5 VECTOR INTEGRATION
RAI UNIVERSITY, AHMEDABAD 17
4) Use divergence theorem to show that∬ ∇𝑆
( 𝑥2
+ 𝑦2
+ 𝑧2). 𝑑𝑠 = 6𝑉,
where 𝑆 is any closed surface enclosing volume 𝑉.
7.1 REFERECE BOOKS:
1) Introduction to Engineering Mathematics
By H. K. DASS. & Dr. RAMA VERMA
S. CHAND
2) Higher Engineering Mathematics
By B.V. RAMANA
Mc Graw Hill Education
3) Higher Engineering Mathematics
By Dr. B.S. GREWAL
KHANNA PUBLISHERS
4) http://mecmath.net/calc3book.pdf

More Related Content

PPTX
PPTX
Contact management system , phone book management system
PDF
Nyquist plot
PPTX
Diabetes Mellitus
PPTX
Hypertension
PPTX
Republic Act No. 11313 Safe Spaces Act (Bawal Bastos Law).pptx
PPTX
Power Point Presentation on Artificial Intelligence
Contact management system , phone book management system
Nyquist plot
Diabetes Mellitus
Hypertension
Republic Act No. 11313 Safe Spaces Act (Bawal Bastos Law).pptx
Power Point Presentation on Artificial Intelligence

What's hot (20)

PPTX
Poisson’s and Laplace’s Equation
PPTX
Divergence,curl,gradient
DOCX
B.tech ii unit-1 material curve tracing
PDF
experimental stress analysis-Chapter 2
PPTX
Thomas algorithm
PPT
dc circuits
PDF
Gauss elimination & Gauss Jordan method
PPT
mesh analysis
PPTX
Gauss Forward And Backward Central Difference Interpolation Formula
PPTX
Laplace periodic function with graph
DOCX
Verification of Thevenin’s Theorem. lab report
PPT
Fourier series
PPTX
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
PPTX
Kronig penny model_computational_phyics
PPTX
Energy band gap of the semiconductor
PPTX
Fermi dirac distribution
PDF
Complex function
PDF
Gaussian quadratures
PPT
Block diagram reduction techniques
PPTX
presentation on Euler and Modified Euler method ,and Fitting of curve
Poisson’s and Laplace’s Equation
Divergence,curl,gradient
B.tech ii unit-1 material curve tracing
experimental stress analysis-Chapter 2
Thomas algorithm
dc circuits
Gauss elimination & Gauss Jordan method
mesh analysis
Gauss Forward And Backward Central Difference Interpolation Formula
Laplace periodic function with graph
Verification of Thevenin’s Theorem. lab report
Fourier series
Runge kutta method -by Prof.Prashant Goad(R.C.Patel Institute of Technology,...
Kronig penny model_computational_phyics
Energy band gap of the semiconductor
Fermi dirac distribution
Complex function
Gaussian quadratures
Block diagram reduction techniques
presentation on Euler and Modified Euler method ,and Fitting of curve
Ad

Viewers also liked (20)

PDF
B.Tech-II_Unit-I
DOCX
B.tech ii unit-4 material vector differentiation
DOCX
BSC_Computer Science_Discrete Mathematics_Unit-I
DOCX
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
DOCX
Btech_II_ engineering mathematics_unit4
PDF
B.Tech-II_Unit-IV
DOCX
B.tech ii unit-5 material vector integration
PDF
B.Tech-II_Unit-III
PDF
B.Tech-II_Unit-V
DOCX
Unit 1 Introduction
PDF
merged_document
PDF
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
DOCX
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
DOCX
Btech_II_ engineering mathematics_unit2
DOCX
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
DOCX
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
DOCX
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
PDF
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
DOCX
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
DOCX
Course pack unit 5
B.Tech-II_Unit-I
B.tech ii unit-4 material vector differentiation
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
Btech_II_ engineering mathematics_unit4
B.Tech-II_Unit-IV
B.tech ii unit-5 material vector integration
B.Tech-II_Unit-III
B.Tech-II_Unit-V
Unit 1 Introduction
merged_document
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
BSC_COMPUTER _SCIENCE_UNIT-3_DISCRETE MATHEMATICS
Btech_II_ engineering mathematics_unit2
BSC_COMPUTER _SCIENCE_UNIT-4_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-1_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BCA_Semester-II-Discrete Mathematics_unit-ii_Relation and ordering
MCA_UNIT-4_Computer Oriented Numerical Statistical Methods
Course pack unit 5
Ad

Similar to Btech_II_ engineering mathematics_unit5 (20)

DOCX
Btech_II_ engineering mathematics_unit3
DOCX
B.tech ii unit-3 material multiple integration
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
DOCX
Application of Integration
PDF
A05330107
PDF
Study Material Numerical Differentiation and Integration
DOCX
Tugas 5.3 kalkulus integral
DOCX
B.tech ii unit-2 material beta gamma function
PDF
Trabajo matemáticas 7
PDF
Maths-MS_Term2 (1).pdf
PPTX
Complex differentiation contains analytic function.pptx
PPTX
GraphTransformations.pptx
DOCX
Latihan 8.3 Thomas (Kalkulus Integral)
PDF
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
PDF
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
PPTX
Ejercicios resueltos de analisis matematico 1
PDF
A Non Local Boundary Value Problem with Integral Boundary Condition
PDF
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول
Btech_II_ engineering mathematics_unit3
B.tech ii unit-3 material multiple integration
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Application of Integration
A05330107
Study Material Numerical Differentiation and Integration
Tugas 5.3 kalkulus integral
B.tech ii unit-2 material beta gamma function
Trabajo matemáticas 7
Maths-MS_Term2 (1).pdf
Complex differentiation contains analytic function.pptx
GraphTransformations.pptx
Latihan 8.3 Thomas (Kalkulus Integral)
Tenth-Order Iterative Methods withoutDerivatives forSolving Nonlinear Equations
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
Ejercicios resueltos de analisis matematico 1
A Non Local Boundary Value Problem with Integral Boundary Condition
ملزمة الرياضيات للصف السادس الاحيائي الفصل الاول

More from Rai University (20)

PDF
Brochure Rai University
PPT
Mm unit 4point2
PPT
Mm unit 4point1
PPT
Mm unit 4point3
PPT
Mm unit 3point2
PPTX
Mm unit 3point1
PPTX
Mm unit 2point2
PPT
Mm unit 2 point 1
PPT
Mm unit 1point3
PPT
Mm unit 1point2
PPTX
Mm unit 1point1
DOCX
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
PPTX
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
PPTX
Bsc agri 2 pae u-4.3 public expenditure
PPTX
Bsc agri 2 pae u-4.2 public finance
PPS
Bsc agri 2 pae u-4.1 introduction
PPT
Bsc agri 2 pae u-3.3 inflation
PPTX
Bsc agri 2 pae u-3.2 introduction to macro economics
PPTX
Bsc agri 2 pae u-3.1 marketstructure
PPTX
Bsc agri 2 pae u-3 perfect-competition
Brochure Rai University
Mm unit 4point2
Mm unit 4point1
Mm unit 4point3
Mm unit 3point2
Mm unit 3point1
Mm unit 2point2
Mm unit 2 point 1
Mm unit 1point3
Mm unit 1point2
Mm unit 1point1
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri 2 pae u-4.2 public finance
Bsc agri 2 pae u-4.1 introduction
Bsc agri 2 pae u-3.3 inflation
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri 2 pae u-3 perfect-competition

Recently uploaded (20)

PDF
Abdominal Access Techniques with Prof. Dr. R K Mishra
PDF
VCE English Exam - Section C Student Revision Booklet
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
01-Introduction-to-Information-Management.pdf
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Cell Structure & Organelles in detailed.
PDF
Computing-Curriculum for Schools in Ghana
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Pre independence Education in Inndia.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PDF
Complications of Minimal Access Surgery at WLH
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Abdominal Access Techniques with Prof. Dr. R K Mishra
VCE English Exam - Section C Student Revision Booklet
Final Presentation General Medicine 03-08-2024.pptx
01-Introduction-to-Information-Management.pdf
102 student loan defaulters named and shamed – Is someone you know on the list?
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Cell Structure & Organelles in detailed.
Computing-Curriculum for Schools in Ghana
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pre independence Education in Inndia.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
human mycosis Human fungal infections are called human mycosis..pptx
Microbial diseases, their pathogenesis and prophylaxis
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
Complications of Minimal Access Surgery at WLH
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx

Btech_II_ engineering mathematics_unit5

  • 1. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 1 Course: B.Tech- II Subject: Engineering Mathematics II Unit-5 RAI UNIVERSITY, AHMEDABAD
  • 2. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 2 Unit-V: VECTOR INTEGRATION Sr. No. Name of the Topic Page No. 1 Line Integral 2 2 Surface integral 5 3 Volume Integral 6 4 Green’s theorem (without proof) 8 5 Stoke’s theorem (without proof) 10 6 Gauss’s theorem of divergence (without proof) 13 7 Reference book 16
  • 3. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 3 Vector integration 1.1 LINE INTEGRAL: Line integral = ∫ (𝐹̅. 𝑑𝑟⃗⃗⃗⃗⃗ 𝑑𝑠 )𝑐 𝑑𝑠 = ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝑐 Note: 1) Work: If 𝐹̅ represents the variable force acting on a particle along arc AB, then the total work done = ∫ 𝐹̅. 𝑑𝑟̅̅̅𝐵 𝐴 2) Circulation: If 𝑉̅ represents the velocity of a liquid then ∮ 𝑉̅. 𝑑𝑟̅̅̅ 𝑐 is called the circulation of 𝑉 round the closed curve 𝑐. If the circulation of 𝑉 round every closed curve is zero then 𝑉 is said to be irrotational there. 3) When the path of integration is a closed curve then notation of integration is ∮ in place of ∫ . Note:If ∫ 𝐹̅. 𝑑𝑟̅̅̅𝐵 𝐴 is to be proved to be independent of path, then 𝐹̅ = ∇∅ here 𝐹 is called Conservative (irrotational) vector field and ∅ is called the Scalarpotential. And ∇ × 𝐹̅ = ∇ × ∇∅ = 0 Example 1: Evaluate ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝑐 where 𝐹̅ = 𝑥2 𝑖̂ + 𝑥𝑦𝑗̂ and 𝐶 is the boundary of the square in the plane 𝑧 = 0 and bounded by the lines 𝑥 = 0, 𝑦 = 0, 𝑥 = 𝑎 𝑎𝑛𝑑 𝑦 = 𝑎. Solution: ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝑐 = ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝑂𝐴 + ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐴𝐵 + ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐵𝐶 + ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐶𝑂 Here 𝑟̅ = 𝑥𝑖̂ + 𝑦𝑗̂, 𝑑𝑟̅̅̅ = 𝑑𝑥𝑖̂ + 𝑑𝑦𝑗̂, 𝐹̅ = 𝑥2 𝑖̂ + 𝑥𝑦𝑗̂ 𝐹̅. 𝑑𝑟̅̅̅ = 𝑥2 𝑑𝑥 + 𝑥𝑦𝑑𝑦 _______(i)  On 𝑂𝐴, 𝑦 = 0
  • 4. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 4 ∴ 𝐹̅. 𝑑𝑟̅̅̅ = 𝑥2 𝑑𝑥 (From (i)) ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝑂𝐴 = ∫ 𝑥2 𝑑𝑥 = [ 𝑥3 3 ] 0 3 = 𝑎3 3 𝑎 0 _______ (ii)  On 𝐴𝐵, 𝑥 = 𝑎 ∴ 𝑑𝑥 = 0 ∴ 𝐹̅. 𝑑𝑟̅̅̅ = 𝑎𝑦 𝑑𝑦 (From (i)) ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐴𝐵 = ∫ 𝑎𝑦 𝑑𝑦 = 𝑎 [ 𝑦2 2 ] 0 𝑎 = 𝑎3 2 𝑎 0 _______(iii)  On 𝐵𝐶, 𝑦 = 𝑎 ∴ 𝑑𝑦 = 0 ∴ 𝐹̅. 𝑑𝑟̅̅̅ = 𝑥2 𝑑𝑥 (From (i)) ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐵𝐶 = ∫ 𝑥2 𝑑𝑥 = [ 𝑥3 3 ] 𝑎 0 = − 𝑎3 3 0 𝑎 _______(iv)  On 𝐶𝑂, 𝑥 = 0 ∴ 𝐹̅. 𝑑𝑟̅̅̅ = 0 (From (i)) ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐶𝑂 = 0 _______(v) On adding (ii), (iii), (iv) and (v), we get ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐶 = 𝑎3 3 + 𝑎3 2 − 𝑎3 3 + 0 = 𝑎3 2 ________ Ans. Example 2: A vector field is given by 𝐹̅ = (2𝑦 + 3) 𝑖̂ + ( 𝑥𝑧) 𝑗̂ + (𝑦𝑧− 𝑥)𝑘̂. Evaluate ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐶 along the path 𝑐 is 𝑥 = 2𝑡, 𝑦 = 𝑡, 𝑧 = 𝑡3 𝑓𝑟𝑜𝑚 𝑡 = 0 𝑡𝑜 𝑡 = 1. Solution: ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐶 = ∫ (2𝑦 + 3) 𝑑𝑥 + ( 𝑥𝑧) 𝑑𝑦 + (𝑦𝑧− 𝑥)𝑑𝑧𝐶 [ 𝑠𝑖𝑛𝑐𝑒 𝑥 = 2𝑡 𝑦 = 𝑡 𝑧 = 𝑡3 ∴ 𝑑𝑥 𝑑𝑡 = 2 𝑑𝑦 𝑑𝑡 = 1 𝑑𝑧 𝑑𝑡 = 3𝑡2 ]
  • 5. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 5 = ∫ (2𝑡 + 3)(2 𝑑𝑡) + (2𝑡)( 𝑡3) 𝑑𝑡 + ( 𝑡4 − 2𝑡)(3𝑡2 𝑑𝑡) 1 0 = ∫ (4𝑡 + 6 + 2𝑡4 + 3𝑡6 − 6𝑡3) 𝑑𝑡 1 0 = [4 𝑡2 2 + 6𝑡 + 2 5 𝑡5 + 3 7 𝑡7 − 6 4 𝑡4 ] 0 1 = [2𝑡2 + 6𝑡 + 2 5 𝑡5 + 3 7 𝑡7 − 3 2 𝑡4 ] 0 1 = 2 + 6 + 2 5 + 3 7 − 3 2 = 7.32857 _________Ans. Example 3: Suppose 𝐹( 𝑥, 𝑦, 𝑧) = 𝑥3 𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂ is the force field. Find the work done by 𝐹 along the line from the (1, 2, 3) to (3, 5, 7). Solution: Work done= ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝑐 = ∫ (𝑥3 𝑖̂ + 𝑦𝑗̂ + 𝑧𝑘̂). 𝑑(𝑖̂ 𝑑𝑥 + 𝑗̂ 𝑑𝑦 + 𝑘̂ 𝑑𝑧) (3,5,7) (1,2,3) = ∫ ( 𝑥3 𝑑𝑥 + 𝑦𝑑𝑦 + 𝑧𝑑𝑧) (3,5,7) (1,2,3) = ∫ 𝑥3 𝑑𝑥 + ∫ 𝑦 𝑑𝑦 + ∫ 𝑧 𝑑𝑧 7 3 5 2 3 1 = [ 𝑥4 4 ] 1 3 + [ 𝑦2 2 ] 2 5 + [ 𝑧2 2 ] 3 7 = [ 81 4 − 1 4 ] + [ 25 2 − 4 2 ] + [ 49 2 − 9 2 ] = 80 4 + 21 2 + 40 2 = 202 4 = 50.5 units _______Ans.
  • 6. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 6 1.2Exercise: 1) If a force 𝐹̅ = 2𝑥2 𝑦𝑖̂ + 3𝑥𝑦𝑗̂ displaces a particle in the 𝑥𝑦-plane from (0, 0) to (1, 4) along a curve 𝑦 = 4𝑥2 . Find the work done. 2) If 𝐴 = (3𝑥2 + 6𝑦) 𝑖̂ − 14𝑦𝑧𝑗̂ + 20𝑥𝑧2 𝑘̂, evaluate the line integral ∮ 𝐴 𝑑𝑟⃗⃗⃗⃗ from (0, 0, 0) to (1, 1, 1) along the curve 𝐶. 3) Show that the integral ∫ ( 𝑥𝑦2 + 𝑦3) 𝑑𝑥 + (𝑥2 𝑦 + 3𝑥𝑦2 )𝑑𝑦 (3,4) (1,2) is independent of the path joining the points (1, 2) and (3, 4). Hence, evaluate the integral. 2.1 SURFACE INTEGRAL: Let 𝐹̅ be a vector function and 𝑆 be the given surface. Surface integral of a vector function 𝐹̅ over the surface 𝑆 is defined as the integral of the components of 𝐹̅ along the normal to the surface. Component of 𝐹̅ along the normal= 𝐹̅. 𝑛̂ Where n = unit normal vector to an element 𝑑𝑠 and 𝑛̂ = 𝑔𝑟𝑎𝑑 𝑓 | 𝑔𝑟𝑎𝑑 𝑓| 𝑑𝑠 = 𝑑𝑥 𝑑𝑦 ( 𝑛̂.𝑘̂) Surface integral of F over S = ∑ 𝐹̅. 𝑛̂ = ∬ ( 𝐹̅. 𝑛̂) 𝑑𝑠𝑆 Note: 1) Flux = ∬ ( 𝐹̅. 𝑛̂) 𝑑𝑠𝑆 where, 𝐹̅ represents the velocity of a liquid. If ∬ ( 𝐹̅. 𝑛̂) 𝑑𝑠𝑆 = 0, then 𝐹̅ is said to be a Solenoidal vector point function.
  • 7. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 7 3.1 VOLUME INTEGRAL: Let 𝐹̅ be a vector point function and volume 𝑉 enclosed by a closed surface. The volume integral = ∭ 𝐹̅ 𝑑𝑣𝑉 Example 1: Evaluate ∬ (𝑦𝑧𝑖̂ + 𝑧𝑥𝑗̂ + 𝑥𝑦𝑘̂). 𝑑𝑠𝑆 where 𝑆 the surface of the sphere is 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 in the first octant. Solution: Here, ∅ = 𝑥2 + 𝑦2 + 𝑧2 − 𝑎2 Vector normal to the surface = ∇∅ = 𝑖̂ 𝜕∅ 𝜕𝑥 + 𝑗̂ 𝜕∅ 𝜕𝑦 + 𝑘̂ 𝜕∅ 𝜕𝑧 = (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 )( 𝑥2 + 𝑦2 + 𝑧2 − 𝑎2) = 2𝑥𝑖̂ + 2𝑦𝑗̂ + 2𝑧𝑘̂ 𝑛̂ = ∇∅ |∇∅| = 2𝑥𝑖̂+2𝑦𝑗̂+2𝑧𝑘̂ √4𝑥2+4𝑦2+4𝑧2 = 𝑥𝑖̂+ 𝑦𝑗̂+ 𝑧𝑘̂ √𝑥2+𝑦2+𝑧2 = 𝑥𝑖̂+ 𝑦𝑗̂+ 𝑧𝑘̂ 𝑎 [∵ 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2] Here, 𝐹 = 𝑦𝑧𝑖̂ + 𝑧𝑥𝑗̂ + 𝑥𝑦𝑘̂ 𝐹. 𝑛̂ = (𝑦𝑧𝑖̂ + 𝑧𝑥𝑗̂ + 𝑥𝑦𝑘̂).( 𝑥𝑖̂+ 𝑦𝑗̂+ 𝑧𝑘̂ 𝑎 ) = 3𝑥𝑦𝑧 𝑎 Now, ∬ 𝐹. 𝑛̂𝑆 𝑑𝑠 = ∬ (𝐹. 𝑛̂)𝑆 𝑑𝑥 𝑑𝑦 | 𝑘̂.𝑛̂| = ∫ ∫ 3𝑥𝑦𝑧 𝑑𝑥 𝑑𝑦 𝑎 ( 𝑧 𝑎 ) √𝑎2−𝑥2 0 𝑎 0
  • 8. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 8 = 3∫ ∫ 𝑥𝑦 𝑑𝑦 𝑑𝑥 √𝑎2−𝑥2 0 𝑎 0 = 3∫ 𝑥 ( 𝑦2 2 ) 0 √𝑎2−𝑥2 𝑑𝑥 𝑎 0 = 3 2 ∫ 𝑥 (𝑎2 − 𝑥2 )𝑑𝑥 𝑎 0 = 3 2 ( 𝑎2 𝑥2 2 − 𝑥4 4 ) 0 𝑎 = 3 2 ( 𝑎4 2 − 𝑎4 4 ) = 3𝑎4 8 ________Ans. Example 2: If 𝐹̅ = 2𝑧𝑖̂ − 𝑥𝑗̂ + 𝑦𝑘̂, evaluate ∭ 𝐹̅ 𝑑𝑣𝑉 where, 𝑣 is the region bounded by the surfaces 𝑥 = 0, 𝑦 = 0, 𝑥 = 2, 𝑦 = 4, 𝑧 = 𝑥2 , 𝑧 = 2. Solution: ∭ 𝐹̅ 𝑑𝑣𝑉 = ∭(2𝑧𝑖̂ − 𝑥𝑗̂ + 𝑦𝑘̂) 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 ∫ (2𝑧𝑖̂ − 𝑥𝑗̂ + 𝑦𝑘̂) 𝑑𝑧 2 𝑥2 4 0 2 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑧2 𝑖̂ − 𝑥𝑧𝑗̂ + 𝑦𝑧𝑘̂] 𝑥2 24 0 2 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [4𝑖̂ − 2𝑥𝑗̂ + 2𝑦𝑘̂ − 𝑥4 𝑖̂ + 𝑥3 𝑗̂ − 𝑥2 𝑦𝑘̂] 4 0 2 0 = ∫ 𝑑𝑥 [4𝑦𝑖̂ − 2𝑥𝑦𝑗̂ + 𝑦2 𝑘̂ − 𝑥4 𝑦𝑖̂ + 𝑥3 𝑦𝑗̂ − 𝑥2 𝑦2 2 𝑘̂] 0 42 0 = ∫ (16𝑖̂ − 8𝑥𝑗̂ + 16𝑘̂ − 4𝑥4 𝑖̂ + 4𝑥3 𝑗̂ − 8𝑥2 𝑘̂) 2 0 𝑑𝑥 = [16𝑥𝑖̂ − 4𝑥2 𝑗̂ + 16𝑥𝑘̂ − 4𝑥5 5 𝑖̂ + 𝑥4 𝑗̂ − 8𝑥3 3 𝑘̂] 0 2 = 32𝑖̂ − 16𝑗̂ + 32𝑘̂ − 128 5 𝑖̂ + 16𝑗̂ − 64 3 𝑘̂ = 32𝑖̂ 5 + 32𝑘̂ 3
  • 9. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 9 = 32 15 (3𝑖̂ + 5𝑘̂) _________ Ans. 3.2 Exercise: 1) Evaluate ∬ ( 𝐹̅. 𝑛̂) 𝑑𝑠𝑆 , where, 𝐹 = 18𝑧𝑖̂ − 12𝑗̂ + 3𝑦𝑘̂ and 𝑆 is the surface of the plane 2𝑥 + 3𝑦 + 6𝑧 = 12 in the first octant. 2) If 𝐹 = (2𝑥2 − 3𝑧) 𝑖̂ − 2𝑥𝑦𝑗̂ − 4𝑥𝑘̂, then evaluate ∭ ∇𝑉 𝐹 𝑑𝑣, where 𝑉 is bounded by the plane 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 and 2𝑥 + 2𝑦 + 𝑧 = 4. 4.1 GREEN’S THEOREM:(Without proof) If ∅( 𝑥, 𝑦),Ψ( 𝑥, 𝑦), 𝜕𝜙 𝜕𝑦 𝑎𝑛𝑑 𝜕Ψ 𝜕𝑥 be continuous functions over a region R bounded by simple closed curve 𝐶 in 𝑥 − 𝑦 plane, then ∮( 𝜙 𝑑𝑥 + Ψ 𝑑𝑦) = ∬( 𝜕Ψ 𝜕𝑥 − 𝜕𝜙 𝜕𝑦 ) 𝑑𝑥 𝑑𝑦 𝑅𝐶 Note:Green’s theorem in vector form ∫ 𝐹̅. 𝑑𝑟̅̅̅ = ∬(∇ × 𝐹̅). 𝑘̂ 𝑑𝑅 𝑅𝑐 Where, 𝐹̅ = ∅𝑖̂ + Ψĵ, r̅ = 𝑥𝑖̂ + 𝑦𝑗̂, 𝑘̂ is a unit vector along 𝑧-axis and 𝑑𝑅 = 𝑑𝑥 𝑑𝑦. Example 1: Using green’s theorem, evaluate ∫(𝑥2 𝑦 𝑑𝑥 + 𝑥2 𝑑𝑦)𝑐 , where 𝑐 is the boundary described counter clockwise of the triangle with vertices (0,0),(1,0),(1,1). Solution: By green’s theorem, we have ∮ ( 𝜙 𝑑𝑥 + Ψ 𝑑𝑦) = ∬ ( 𝜕Ψ 𝜕𝑥 − 𝜕𝜙 𝜕𝑦 ) 𝑑𝑥 𝑑𝑦𝑅𝐶 ∫ ( 𝑥2 𝑦 𝑑𝑥 + 𝑥2 𝑑𝑦) = ∬ (2𝑥 − 𝑥2) 𝑑𝑥 𝑑𝑦𝑅𝑐 = ∫ (2𝑥 − 𝑥2) 𝑑𝑥∫ 𝑑𝑦 𝑥 0 1 0 = ∫ (2𝑥 − 𝑥2) 𝑑𝑥 [ 𝑦]0 𝑥1 0 = ∫ (2𝑥2 − 𝑥3 )𝑑𝑥 1 0
  • 10. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 10 = ( 2𝑥3 3 − 𝑥4 4 ) 0 1 = ( 2 3 − 1 4 ) = 5 12 _______Ans. Example 2: Use green’s theorem to evaluate ∫ ( 𝑥2 + 𝑥𝑦) 𝑑𝑥 + (𝑥2 + 𝑦2 )𝑑𝑦𝑐 , where c is the square formed by the lines 𝑦 = ±1, 𝑥 = ±1. Solution: By green’s theorem, we have ∮ ( 𝜙 𝑑𝑥 + Ψ 𝑑𝑦) = ∬ ( 𝜕Ψ 𝜕𝑥 − 𝜕𝜙 𝜕𝑦 ) 𝑑𝑥 𝑑𝑦𝑅𝐶 = ∫ ∫ [ 𝜕 𝜕𝑥 ( 𝑥2 + 𝑦2) − 𝜕 𝜕𝑦 (𝑥2 + 𝑥𝑦)] 𝑑𝑥 𝑑𝑦 1 −1 1 −1 = ∫ ∫ (2𝑥 − 𝑥) 𝑑𝑥𝑑𝑦 1 −1 1 −1 = ∫ ∫ 𝑥 𝑑𝑥𝑑𝑦 1 −1 1 −1 = ∫ 𝑥 𝑑𝑥 ∫ 𝑑𝑦 1 −1 1 −1 = ∫ 𝑥 𝑑𝑥 (𝑦)−1 11 −1 = ∫ 𝑥 𝑑𝑥 (1 + 1) 1 −1 = ∫ 2𝑥 𝑑𝑥 1 −1 = (𝑥2 )−1 1 = 1 − 1 = 0 ________Ans.
  • 11. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 11 4.2 Exercise: 1) Apply Green’s theorem to evaluate ∫ [(2𝑥2 − 𝑦2) 𝑑𝑥 + (𝑥2 + 𝑦2 )𝑑𝑦]𝐶 , where 𝐶 is the boundary of the area enclosed by the 𝑥-axis and the upper half of circle 𝑥2 + 𝑦2 = 𝑎2 . 2) A vector field 𝐹̅ is given by 𝐹̅ = sin 𝑦 𝑖̂ + 𝑥 (1 + cos 𝑦) 𝑗̂. Evaluate the line integral ∫ 𝐹̅. 𝑑𝑟̅̅̅ 𝐶 where 𝐶 is the circular path given by 𝑥2 + 𝑦2 = 𝑎2 . 5.1 STOKE’S THEOREM:(RelationbetweenLine integral and Surface integral) (Without Proof) Surface integral of the component of curl 𝐹̅ along the normal to the surface 𝑆, taken over the surface 𝑆 bounded by curve 𝐶 is equal to the line integral of the vector point function 𝐹̅ taken along the closed curve 𝐶. Mathematically ∮ 𝐹̅. 𝑑𝑟̅̅̅ = ∬ 𝑐𝑢𝑟𝑙𝑆 𝐹̅. 𝑛̂ 𝑑𝑠 Where 𝑛̂ = cos ∝ 𝑖̂ + cos 𝛽 𝑗̂ + cos 𝛾 𝑘̂ is a unit external normal to any surface 𝑑𝑠. OR The circulation of vector 𝐹 around a closed curve 𝐶 is equal to the flux of the curve of the vector through the surface 𝑆 bounded by the curve 𝐶. ∮ 𝐹̅. 𝑑𝑟̅̅̅ = ∬ 𝑐𝑢𝑟𝑙 𝑆 𝐹̅. 𝑛̂ 𝑑𝑠 = ∬ 𝑐𝑢𝑟𝑙 𝑆 𝐹̅. 𝑑𝑆̅
  • 12. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 12 Example 1: Apply Stoke’s theorem to find the value of ∫ (𝑦 𝑑𝑥 + 𝑧 𝑑𝑦 + 𝑥 𝑑𝑧)𝑐 Where 𝑐 is the curve of intersection of 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 and 𝑥 + 𝑧 = 𝑎. Solution: ∫ (𝑦 𝑑𝑥 + 𝑧 𝑑𝑦 + 𝑥 𝑑𝑧)𝑐 = ∫ (𝑦 𝑖̂ + 𝑧 𝑗̂ + 𝑥 𝑘̂).(𝑖̂ 𝑑𝑥 + 𝑗̂ 𝑑𝑦 + 𝑘̂ 𝑑𝑧)𝑐 = ∫ (𝑦 𝑖̂ + 𝑧 𝑗̂ + 𝑥 𝑘̂). 𝑑𝑟̅𝑐 = ∬ 𝑐𝑢𝑟𝑙 (𝑦 𝑖̂ + 𝑧 𝑗̂ + 𝑥 𝑘̂). 𝑛̂ 𝑑𝑠𝑆 (By Stoke’s theorem) = ∬ (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 )×𝑆 (𝑦 𝑖̂ + 𝑧 𝑗̂ + 𝑥 𝑘̂). 𝑛̂ 𝑑𝑠 = ∬ – ( 𝑖̂ + 𝑗̂ + 𝑘̂). 𝑛̂ 𝑑𝑠𝑆 _______(i) Where 𝑆 is the circle formed by the integration of 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 and 𝑥 + 𝑧 = 𝑎. 𝑛̂ = ∇∅ |∇∅| = ( 𝑖̂ 𝜕 𝜕𝑥 +𝑗̂ 𝜕 𝜕𝑦 +𝑘̂ 𝜕 𝜕𝑧 )(𝑥+𝑧−𝑎) |∇∅| = 𝑖̂+ 𝑘̂ √1+1 = 𝑖̂ √2 + 𝑘̂ √2 Putting the value of 𝑛̂ in (i), we have = ∬ –( 𝑖̂ + 𝑗̂ + 𝑘̂). ( 𝑖̂ √2 + 𝑘̂ √2 )𝑆 𝑑𝑠 = ∬ −𝑆 ( 1 √2 + 1 √2 )𝑑𝑠 [𝑈𝑠𝑒 𝑟2 = 𝑅2 − 𝑝2 = 𝑎2 − 𝑎2 2 = 𝑎2 2 ]
  • 13. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 13 = − 2 √2 ∬ 𝑑𝑠 = − 2 √2 𝜋 ( 𝑎 √2 ) 2 = − 𝜋𝑎2 √2𝑆 ______Ans. Example 2: Evaluate ∮ 𝐹̅. 𝑑𝑟̅̅̅ 𝐶 by stoke’s theorem, where 𝐹̅ = 𝑦2 𝑖̂ + 𝑥2 𝑗̂ − (𝑥 + 𝑧)𝑘̂ and 𝐶 is the boundary of triangle with vertices at (0,0,0),(1,0,0) and (1,1,0). Solution: We have, curl 𝐹̅ = ∇ × 𝐹̅ = || 𝑖̂ 𝑗̂ 𝑘̂ 𝜕 𝜕𝑥 𝜕 𝜕𝑦 𝜕 𝜕𝑧 𝑦2 𝑥2 −(𝑥 + 𝑧) || = 0. 𝑖̂ + 𝑗̂ + 2(𝑥 − 𝑦)𝑘̂ We observethat z co-ordinate of each vertex of the triangle is zero. Therefore, the triangle lies in the 𝑥𝑦-plane. ∴ 𝑛̂ = 𝑘̂ ∴ 𝑐𝑢𝑟𝑙 𝐹̅. 𝑛̂ = [𝑗̂ + 2(𝑥 − 𝑦)𝑘̂]. 𝑘̂ = 2( 𝑥 − 𝑦). In the figure, only 𝑥𝑦-plane is considered. The equation of the line OB is 𝑦 = 𝑥 By Stoke’s theorem, we have ∮ 𝐹̅. 𝑑𝑟̅̅̅ = ∬ (𝑐𝑢𝑟𝑙 𝐹̅. 𝑛̂)𝑑𝑠𝑆𝐶 = ∫ ∫ 2( 𝑥 − 𝑦) 𝑑𝑥𝑑𝑦 𝑥 𝑦=0 1 𝑥=0 = 2∫ [𝑥2 − 𝑥2 2 ] 1 0 𝑑𝑥 = 2 ∫ 𝑥2 2 1 0 𝑑𝑥 = ∫ 𝑥2 𝑑𝑥 1 0
  • 14. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 14 = [ 𝑥3 3 ] 0 1 = 1 3 ________ Ans. 5.2 Exercise: 1) Use the Stoke’s theorem to evaluate ∫ [( 𝑥 + 2𝑦) 𝑑𝑥 + ( 𝑥 − 𝑧) 𝑑𝑦 +𝐶 (𝑦 − 𝑧)𝑑𝑧] where 𝐶 is the boundary of the triangle with vertices (2,0,0),(0,3,0) 𝑎𝑛𝑑 (0,0,6) oriented in the anti-clockwise direction. 2) Apply Stoke’s theorem to calculate ∫ 4 𝑦 𝑑𝑥 + 2𝑧 𝑑𝑦 + 6𝑦 𝑑𝑧𝑐 Where 𝑐 is the curve of intersection of 𝑥2 + 𝑦2 + 𝑧2 = 6𝑧 and 𝑧 = 𝑥 + 3 3) Use the Stoke’s theorem to evaluate ∫ 𝑦2 𝑑𝑥 + 𝑥𝑦 𝑑𝑦 + 𝑥𝑧 𝑑𝑧𝐶 , where 𝐶 is the bounding curve of the hemisphere 𝑥2 + 𝑦2 + 𝑧2 = 1, 𝑧 ≥ 0, oriented in the positive direction. 6.1 GAUSS’S THEOREM OF DIVERGENCE:(Without Proof) The surface integral of the normal component of a vector function 𝐹 taken around a closed surface 𝑆 is equal to the integral of the divergence of 𝐹 taken over the volume 𝑉enclosed by the surface 𝑆. Mathematically ∬ 𝐹. 𝑛̂ 𝑑𝑠 = ∭ 𝑑𝑖𝑣 𝐹 𝑑𝑣 𝑉𝑆 Example 1: Evaluate ∬ 𝐹. 𝑛̂ 𝑑𝑠𝑆 where 𝐹 = 4𝑥𝑧𝑖̂ − 𝑦2 𝑗̂ + 𝑦𝑧𝑘̂ and 𝑆 is the surface of the cube bounded by 𝑥 = 0, 𝑥 = 1, 𝑦 = 0, 𝑦 = 1, 𝑧 = 0, 𝑧 = 1. Solution: By Gauss’s divergence theorem, ∬ 𝐹. 𝑛̂ 𝑑𝑠 = ∭ (∇. 𝐹) 𝑑𝑣𝑉𝑆 = ∭ (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ).𝑣 (4𝑥𝑧𝑖̂ − 𝑦2 𝑗̂ + 𝑦𝑧𝑘̂) 𝑑𝑣 = ∭ [ 𝜕 𝜕𝑥 (4𝑥𝑧) + 𝜕 𝜕𝑦 (−𝑦2 ) + 𝜕 𝜕𝑧 (𝑦𝑧)] 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑣 = ∭ (4𝑧− 2𝑦 + 𝑦) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑣
  • 15. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 15 = ∭ (4𝑧− 𝑦)𝑣 𝑑𝑥 𝑑𝑦 𝑑𝑧 = ∫ ∫ ( 4𝑧2 2 − 𝑦𝑧) 0 1 1 0 1 0 𝑑𝑥 𝑑𝑦 = ∫ ∫ (2𝑧2 − 𝑦𝑧)0 11 0 𝑑𝑥 𝑑𝑦 1 0 = ∫ ∫ (2 − 𝑦) 1 0 𝑑𝑥 𝑑𝑦 1 0 = ∫ (2𝑦 − 𝑦2 2 ) 0 1 𝑑𝑥 1 0 = 3 2 ∫ 𝑑𝑥 1 0 = 3 2 [ 𝑥]0 1 = 3 2 (1) = 3 2 ________ Ans. Example 2: Evaluate surface integral ∬ 𝐹. 𝑛̂ 𝑑𝑠, where 𝐹 = ( 𝑥2 + 𝑦2 + 𝑧2)(𝑖̂ + 𝑗̂ + 𝑘̂), 𝑆 is the surface of the tetrahedron 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝑥 + 𝑦 + 𝑧 = 2 and n is the unit normal in the outward direction to the closed surface 𝑆. Solution: By gauss’s divergence theorem, ∬ 𝐹. 𝑛̂ 𝑑𝑠 = ∭ 𝑑𝑖𝑣 𝐹. 𝑑𝑣 𝑉𝑆 Where 𝑆 is the surface of tetrahedron 𝑥 = 0, 𝑦 = 0, 𝑧 = 0, 𝑥 + 𝑦 + 𝑧 = 2 = ∭ (𝑖̂ 𝜕 𝜕𝑥 + 𝑗̂ 𝜕 𝜕𝑦 + 𝑘̂ 𝜕 𝜕𝑧 ). ( 𝑥2 + 𝑦2 + 𝑧2)(𝑖̂ + 𝑗̂ + 𝑘̂)𝑑𝑣𝑉 = ∭ (2𝑥 + 2𝑦 + 2𝑧)𝑑𝑣𝑉 = 2∭ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑉 = 2∫ 𝑑𝑥 ∫ 𝑑𝑦 2−𝑥 0 ∫ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑧 2−𝑥−𝑦 0 2 0
  • 16. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 16 = 2∫ 𝑑𝑥 ∫ 𝑑𝑦 2−𝑥 0 (𝑥𝑧 + 𝑦𝑧 + 𝑧2 2 ) 0 2−𝑥−𝑦 2 0 = 2∫ 𝑑𝑥 ∫ 𝑑𝑦 2−𝑥 0 [2𝑥 − 𝑥2 − 𝑥𝑦 + 2𝑦 − 𝑥𝑦 − 𝑦2 + (2−𝑥−𝑦)2 2 ] 2 0 = 2∫ 𝑑𝑥 [2𝑥𝑦 − 𝑥2 𝑦 − 𝑥𝑦2 + 𝑦2 − 𝑦3 3 − (2−𝑥−𝑦)3 6 ] 0 2−𝑥 2 0 = 2∫ 𝑑𝑥 [2𝑥(2− 𝑥) − 𝑥2(2 − 𝑥) − 𝑥(2 − 𝑥)2 + (2 − 𝑥)2 − (2−𝑥)3 3 + 2 0 (2−𝑥)3 6 ] = 2∫ [4𝑥 − 2𝑥2 − 2𝑥2 + 𝑥3 − 4𝑥 + 4𝑥2 − 𝑥3 + (2 − 𝑥)2 − (2−𝑥)3 3 + 2 0 (2−𝑥)3 6 ] = 2[2𝑥2 − 4𝑥3 3 + 𝑥4 4 − 2𝑥2 + 4𝑥3 3 − 𝑥4 4 − (2−𝑥)3 3 + (2−𝑥)4 12 − (2−𝑥)4 24 ] 0 2 = 2[− (2−𝑥)3 3 + (2−𝑥)4 12 − (2−𝑥)4 24 ] 0 2 = 2[ 8 3 − 16 12 + 16 24 ] = 4 ________Ans. 6.2 Exercise: 1) Evaluate ∬ 𝐹. 𝑛̂ 𝑑𝑠𝑆 where 𝑆 is the surface of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 16 and 𝐹 = 3𝑥𝑖̂ + 4𝑦𝑗̂ + 5𝑧𝑘̂. 2) Find ∬ 𝐹. 𝑛̂ 𝑑𝑠𝑆 , where 𝐹 = (2𝑥 + 3𝑧) 𝑖̂ − ( 𝑥𝑧 + 𝑦) 𝑗̂ + (𝑦2 + 2𝑧)𝑘̂ and 𝑆 is the surface of the sphere having centre (3,-1, 2) and radius 3. 3) Use divergence theorem to evaluate ∬ 𝐴. 𝑑𝑠⃗⃗⃗⃗ 𝑆 , where 𝐴 = 𝑥3 𝑖̂ + 𝑦3 𝑗̂ + 𝑧3 𝑘̂ and 𝑆 is the surface of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 .
  • 17. Unit-5 VECTOR INTEGRATION RAI UNIVERSITY, AHMEDABAD 17 4) Use divergence theorem to show that∬ ∇𝑆 ( 𝑥2 + 𝑦2 + 𝑧2). 𝑑𝑠 = 6𝑉, where 𝑆 is any closed surface enclosing volume 𝑉. 7.1 REFERECE BOOKS: 1) Introduction to Engineering Mathematics By H. K. DASS. & Dr. RAMA VERMA S. CHAND 2) Higher Engineering Mathematics By B.V. RAMANA Mc Graw Hill Education 3) Higher Engineering Mathematics By Dr. B.S. GREWAL KHANNA PUBLISHERS 4) http://mecmath.net/calc3book.pdf