SlideShare a Scribd company logo
4
Most read
10
Most read
12
Most read
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 1
Unit-III: MULTIPLE INTEGRAL
Sr. No. Name of the Topic Page No.
1 Double integrals 2
2 Evaluation of Double Integral 2
3 To Calculate the integral over a given region 6
4 Change of order of integration 9
5 Change of variable 11
6 Area in Cartesian co-ordinates 13
7 Volume of solids by double integral 15
8 Volume of solids by rotation of an area
(Double Integral)
16
9 Triple Integration (Volume) 18
10 ReferenceBook 21
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 2
MULTIPLE INTEGRALS
1.1 DOUBLE INTEGRALS:
We Know that
∫ 𝑓( 𝑥) 𝑑𝑥 = lim𝑛→∞
𝛿𝑥→0
[ 𝑓( 𝑥1) 𝛿𝑥1 + 𝑓( 𝑥2) 𝛿𝑥2 + 𝑓( 𝑥3) 𝛿𝑥3 + ⋯+
𝑏
𝑎
𝑓( 𝑥 𝑛) 𝛿𝑥 𝑛]
Let us consider a function 𝑓(𝑥, 𝑦) of two variables 𝑥 and 𝑦 defines in
the finite region A of 𝑥𝑦- plane. Divide the region 𝐴 into elementary areas.
𝛿𝐴1, 𝛿𝐴2, 𝛿𝐴3,… 𝛿𝐴 𝑛
Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 =𝐴
lim𝑛→∞
𝛿𝐴→0
[ 𝑓( 𝑥1, 𝑦1) 𝛿𝐴1 + 𝑓( 𝑥2, 𝑦2) 𝛿𝐴2 + ⋯+
𝑓( 𝑥 𝑛, 𝑦𝑛) 𝛿𝐴 𝑛]
2.1 Evaluation of Double Integral:
Double integral over region A may be evaluated by
two successiveintegrations.
If A is described as 𝑓1(𝑥) ≤ 𝑦 ≤ 𝑓2(𝑥) [ 𝑦1 ≤ y ≤ 𝑦2]
And 𝑎 ≤ 𝑥 ≤ 𝑏,
Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 = ∫ ∫ 𝑓(𝑥, 𝑦)
𝑦2
𝑦1
𝑑𝑥 𝑑𝑦
𝑏
𝑎𝐴
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 3
2.1.1 FIRST METHOD:
∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [∫ 𝑓( 𝑥, 𝑦) 𝑑𝑦
𝑦2
𝑦1
] 𝑑𝑥
𝑥2
𝑥1𝐴
𝑓(𝑥, 𝑦) is first integrated with respectto y treating 𝑥 as constant between the
limits 𝑦1 and 𝑦2 and then the result is integrated with respectto 𝑥 between
the limits 𝑥1 and 𝑥2.
In the region we take an elementary area 𝛿𝑥𝛿𝑦. Then integration w.r.t to 𝑦
(𝑥 keeping constant) converts small rectangle 𝛿𝑥𝛿𝑦 into a strip 𝑃𝑄(𝑦 𝛿𝑥).
While the integration of the result w.r.t 𝑥 correspondsto the sliding to the
strip, from 𝐴𝐷 to 𝐵𝐶 covering the whole region 𝐴𝐵𝐶𝐷.
2.1.2 SECOND METHOD:
∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [ ∫ 𝑓( 𝑥, 𝑦) 𝑑𝑥
𝑥2
𝑥1
] 𝑑𝑦
𝑦2
𝑦1𝐴
Here 𝑓(𝑥, 𝑦) is first integrated w.r.t 𝑥 keeping 𝑦 constant between the limits
𝑥1 and 𝑥2 and then the resulting expression is integrated with respectto 𝑦
between the limits 𝑦1 and 𝑦2 and vice versa.
NOTE:Forconstant limits, it does not matter whether we first integrate
w.r.t 𝑥 and then w.r.t 𝑦 or vice versa.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 4
2.2 Examples:
Example 1: Find ∫ ∫ 𝑒 𝑦 𝑥⁄
𝑑𝑦 𝑑𝑥
𝑥2
0
1
0
Solution: Here, we have
∫ [∫ 𝑒 𝑦 𝑥⁄
𝑑𝑦
𝑥2
0
] 𝑑𝑥 = ∫ [
𝑒 𝑦 𝑥⁄
1 𝑥⁄
]
0
𝑥2
𝑑𝑥
1
0
1
0
= ∫
( 𝑒 𝑥−1)
1 𝑥⁄
𝑑𝑥
1
0
= ∫ 𝑥 𝑒 𝑥
𝑑𝑥 − ∫ 𝑥 𝑑𝑥
1
0
1
0
= [ 𝑥 𝑒 𝑥
− 𝑒 𝑥]0
1
− [
𝑥2
2
]
0
1
= 𝑒1
− 𝑒1
+ 1 −
1
2
=
1
2
∴ ∫ ∫ 𝒆 𝒚 𝒙⁄
𝒅𝒚 𝒅𝒙
𝒙 𝟐
𝟎
𝟏
𝟎
=
𝟏
𝟐
________ Answer
Example 2: Evaluate ∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
Solution: Here, we have
∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
= ∫ 𝑑𝑦 ∫ 𝑒−𝑥2(1+𝑦2)
∞
0
𝑥 𝑑𝑥
∞
0
= ∫ 𝑑𝑦 [
𝑒−𝑥2(1+𝑦2)
−2(1+𝑦2)
]
0
∞
∞
0
= ∫ [0 +
1
2(1+𝑦2)
] 𝑑𝑦
∞
0
=
1
2
[tan−1
𝑦]0
∞
=
1
2
[tan−1
∞ − tan−1
0]
=
1
2
(
𝜋
2
)
=
𝜋
4
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 5
∴ ∫ ∫ 𝑒−𝑥2(1+𝑦2)
𝑥 𝑑𝑥 𝑑𝑦
∞
0
∞
0
=
𝜋
4
________ Answer
Example 3: Sketch the area of integration and evaluate ∫ ∫ 2𝑥2
𝑦2
𝑑𝑥 𝑑𝑦
√2−𝑦
−√2−𝑦
2
1
.
Solution: Here we have
∫ ∫ 2𝑥2
𝑦2
𝑑𝑥 𝑑𝑦
√2−𝑦
−√2−𝑦
2
1
= 2∫ 𝑦2
𝑑𝑦
2
1
∫ 𝑥2
𝑑𝑥
√2−𝑦
−√2−𝑦
= 4 ∫ 𝑦2
𝑑𝑦
2
1
∫ 𝑥2
𝑑𝑥
√2−𝑦
0
[
∵ ∫ 𝑓( 𝑥) 𝑑𝑥 = 2∫ 𝑓( 𝑥) 𝑑𝑥
𝑎
0
𝑎
−𝑎
𝑤ℎ𝑒𝑟𝑒 𝑥2
𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
]
= 4∫ 𝑦2
𝑑𝑦 [
𝑥3
3
]
0
√2−𝑦2
1
=
4
3
∫ 𝑦2
𝑑𝑦 (2− 𝑦)
3
2
2
1
=
4
3
∫ (2 − 𝑦)2
𝑡3 2⁄
(−𝑑𝑡)
0
1
[
𝑝𝑢𝑡 2 − 𝑦 = 𝑡
∴ 𝑑𝑦 = −𝑑𝑡
]
=
4
3
[(2 − 𝑡)2
(
2𝑡
5
2
5
) − (−2)(2− 𝑡)
2
5
.
2
7
𝑡
7
2 + (2)
2
5
.
2
7
.
2
9
𝑡
9
2]
0
1
=
4
3
[
2
5
+ 2 (
2
5
.
2
7
) + (2)(
2
5
.
2
7
.
2
9
)]
=
4
3
[
2
5
+
8
35
+
16
315
]
=
4
15
[2 +
8
7
+
16
63
]
=
4
15
[
126+72+16
63
]
=
4
15
(
214
63
)
=
856
945
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 6
∴ ∫ ∫ 𝟐𝒙 𝟐
𝒚 𝟐
𝒅𝒙 𝒅𝒚
√ 𝟐−𝒚
−√ 𝟐−𝒚
𝟐
𝟏
=
𝟖𝟓𝟔
𝟗𝟒𝟓
________ Answer
3.1 To Calculate the integral over a given region:
Sometimes the limits of integration are not given but the area of the
integration is given.
If the area of integration is given then we proceed
as follows:
Take a small area 𝑑𝑥 𝑑𝑦. The integration w.r.t 𝑥
between the limits 𝑥1, 𝑥2 keeping 𝑦 fixed
indicates that integration is done, along 𝑃𝑄. Then
the integration of result w.r.t to 𝑦 correspondsto sliding the strips 𝑃𝑄 from
𝐵𝐶 to 𝐴𝐷 covering the whole region 𝐴𝐵𝐶𝐷.
We can also integrate first w.r.t ‘𝑦’ then w.r.t 𝑥, which ever is convenient.
Example 4: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦 over the region in the positive quadrant
for which 𝑥 + 𝑦 ≤ 1.
Solution: 𝑥 + 𝑦 = 1 represents a line AB in the
figure.
𝑥 + 𝑦 < 1 represents a plane 𝑂𝐴𝐵.
The region for integration is 𝑂𝐴𝐵 as shaded in
the figure.
By drawing 𝑃𝑄 parallel to y-axis, 𝑝 lies on the line 𝐴𝐵
𝑖. 𝑒. , (𝑥 + 𝑦 = 1) & Q lies on x-axis. The limit for 𝑦 is 1 − 𝑥 and 0.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 7
Required integral =
∫ 𝑑𝑥 ∫ 𝑦 𝑑𝑦
1−𝑥
0
= ∫ 𝑥 𝑑𝑥 [
𝑦2
2
]
0
1−𝑥1
0
1
0
=
1
2
∫ ( 𝑥 𝑑𝑥) (1− 𝑥)21
0
=
1
2
∫ ( 𝑥 − 2𝑥2
+ 𝑥3) 𝑑𝑥
1
0
=
1
2
[
𝑥2
2
−
2𝑥3
3
+
𝑥4
4
]
0
1
=
1
2
[
1
2
−
2
3
+
1
4
]
=
1
24
________ Answer
Example 5: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦,𝑅
where 𝑅 the quadrant of the circle is
𝑥2
+ 𝑦2
= 𝑎2
where 𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 ≥ 0.
Solution: Let the region of integration be the first quadrant of the
circle 𝑂𝐴𝐵.
Let 𝐼 = ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦𝑅
(𝑥2
+ 𝑦2
= 𝑎2
, 𝑦 = √ 𝑎2 − 𝑥2)
First we integrate w.r.t 𝑦 and then w.r.t 𝑥.
The limits for 𝑦 are 0 and √ 𝑎2 − 𝑥2 and for x, 0 to a.
𝐼 = ∫ 𝑥 𝑑𝑥 ∫ 𝑦 𝑑𝑦
√𝑎2−𝑥2
0
𝑎
0
= ∫ 𝑥 𝑑𝑥 [
𝑦2
2
]
0
√𝑎2−𝑥2
𝑎
0
=
1
2
∫ 𝑥 ( 𝑎2
− 𝑥2) 𝑑𝑥
𝑎
0
=
1
2
[
𝑎2 𝑥2
2
−
𝑥4
4
]
0
𝑎
=
𝑎4
8
________ Answer
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 8
Example 6: Evaluate ∬ 𝑥2
𝑑𝑥 𝑑𝑦𝐴
, where A is the region in the first quadrant
bounded by the hyperbola 𝑥𝑦 = 16 and the lines 𝑦 = 𝑥, 𝑦 = 0 𝑎𝑛𝑑 𝑥 = 8.
Solution: The line 𝑂𝑃, 𝑦 = 𝑥 and the curve 𝑃𝑆, 𝑥𝑦 = 16 intersect at 𝑝(4,4).
The line 𝑆𝑁, 𝑥 = 8 intersects the hyperbola at 𝑆(8,2). And 𝑦 = 0 is x-axis.
The area A is shown shaded.
Divide the area into two parts by PM perpendicular to OX.
For the area 𝑂𝑀𝑃, 𝑦 varies from 0 to 𝑥, and then 𝑥 varies from 0 to 4.
For the area 𝑃𝑀𝑁𝑆, 𝑦 varies from 0 to
16
𝑥
and then 𝑥 varies from 4 to 8.
∴ ∬ 𝑥2
𝐴
𝑑𝑥 𝑑𝑦 = ∫ ∫ 𝑥2
𝑑𝑥 𝑑𝑦 + ∫ ∫ 𝑥2
𝑑𝑥 𝑑𝑦
16
𝑥
0
8
4
𝑥
0
4
0
= ∫ 𝑥2
𝑑𝑥
4
0
∫ 𝑑𝑦
𝑥
0
+ ∫ 𝑥2
𝑑𝑥 ∫ 𝑑𝑦
16
𝑥
0
8
4
= ∫ 𝑥2 [ 𝑦]0
𝑥
𝑑𝑥 + ∫ 𝑥2[ 𝑦]
0
16
𝑥
𝑑𝑥
8
4
4
0
= ∫ 𝑥3
𝑑𝑥 + ∫ 16 𝑥 𝑑𝑥
8
4
4
0
= [
𝑥4
4
]
0
4
+ 16[
𝑥2
2
]
4
8
= 64 + 8 (82
− 42
)
= 64 + 384
= 448 ________ Answer
3.2 EXERCISE:
1) Find ∫ ∫ 𝑥 𝑦 𝑒−𝑥2
𝑑𝑥 𝑑𝑦.
𝑦
0
1
0
2) Evaluate the integral ∫ ∫ 𝑒 𝑥+𝑦
𝑑𝑥 𝑑𝑦
log 𝑦
0
log8
1
.
3) Evaluate ∫ ∫
𝑥 𝑑𝑥 𝑑𝑦
𝑥2+𝑦2
𝑥
𝑥
𝑎
𝑎
0
.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 9
4) Evaluate ∫ ∫
𝑑𝑥 𝑑𝑦
√(1−𝑥2)(1−𝑦2)
1
0
1
0
.
5) Evaluate ∬ √ 𝑥𝑦 − 𝑦2 𝑑𝑦 𝑑𝑥𝑆
, where S is a triangle with vertices (0,
0), (10, 1), and (1, 1).
6) Evaluate ∬( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦 over the area of the triangle whose
vertices are (0, 1), (1, 0), (1, 2).
7) Evaluate ∬ 𝑦 𝑑𝑥 𝑑𝑦 over the area bounded by 𝑥 = 0, 𝑦 = 𝑥2
,
𝑥 + 𝑦 = 2 in the first quadrant.
8) Evaluate ∬ 𝑥𝑦 𝑑𝑥𝑑𝑦 over the region R given by 𝑥2
+ 𝑦2
− 2𝑥 =
0, 𝑦2
= 2𝑥, 𝑦 = 𝑥.
4.1 CHANGE OF ORDER OF INTEGRATION:
On changing the order of integration, the limits of the integration change. To
find the new limits, draw the rough sketch of the region of integration.
Some of the problems connected with double integrals, which seem to be
complicated can be made easy to handle by a change in the order of
integration.
4.2 Examples:
Example 1: Evaluate ∫ ∫
𝑒 −𝑦
𝑦
𝑑𝑥 𝑑𝑦
∞
𝑥
∞
0
.
Solution: We have, ∫ ∫
𝑒−𝑦
𝑦
𝑑𝑥 𝑑𝑦
∞
𝑥
∞
0
Here the elementary strip 𝑃𝑄 extends from 𝑦 = 𝑥 to 𝑦 = ∞ and this vertical
strip slides from
𝑥 = 0 𝑡𝑜 𝑥 = ∞. The shaded portion of the figure is, therefore, the region of
integration.
On changing the order of integration, we first integrate w.r.t 𝑥 along a
horizontal strip 𝑅𝑆 which extends from 𝑥 = 0 to 𝑥 = 𝑦. To cover the given
region, we then integrate w.r.t ′𝑦′ from
𝑦 = 0 𝑡𝑜 𝑦 = ∞.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 10
Thus
∫ 𝑑𝑥
∞
0
∫
𝑒−𝑦
𝑦
∞
𝑥
𝑑𝑦 = ∫
𝑒−𝑦
𝑦
𝑑𝑦 ∫ 𝑑𝑥
𝑦
0
∞
0
= ∫
𝑒−𝑦
𝑦
𝑑𝑦 [ 𝑥]0
𝑦∞
0
= ∫ 𝑦
∞
0
𝑒−𝑦
𝑦
𝑑𝑦
= ∫ 𝑒−𝑦
𝑑𝑦
∞
0
= [
𝑒−𝑦
−1
]
0
∞
= −[
1
𝑒 𝑦
]
0
∞
= −[
1
∞
− 1]
= 1 ________ Answer
Example 2: Change the order of integration in 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦
2−𝑥
𝑥2
1
0
and hence
evaluate the same.
Solution: We have 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦
2−𝑥
𝑥2
1
0
The region of integration is shown by shaded portion in the figure bounded by
parabola 𝑦 = 𝑥2
, 𝑦 = 2 − 𝑥, 𝑥 = 0 (𝑦 − 𝑎𝑥𝑖𝑠).
The point of intersection of the parabola 𝑦 = 𝑥2
and the line 𝑦 = 2 − 𝑥 is 𝐵(1,1).
In the figure below (left) we draw a strip parallel to y-axis and the strip y, varies
from 𝑥2
to 2 − 𝑥 and 𝑥 varies from 0 to 1.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 11
On changing the order of integration we have taken a strip parallel to x-axis in the
area 𝑂𝐵𝐶 and second strip in the area 𝐶𝐵𝐴. The limits of 𝑥 in the area 𝑂𝐵𝐶 are 0
and √ 𝑦 and the limits of 𝑥 in the area 𝐶𝐵𝐴 are 0 and 2 − 𝑦.
So, the given integral is
= ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 + ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥
2−𝑦
0
2
1
√ 𝑦
0
1
0
= ∫ 𝑦 𝑑𝑦[
𝑥2
2
]
0
√ 𝑦
+ ∫ 𝑦 𝑑𝑦[
𝑥2
2
]
0
2−𝑦2
1
1
0
=
1
2
∫ 𝑦2
𝑑𝑦 +
1
2
∫ 𝑦(2 − 𝑦)2
𝑑𝑦
2
1
1
0
=
1
2
[
𝑦3
3
]
0
1
+
1
2
∫ (4𝑦 − 4𝑦2
+ 𝑦3
)
2
1
=
1
6
+
1
2
[
96−128+48−24+16−3
12
]
=
1
6
+
5
24
=
9
24
=
3
8
________ Answer
4.3 EXERCISE:
1) Change the order of the integration ∫ ∫ 𝑒−𝑥𝑦
𝑦 𝑑𝑦 𝑑𝑥
𝑥
0
∞
0
.
2) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦
𝑒 𝑥
1
2
0
by changing the order of integration.
3) Change the order of integration and evaluate ∫ ∫
𝑥2 𝑑𝑥 𝑑𝑦
√𝑥4−4𝑦2
2
√2𝑦
2
0
.
5.1 CHANGE OF VARIABLE:
Sometimes the problems of double integration can be solved easily by
change of independent variables. Let the double integral be
as ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦𝑅
. It is to be changed by the new variables 𝑢, 𝑣.
The relation of 𝑥, 𝑦 with 𝑢, 𝑣 are given as 𝑥 = ∅( 𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣). Then
the double integration is converted into.
1. ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦𝑅
= ∬ 𝑓{ 𝜙( 𝑢, 𝑣), 𝜓(𝑢, 𝑣)}𝑅′ | 𝐽| 𝑑𝑢 𝑑𝑣,
[𝑑𝑥 𝑑𝑦 =
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
𝑑𝑢 𝑑𝑣]
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 12
∬ 𝒇( 𝒙,𝒚) 𝒅𝒙 𝒅𝒚 = ∬ 𝒇{ 𝒙( 𝒖, 𝒗), 𝒚(𝒖, 𝒗)} |
𝝏 (𝒙,𝒚)
𝝏 (𝒖,𝒗)
|𝑫𝑹
𝒅𝒖 𝒅𝒗
5.2 Example 1: Using 𝑥 + 𝑦 = 𝑢, 𝑥 − 𝑦 = 𝑣, evaluate the double integral over
the square R
∬ ( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦𝑅
Integration being taken over the area bounded by the lines 𝑥 + 𝑦 = 2, 𝑥 +
𝑦 = 0, 𝑥 − 𝑦 = 2, 𝑥 − 𝑦 = 0.
Solution: 𝑥 + 𝑦 = 𝑢 ________(1)
𝑥 − 𝑦 = 𝑣 ________(2)
On solving (1) and (2), we get
𝑥 =
1
2
( 𝑢 + 𝑣), 𝑦 =
1
2
( 𝑢 − 𝑣)
𝐽 =
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
= |
𝜕𝑥
𝜕𝑢
𝜕𝑥
𝜕𝑣
𝜕𝑦
𝜕𝑢
𝜕𝑦
𝜕𝑣
| = |
1
2
1
2
1
2
−
1
2
| = −
1
4
−
1
4
= −
1
2
∬ ( 𝑥2
+ 𝑦2) 𝑑𝑥 𝑑𝑦 = ∫ ∫ [
1
4
(𝑢 + 𝑣)2
+
1
4
(𝑢 −
2
0
2
0𝑅
𝑣)2
] |
𝜕 (𝑥,𝑦)
𝜕 (𝑢,𝑣)
| 𝑑𝑢 𝑑𝑣
= ∫ ∫
1
2
( 𝑢2
+ 𝑣2)|−
1
2
| 𝑑𝑢 𝑑𝑣
2
0
2
0
= −
1
4
∫ 𝑑𝑣∫ ( 𝑢2
+ 𝑣2) 𝑑𝑢
2
0
2
0
= −
1
4
∫ 𝑑𝑣 [
𝑢3
3
+ 𝑢𝑣2
]
0
22
0
= −
1
4
∫ 𝑑𝑣(
8
3
+ 2𝑣2
)
2
0
= −
1
4
∫ (
8
3
+ 2𝑣2
)
2
0
𝑑𝑣
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 13
= −
1
4
[
8
3
𝑣 +
2
3
𝑣3
]
0
2
= −
1
4
[
8
3
(2) +
2
3
(2)3
]
= −
1
4
(
16
3
+
16
3
)
= −
1
4
(
32
3
)
= −
8
3
________ Answer
5.3 EXERCISE:
1) Using the transformation 𝑥 + 𝑦 = 𝑢, 𝑦 = 𝑢𝑣 show that
∫ ∫ 𝑒 𝑦 (𝑥+𝑦)⁄
𝑑𝑦 𝑑𝑥 =
1
2
(𝑒 − 1)
1−𝑥
0
1
0
2) Evaluate ∬ (𝑥 + 𝑦)2
𝑑𝑥 𝑑𝑦𝑅
, where R is the parallelogram in the xy-plane
with vertices (1,0), (3,1), (2,2), (0,1), using the transformation 𝑢 = 𝑥 + 𝑦
and 𝑣 = 𝑥 − 2𝑦.
6.1 AREA IN CARTESIAN CO-ORDINATES:
Area = ∫ ∫ 𝒅𝒙 𝒅𝒚
𝒚 𝟐
𝒚 𝟏
𝒃
𝒂
6.2 Example 1: Find the area bounded by the lines
𝒚 = 𝒙 + 𝟐
𝒚 = −𝒙 + 𝟐
𝒙 = 𝟓
Solution: The region of integration is bounded by the lines
𝑦 = 𝑥 + 2 _________(1)
𝑦 = −𝑥 + 2 _________(2)
𝑥 = 5 _________(3)
On solving (1) and (2), we get the point 𝐴(0,2)
On solving (2) and (3), we get the point 𝐶(5,−3)
On solving (1) and (3), we get the point 𝐸(5,7)
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 14
We draw a strip parallel to 𝑦-axis.
On this strip the limits of 𝑦 are 𝑦 = −𝑥 + 2 and 𝑦 = 𝑥 + 2, and the limit of
𝑥 are 𝑥 = 0 and 𝑥 = 5.
Required area = Shaded portion of the figure
= ∬ 𝑑𝑥 𝑑𝑦
= ∫ 𝑑𝑥 ∫ 𝑑𝑦
𝑥+2
–𝑥+2
5
0
= ∫ 𝑑𝑥 [ 𝑦]−𝑥+2
𝑥+25
0
= ∫ 𝑑𝑥 [ 𝑥 + 2 − (−𝑥 + 2)]
5
0
= ∫ [2𝑥] 𝑑𝑥
5
0
= [
2𝑥2
2
]
0
5
= [ 𝑥2]0
5
= [25− 0]
= 25 Sq. units ________ Answer
Example 2: Find the area betweenthe parabolas 𝒚 𝟐
= 𝟒𝒂𝒙 and 𝒙 𝟐
= 𝟒𝒂𝒚.
Solution: We have, 𝑦2
= 4𝑎𝑥 ________ (1)
𝑥2
= 4𝑎𝑦 ________ (2)
On solving the equations (1) and (2) we get the point of intersection (4a, 4a).
Divide the area into horizontal strips of width 𝛿𝑦, 𝑥 varies from
𝑃,
𝑦2
4𝑎
𝑡𝑜 𝑄,√4𝑎𝑦 and then 𝑦 varies from 𝑂 ( 𝑦 = 0) 𝑡𝑜 𝐴 (𝑦 = 4𝑎).
∴ The required area = ∫ 𝑑𝑦 ∫ 𝑑𝑥
√4𝑎𝑦
𝑦2 4𝑎⁄
4𝑎
0
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 15
= ∫ 𝑑𝑦 [ 𝑥]
𝑦2
4𝑎
√4𝑎𝑦4𝑎
0
= ∫ 𝑑𝑦 [√4𝑎𝑦 −
𝑦2
4𝑎
]
4𝑎
0
= [√4𝑎
𝑦3 2⁄
3
2
−
𝑦3
12𝑎
]
0
4𝑎
=
4√𝑎
3
(4𝑎)3 2⁄
−
(4𝑎)3
12𝑎
=
16
3
𝑎2
________ Answer
7.1 VOLUME OF SOLIDS BY DOUBLE INTEGRAL:
Let a surface 𝑆′
be 𝑧 = 𝑓(𝑥, 𝑦)
The projection of 𝑠′ on 𝑥 − 𝑦 plane be 𝑆.
Take infinite number of elementary rectangles 𝛿𝑥 𝛿𝑦. Erect vertical rod on
the 𝛿𝑥 𝛿𝑦 of height 𝑧.
Volume of each vertical rod = Area of the base × height
= 𝛿𝑥 𝛿𝑦 . 𝑧
Volume of the solid cylinder on S = lim
𝛿𝑥→0
𝛿𝑦→0
∑ ∑ 𝑧 𝑑𝑥 𝑑𝑦
= ∬ 𝑧 𝑑𝑥 𝑑𝑦
= ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
Here the integration is carried out over the area S.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 16
Example 1: Find the volume bounded by the 𝒙𝒚-plane, the paraboloid
𝟐𝒛 = 𝒙 𝟐
+ 𝒚 𝟐
and the cylinder 𝒙 𝟐
+ 𝒚 𝟐
= 𝟒.
Solution: Here, we have
2𝑧 = 𝑥2
+ 𝑦2
⇒ 2𝑧 = 𝑟2
⇒ 𝑧 =
𝑟2
2
(Paraboloid) ______(1)
𝑥2
+ 𝑦2
= 4 ⇒ 𝑟 = 2, 𝑧 = 0, (circle) ______(2)
Volume of one vertical rod = 𝑧. 𝑟 𝑑𝑟 𝑑𝜃
Volume of the solid = ∬ 𝑧 𝑟 𝑑𝑟 𝑑𝜃
= 2 ∫ 𝑑𝜃 ∫
𝑟2
2
𝑟 𝑑𝑟
2
0
𝜋
0
=
2
2
∫ 𝑑𝜃 ∫ 𝑟3
𝑑𝑟
2
0
𝜋
0
= ∫ 𝑑𝜃 (
𝑟4
4
)
0
2𝜋
0
= ∫ 𝑑𝜃 (
16
4
)
𝜋
0
= 4∫ 𝑑𝜃
𝜋
0
= 4[ 𝜃]0
𝜋
= 4𝜋 ________ Answer
8.1 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE
INTEGRAL):
When the area enclosed by a curve 𝑦 = 𝑓(𝑥) is revolved about an axis, a
solid is generated; we have to find out the volume of solid generated.
Volume of the solid generated about x-axis = ∫ ∫ 2𝜋 𝑃𝑄 𝑑𝑥 𝑑𝑦
𝑦2(𝑥)
𝑦1(𝑥)
𝑏
𝑎
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 17
Example 1: Find the volume of the torus generatedby revolving the circle
𝒙 𝟐
+ 𝒚 𝟐
= 𝟒 about the line 𝒙 = 𝟑.
Solution: 𝑥2
+ 𝑦2
= 4
𝑉 = ∬(2𝜋 𝑃𝑄) 𝑑𝑥 𝑑𝑦
= 2𝜋 ∬(3 − 𝑥) 𝑑𝑥 𝑑𝑦
= 2𝜋 ∫ 𝑑𝑥 (3𝑦 − 𝑥𝑦)
−√4−𝑥2
+√4−𝑥22
−2
(3 − 𝑥) 𝑑𝑦
= 2𝜋 ∫ 𝑑𝑥 [3√4 − 𝑥2 − 𝑥√4 − 𝑥2 + 3√4 − 𝑥2 − 𝑥√4 − 𝑥2]
+2
−2
= 4𝜋∫ [3√4 − 𝑥2 − 𝑥√4 − 𝑥2]
+2
−2
𝑑𝑥
= 4𝜋[3
𝑥
2
√4 − 𝑥2 + 3 ×
4
2
sin−1 𝑥
2
+
1
3
(4 − 𝑥2)3 2⁄
]
−2
+2
= 4𝜋 [6 ×
𝜋
2
+ 6 ×
𝜋
2
]
= 24𝜋2
________ Ans.
8.2 EXERCISE:
1) Find the area of the ellipse
𝑥2
𝑎2
+
𝑦2
𝑏2
= 1
2) Find by double integration the area of the smaller region bounded by
𝑥2
+ 𝑦2
= 𝑎2
and𝑥 + 𝑦 = 𝑎.
3) Find the volume bounded by 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, the cylinder 𝑥2
+ 𝑦2
= 1
and the plane 𝑥 + 𝑦 + 𝑧 = 3.
4) Evaluate the volume of the solid generated by revolving the area of
the parabola 𝑦2
= 4𝑎𝑥 bounded by the latus rectum about the tangent
at the vertex.
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 18
9.1 TRIPLE INTEGRATION (VOLUME) :
Let a function 𝑓(𝑥, 𝑦, 𝑧) be a continuous at every point of a finite region 𝑆 of
three dimensional spaces. Consider 𝑛 sub-spaces 𝛿𝑠1, 𝛿𝑠2, 𝛿𝑠3,… . 𝛿𝑠 𝑛 of the
spaceS.
If (𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) be a point in the rth subspace.
The limit of the sum ∑ 𝑓(𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟)
𝑛
𝑟=1 𝛿𝑠𝑟, 𝑎𝑠 𝑛 → ∞, 𝛿𝑠𝑟 → 0 is
known as the triple integral of 𝑓(𝑥, 𝑦, 𝑧) over the spaceS.
Symbolically, it is denoted by
∭𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑆
𝑆
It can be calculated as ∫ ∫ ∫ 𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑧2
𝑧1
𝑦2
𝑦1
𝑥2
𝑥1
. First we integrate with
respect to 𝑧 treating 𝑥, 𝑦 as constant between the limits 𝑧1 𝑎𝑛𝑑 𝑧2 . The
resulting expression (function of 𝑥, 𝑦) is integrated with respect to 𝑦 keeping
𝑥 as constant between the limits 𝑦1 𝑎𝑛𝑑 𝑦2. At the end we integrate the
resulting expression (function of 𝑥 only) within the limits 𝑥1 𝑎𝑛𝑑 𝑥2.
First we integrate from inner most integral w.r.t z, and then we integrate
w.r.t 𝑦, and finally the outer most w.r.t 𝑥.
But the above order of integration is immaterial provided the limits change
accordingly.
Example 1: Evaluate ∭ ( 𝑥 − 2𝑦 +𝑅
𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅:
0 ≤ 𝑥 ≤ 1
0 ≤ 𝑦 ≤ 𝑥2
0 ≤ 𝑧 ≤ 𝑥 + 𝑦
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 19
Solution: ∭ ( 𝑥 − 2𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 ∫ (𝑥 − 2𝑦 + 𝑧)𝑑𝑧
𝑥+𝑦
0
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 (𝑥𝑧 − 2𝑦𝑧 +
𝑧2
2
)
0
𝑥+𝑦𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥 ( 𝑥 + 𝑦) − 2𝑦( 𝑥 + 𝑦) +
(𝑥+𝑦)2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2
+ 𝑥𝑦 − 2𝑥𝑦 − 2𝑦2
+
(𝑥+𝑦)2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2
− 𝑥𝑦 − 2𝑦2
+
𝑥2
2
+ 𝑥𝑦 +
𝑦2
2
]
𝑥2
0
1
0
= ∫ 𝑑𝑥 ∫ 𝑑𝑦 [
3𝑥2
2
−
3𝑦2
2
]
𝑥2
0
1
0
=
3
2
∫ 𝑑𝑥
1
0
∫ ( 𝑥2
− 𝑦2) 𝑑𝑦
𝑥2
0
=
3
2
∫ 𝑑𝑥
1
0
(𝑥2
𝑦 −
𝑦3
3
)
0
𝑥2
=
3
2
∫ 𝑑𝑥
1
0
(𝑥4
−
𝑥6
3
)
=
3
2
(
𝑥5
5
−
𝑥7
21
)
0
1
=
3
2
(
1
5
−
1
21
)
=
8
35
________Answer
Example 2: Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧
𝑑𝑥 𝑑𝑦 𝑑𝑧
𝑥+𝑦
0
𝑥
0
𝑙𝑜𝑔 2
0
Solution: 𝐼 = ∫ ∫ 𝑒 𝑥+𝑦 [ 𝑒 𝑧]0
𝑥+𝑦
𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
= ∫ ∫ 𝑒 𝑥+𝑦
(𝑒 𝑥+𝑦
− 1)𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
= ∫ ∫ [𝑒2(𝑥+𝑦)
− 𝑒 𝑥+𝑦
] 𝑑𝑥 𝑑𝑦
𝑥
0
𝑙𝑜𝑔 2
0
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 20
= ∫ [𝑒2𝑥
.
𝑒2𝑥
2
− 𝑒 𝑥
. 𝑒 𝑦
]
0
𝑥
𝑑𝑥
𝑙𝑜𝑔 2
0
= ∫ [
𝑒4𝑥
2
− 𝑒2𝑥
−
𝑒2𝑥
2
+ 𝑒 𝑥
]
0
𝑥
𝑑𝑥
𝑙𝑜𝑔 2
0
= [
𝑒4𝑥
8
−
𝑒2𝑥
2
−
𝑒2𝑥
4
+ 𝑒 𝑥
]
0
log2
= [
𝑒4 𝑙𝑜𝑔2
8
−
𝑒2 log2
2
−
𝑒2 log2
4
+ 𝑒log 2
] − (
1
8
−
1
2
−
1
4
+ 1)
= [
𝑒 𝑙𝑜𝑔16
8
−
𝑒log4
2
−
𝑒log4
4
+ 𝑒log 2
] − (
1
8
−
1
2
−
1
4
+ 1)
= (
16
8
−
4
2
−
4
4
+ 2) − (
1
8
−
1
2
−
1
4
+ 1)
=
5
8
________ Answer
9.2 EXERCISE:
1) Evaluate
∭ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1, 1 ≤ 𝑦 ≤ 2, 2 ≤ 𝑧 ≤ 3.𝑅
2) Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧𝑥+log 𝑦
0
𝑑𝑧 𝑑𝑦 𝑑𝑥
𝑥
0
log 2
0
.
3) Evaluate∭ ( 𝑥2
+ 𝑦2
+ 𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅
where
𝑅:
𝑥 = 0, 𝑦 = 0, 𝑧 = 0
𝑥 + 𝑦 + 𝑧 = 𝑎, (𝑎 > 0)
Unit: 3 MULTIPLE INTEGRAL
RAI UNIVERSITY, AHMEDABAD 21
10.1REFERENCE BOOK:
1) Introduction to EngineeringMathematics
By H. K. DASS. & Dr. RAMA VERMA
2) www.bookspar.com/wp-content/uploads/vtu/notes/1st-2nd-
sem/m2-21/Unit-5-Multiple-Integrals.pdf
3) http://www.mathstat.concordia.ca/faculty/cdavid/EMAT212/sol
integrals.pdf
4) http://studentsblog100.blogspot.in/2013/02/anna-university-
engineering-mathematics.html

More Related Content

PPT
PPT of Improper Integrals IMPROPER INTEGRAL
DOCX
Btech_II_ engineering mathematics_unit3
DOCX
B.tech ii unit-5 material vector integration
PPTX
Integrals and its applications
PPTX
APPLICATION OF DEFINITE INTEGRAL
PPT
Line integral.ppt
PPTX
Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics
PPT
PPT of Improper Integrals IMPROPER INTEGRAL
Btech_II_ engineering mathematics_unit3
B.tech ii unit-5 material vector integration
Integrals and its applications
APPLICATION OF DEFINITE INTEGRAL
Line integral.ppt
Double & triple integral unit 5 paper 1 , B.Sc. 2 Mathematics

What's hot (20)

PPT
Fourier series
DOCX
B.tech ii unit-1 material curve tracing
PPTX
Laplace transform
PPTX
Divergence,curl,gradient
PPTX
Gradient , Directional Derivative , Divergence , Curl
PPTX
orthogonal matrix and its properties
PPTX
Differential equations of first order
DOCX
Btech_II_ engineering mathematics_unit1
PPTX
simpion's 3/8 rule
PDF
algebraic&transdential equations
PPTX
Runge-Kutta methods with examples
PPTX
Partial Differentiation
PPTX
GAUSS ELIMINATION METHOD
DOCX
B.tech ii unit-4 material vector differentiation
PDF
Coordinate and unit vector
PPT
Partial Differentiation & Application
PPTX
Stoke’s theorem
PDF
Group theory notes
PDF
Higher Order Differential Equation
Fourier series
B.tech ii unit-1 material curve tracing
Laplace transform
Divergence,curl,gradient
Gradient , Directional Derivative , Divergence , Curl
orthogonal matrix and its properties
Differential equations of first order
Btech_II_ engineering mathematics_unit1
simpion's 3/8 rule
algebraic&transdential equations
Runge-Kutta methods with examples
Partial Differentiation
GAUSS ELIMINATION METHOD
B.tech ii unit-4 material vector differentiation
Coordinate and unit vector
Partial Differentiation & Application
Stoke’s theorem
Group theory notes
Higher Order Differential Equation
Ad

Viewers also liked (20)

DOCX
B.tech ii unit-2 material beta gamma function
PDF
Multiple integrals
PPTX
Maths-double integrals
DOCX
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
PPTX
Double Integral Powerpoint
PPTX
Special functions
PDF
Application of the integral
PDF
Gamma and betta function harsh shah
PDF
B.Tech-II_Unit-II
PPTX
Complex numbers polynomial multiplication
PDF
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
DOCX
Btech_II_ engineering mathematics_unit5
DOCX
BSC_Computer Science_Discrete Mathematics_Unit-I
DOCX
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
PDF
B.Tech-II_Unit-V
PDF
B.Tech-II_Unit-I
DOCX
Unit 1 Introduction
PDF
B.Tech-II_Unit-III
PDF
merged_document
PDF
B.Tech-II_Unit-IV
B.tech ii unit-2 material beta gamma function
Multiple integrals
Maths-double integrals
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
Double Integral Powerpoint
Special functions
Application of the integral
Gamma and betta function harsh shah
B.Tech-II_Unit-II
Complex numbers polynomial multiplication
BCA_Semester-II-Discrete Mathematics_unit-iv Graph theory
Btech_II_ engineering mathematics_unit5
BSC_Computer Science_Discrete Mathematics_Unit-I
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
B.Tech-II_Unit-V
B.Tech-II_Unit-I
Unit 1 Introduction
B.Tech-II_Unit-III
merged_document
B.Tech-II_Unit-IV
Ad

Similar to B.tech ii unit-3 material multiple integration (20)

PDF
SMT1105-1.pdf
PPTX
Multiple Integrals_1.pptx
PDF
Double_Integral.pdf
PDF
Double integration
PDF
6. Multiple Integrals - RPMjkldajNDvNSDmnvS<MDv
PPTX
Multiple ppt
PPTX
Multiple intigration ppt
PDF
Integrales definidas y método de integración por partes
PPTX
multiple intrigral lit
PDF
Multiple_Integrals.pdf
PDF
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
PPTX
Double Integral
PPTX
10.1-Double-integrals-definition-2.power point
PPTX
10.1-Double-integrals-definition-2 (1).pptx
PDF
Double integral using polar coordinates
PPTX
Integrals
PPTX
Integration presentation
PPT
integeration.ppt
PDF
BCA_MATHEMATICS-I_Unit-V
PDF
instegration basic notes of class 12th h
SMT1105-1.pdf
Multiple Integrals_1.pptx
Double_Integral.pdf
Double integration
6. Multiple Integrals - RPMjkldajNDvNSDmnvS<MDv
Multiple ppt
Multiple intigration ppt
Integrales definidas y método de integración por partes
multiple intrigral lit
Multiple_Integrals.pdf
Applied Mathematics Multiple Integration by Mrs. Geetanjali P.Kale.pdf
Double Integral
10.1-Double-integrals-definition-2.power point
10.1-Double-integrals-definition-2 (1).pptx
Double integral using polar coordinates
Integrals
Integration presentation
integeration.ppt
BCA_MATHEMATICS-I_Unit-V
instegration basic notes of class 12th h

More from Rai University (20)

PDF
Brochure Rai University
PPT
Mm unit 4point2
PPT
Mm unit 4point1
PPT
Mm unit 4point3
PPT
Mm unit 3point2
PPTX
Mm unit 3point1
PPTX
Mm unit 2point2
PPT
Mm unit 2 point 1
PPT
Mm unit 1point3
PPT
Mm unit 1point2
PPTX
Mm unit 1point1
DOCX
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
PPTX
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
PPTX
Bsc agri 2 pae u-4.3 public expenditure
PPTX
Bsc agri 2 pae u-4.2 public finance
PPS
Bsc agri 2 pae u-4.1 introduction
PPT
Bsc agri 2 pae u-3.3 inflation
PPTX
Bsc agri 2 pae u-3.2 introduction to macro economics
PPTX
Bsc agri 2 pae u-3.1 marketstructure
PPTX
Bsc agri 2 pae u-3 perfect-competition
Brochure Rai University
Mm unit 4point2
Mm unit 4point1
Mm unit 4point3
Mm unit 3point2
Mm unit 3point1
Mm unit 2point2
Mm unit 2 point 1
Mm unit 1point3
Mm unit 1point2
Mm unit 1point1
Bdft ii, tmt, unit-iii, dyeing & types of dyeing,
Bsc agri 2 pae u-4.4 publicrevenue-presentation-130208082149-phpapp02
Bsc agri 2 pae u-4.3 public expenditure
Bsc agri 2 pae u-4.2 public finance
Bsc agri 2 pae u-4.1 introduction
Bsc agri 2 pae u-3.3 inflation
Bsc agri 2 pae u-3.2 introduction to macro economics
Bsc agri 2 pae u-3.1 marketstructure
Bsc agri 2 pae u-3 perfect-competition

Recently uploaded (20)

PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Classroom Observation Tools for Teachers
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
Computing-Curriculum for Schools in Ghana
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Cell Types and Its function , kingdom of life
PDF
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Cell Structure & Organelles in detailed.
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Microbial diseases, their pathogenesis and prophylaxis
Final Presentation General Medicine 03-08-2024.pptx
Microbial disease of the cardiovascular and lymphatic systems
102 student loan defaulters named and shamed – Is someone you know on the list?
STATICS OF THE RIGID BODIES Hibbelers.pdf
Classroom Observation Tools for Teachers
O5-L3 Freight Transport Ops (International) V1.pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Insiders guide to clinical Medicine.pdf
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
Computing-Curriculum for Schools in Ghana
Module 4: Burden of Disease Tutorial Slides S2 2025
Cell Types and Its function , kingdom of life
Physiotherapy_for_Respiratory_and_Cardiac_Problems WEBBER.pdf
Complications of Minimal Access Surgery at WLH
2.FourierTransform-ShortQuestionswithAnswers.pdf
Cell Structure & Organelles in detailed.
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES

B.tech ii unit-3 material multiple integration

  • 1. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 1 Unit-III: MULTIPLE INTEGRAL Sr. No. Name of the Topic Page No. 1 Double integrals 2 2 Evaluation of Double Integral 2 3 To Calculate the integral over a given region 6 4 Change of order of integration 9 5 Change of variable 11 6 Area in Cartesian co-ordinates 13 7 Volume of solids by double integral 15 8 Volume of solids by rotation of an area (Double Integral) 16 9 Triple Integration (Volume) 18 10 ReferenceBook 21
  • 2. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 2 MULTIPLE INTEGRALS 1.1 DOUBLE INTEGRALS: We Know that ∫ 𝑓( 𝑥) 𝑑𝑥 = lim𝑛→∞ 𝛿𝑥→0 [ 𝑓( 𝑥1) 𝛿𝑥1 + 𝑓( 𝑥2) 𝛿𝑥2 + 𝑓( 𝑥3) 𝛿𝑥3 + ⋯+ 𝑏 𝑎 𝑓( 𝑥 𝑛) 𝛿𝑥 𝑛] Let us consider a function 𝑓(𝑥, 𝑦) of two variables 𝑥 and 𝑦 defines in the finite region A of 𝑥𝑦- plane. Divide the region 𝐴 into elementary areas. 𝛿𝐴1, 𝛿𝐴2, 𝛿𝐴3,… 𝛿𝐴 𝑛 Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 =𝐴 lim𝑛→∞ 𝛿𝐴→0 [ 𝑓( 𝑥1, 𝑦1) 𝛿𝐴1 + 𝑓( 𝑥2, 𝑦2) 𝛿𝐴2 + ⋯+ 𝑓( 𝑥 𝑛, 𝑦𝑛) 𝛿𝐴 𝑛] 2.1 Evaluation of Double Integral: Double integral over region A may be evaluated by two successiveintegrations. If A is described as 𝑓1(𝑥) ≤ 𝑦 ≤ 𝑓2(𝑥) [ 𝑦1 ≤ y ≤ 𝑦2] And 𝑎 ≤ 𝑥 ≤ 𝑏, Then ∬ 𝑓( 𝑥, 𝑦) 𝑑𝐴 = ∫ ∫ 𝑓(𝑥, 𝑦) 𝑦2 𝑦1 𝑑𝑥 𝑑𝑦 𝑏 𝑎𝐴
  • 3. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 3 2.1.1 FIRST METHOD: ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [∫ 𝑓( 𝑥, 𝑦) 𝑑𝑦 𝑦2 𝑦1 ] 𝑑𝑥 𝑥2 𝑥1𝐴 𝑓(𝑥, 𝑦) is first integrated with respectto y treating 𝑥 as constant between the limits 𝑦1 and 𝑦2 and then the result is integrated with respectto 𝑥 between the limits 𝑥1 and 𝑥2. In the region we take an elementary area 𝛿𝑥𝛿𝑦. Then integration w.r.t to 𝑦 (𝑥 keeping constant) converts small rectangle 𝛿𝑥𝛿𝑦 into a strip 𝑃𝑄(𝑦 𝛿𝑥). While the integration of the result w.r.t 𝑥 correspondsto the sliding to the strip, from 𝐴𝐷 to 𝐵𝐶 covering the whole region 𝐴𝐵𝐶𝐷. 2.1.2 SECOND METHOD: ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦 = ∫ [ ∫ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑥2 𝑥1 ] 𝑑𝑦 𝑦2 𝑦1𝐴 Here 𝑓(𝑥, 𝑦) is first integrated w.r.t 𝑥 keeping 𝑦 constant between the limits 𝑥1 and 𝑥2 and then the resulting expression is integrated with respectto 𝑦 between the limits 𝑦1 and 𝑦2 and vice versa. NOTE:Forconstant limits, it does not matter whether we first integrate w.r.t 𝑥 and then w.r.t 𝑦 or vice versa.
  • 4. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 4 2.2 Examples: Example 1: Find ∫ ∫ 𝑒 𝑦 𝑥⁄ 𝑑𝑦 𝑑𝑥 𝑥2 0 1 0 Solution: Here, we have ∫ [∫ 𝑒 𝑦 𝑥⁄ 𝑑𝑦 𝑥2 0 ] 𝑑𝑥 = ∫ [ 𝑒 𝑦 𝑥⁄ 1 𝑥⁄ ] 0 𝑥2 𝑑𝑥 1 0 1 0 = ∫ ( 𝑒 𝑥−1) 1 𝑥⁄ 𝑑𝑥 1 0 = ∫ 𝑥 𝑒 𝑥 𝑑𝑥 − ∫ 𝑥 𝑑𝑥 1 0 1 0 = [ 𝑥 𝑒 𝑥 − 𝑒 𝑥]0 1 − [ 𝑥2 2 ] 0 1 = 𝑒1 − 𝑒1 + 1 − 1 2 = 1 2 ∴ ∫ ∫ 𝒆 𝒚 𝒙⁄ 𝒅𝒚 𝒅𝒙 𝒙 𝟐 𝟎 𝟏 𝟎 = 𝟏 𝟐 ________ Answer Example 2: Evaluate ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 Solution: Here, we have ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 = ∫ 𝑑𝑦 ∫ 𝑒−𝑥2(1+𝑦2) ∞ 0 𝑥 𝑑𝑥 ∞ 0 = ∫ 𝑑𝑦 [ 𝑒−𝑥2(1+𝑦2) −2(1+𝑦2) ] 0 ∞ ∞ 0 = ∫ [0 + 1 2(1+𝑦2) ] 𝑑𝑦 ∞ 0 = 1 2 [tan−1 𝑦]0 ∞ = 1 2 [tan−1 ∞ − tan−1 0] = 1 2 ( 𝜋 2 ) = 𝜋 4
  • 5. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 5 ∴ ∫ ∫ 𝑒−𝑥2(1+𝑦2) 𝑥 𝑑𝑥 𝑑𝑦 ∞ 0 ∞ 0 = 𝜋 4 ________ Answer Example 3: Sketch the area of integration and evaluate ∫ ∫ 2𝑥2 𝑦2 𝑑𝑥 𝑑𝑦 √2−𝑦 −√2−𝑦 2 1 . Solution: Here we have ∫ ∫ 2𝑥2 𝑦2 𝑑𝑥 𝑑𝑦 √2−𝑦 −√2−𝑦 2 1 = 2∫ 𝑦2 𝑑𝑦 2 1 ∫ 𝑥2 𝑑𝑥 √2−𝑦 −√2−𝑦 = 4 ∫ 𝑦2 𝑑𝑦 2 1 ∫ 𝑥2 𝑑𝑥 √2−𝑦 0 [ ∵ ∫ 𝑓( 𝑥) 𝑑𝑥 = 2∫ 𝑓( 𝑥) 𝑑𝑥 𝑎 0 𝑎 −𝑎 𝑤ℎ𝑒𝑟𝑒 𝑥2 𝑖𝑠 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ] = 4∫ 𝑦2 𝑑𝑦 [ 𝑥3 3 ] 0 √2−𝑦2 1 = 4 3 ∫ 𝑦2 𝑑𝑦 (2− 𝑦) 3 2 2 1 = 4 3 ∫ (2 − 𝑦)2 𝑡3 2⁄ (−𝑑𝑡) 0 1 [ 𝑝𝑢𝑡 2 − 𝑦 = 𝑡 ∴ 𝑑𝑦 = −𝑑𝑡 ] = 4 3 [(2 − 𝑡)2 ( 2𝑡 5 2 5 ) − (−2)(2− 𝑡) 2 5 . 2 7 𝑡 7 2 + (2) 2 5 . 2 7 . 2 9 𝑡 9 2] 0 1 = 4 3 [ 2 5 + 2 ( 2 5 . 2 7 ) + (2)( 2 5 . 2 7 . 2 9 )] = 4 3 [ 2 5 + 8 35 + 16 315 ] = 4 15 [2 + 8 7 + 16 63 ] = 4 15 [ 126+72+16 63 ] = 4 15 ( 214 63 ) = 856 945
  • 6. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 6 ∴ ∫ ∫ 𝟐𝒙 𝟐 𝒚 𝟐 𝒅𝒙 𝒅𝒚 √ 𝟐−𝒚 −√ 𝟐−𝒚 𝟐 𝟏 = 𝟖𝟓𝟔 𝟗𝟒𝟓 ________ Answer 3.1 To Calculate the integral over a given region: Sometimes the limits of integration are not given but the area of the integration is given. If the area of integration is given then we proceed as follows: Take a small area 𝑑𝑥 𝑑𝑦. The integration w.r.t 𝑥 between the limits 𝑥1, 𝑥2 keeping 𝑦 fixed indicates that integration is done, along 𝑃𝑄. Then the integration of result w.r.t to 𝑦 correspondsto sliding the strips 𝑃𝑄 from 𝐵𝐶 to 𝐴𝐷 covering the whole region 𝐴𝐵𝐶𝐷. We can also integrate first w.r.t ‘𝑦’ then w.r.t 𝑥, which ever is convenient. Example 4: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦 over the region in the positive quadrant for which 𝑥 + 𝑦 ≤ 1. Solution: 𝑥 + 𝑦 = 1 represents a line AB in the figure. 𝑥 + 𝑦 < 1 represents a plane 𝑂𝐴𝐵. The region for integration is 𝑂𝐴𝐵 as shaded in the figure. By drawing 𝑃𝑄 parallel to y-axis, 𝑝 lies on the line 𝐴𝐵 𝑖. 𝑒. , (𝑥 + 𝑦 = 1) & Q lies on x-axis. The limit for 𝑦 is 1 − 𝑥 and 0.
  • 7. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 7 Required integral = ∫ 𝑑𝑥 ∫ 𝑦 𝑑𝑦 1−𝑥 0 = ∫ 𝑥 𝑑𝑥 [ 𝑦2 2 ] 0 1−𝑥1 0 1 0 = 1 2 ∫ ( 𝑥 𝑑𝑥) (1− 𝑥)21 0 = 1 2 ∫ ( 𝑥 − 2𝑥2 + 𝑥3) 𝑑𝑥 1 0 = 1 2 [ 𝑥2 2 − 2𝑥3 3 + 𝑥4 4 ] 0 1 = 1 2 [ 1 2 − 2 3 + 1 4 ] = 1 24 ________ Answer Example 5: Evaluate ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦,𝑅 where 𝑅 the quadrant of the circle is 𝑥2 + 𝑦2 = 𝑎2 where 𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 ≥ 0. Solution: Let the region of integration be the first quadrant of the circle 𝑂𝐴𝐵. Let 𝐼 = ∬ 𝑥𝑦 𝑑𝑥 𝑑𝑦𝑅 (𝑥2 + 𝑦2 = 𝑎2 , 𝑦 = √ 𝑎2 − 𝑥2) First we integrate w.r.t 𝑦 and then w.r.t 𝑥. The limits for 𝑦 are 0 and √ 𝑎2 − 𝑥2 and for x, 0 to a. 𝐼 = ∫ 𝑥 𝑑𝑥 ∫ 𝑦 𝑑𝑦 √𝑎2−𝑥2 0 𝑎 0 = ∫ 𝑥 𝑑𝑥 [ 𝑦2 2 ] 0 √𝑎2−𝑥2 𝑎 0 = 1 2 ∫ 𝑥 ( 𝑎2 − 𝑥2) 𝑑𝑥 𝑎 0 = 1 2 [ 𝑎2 𝑥2 2 − 𝑥4 4 ] 0 𝑎 = 𝑎4 8 ________ Answer
  • 8. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 8 Example 6: Evaluate ∬ 𝑥2 𝑑𝑥 𝑑𝑦𝐴 , where A is the region in the first quadrant bounded by the hyperbola 𝑥𝑦 = 16 and the lines 𝑦 = 𝑥, 𝑦 = 0 𝑎𝑛𝑑 𝑥 = 8. Solution: The line 𝑂𝑃, 𝑦 = 𝑥 and the curve 𝑃𝑆, 𝑥𝑦 = 16 intersect at 𝑝(4,4). The line 𝑆𝑁, 𝑥 = 8 intersects the hyperbola at 𝑆(8,2). And 𝑦 = 0 is x-axis. The area A is shown shaded. Divide the area into two parts by PM perpendicular to OX. For the area 𝑂𝑀𝑃, 𝑦 varies from 0 to 𝑥, and then 𝑥 varies from 0 to 4. For the area 𝑃𝑀𝑁𝑆, 𝑦 varies from 0 to 16 𝑥 and then 𝑥 varies from 4 to 8. ∴ ∬ 𝑥2 𝐴 𝑑𝑥 𝑑𝑦 = ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 + ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 16 𝑥 0 8 4 𝑥 0 4 0 = ∫ 𝑥2 𝑑𝑥 4 0 ∫ 𝑑𝑦 𝑥 0 + ∫ 𝑥2 𝑑𝑥 ∫ 𝑑𝑦 16 𝑥 0 8 4 = ∫ 𝑥2 [ 𝑦]0 𝑥 𝑑𝑥 + ∫ 𝑥2[ 𝑦] 0 16 𝑥 𝑑𝑥 8 4 4 0 = ∫ 𝑥3 𝑑𝑥 + ∫ 16 𝑥 𝑑𝑥 8 4 4 0 = [ 𝑥4 4 ] 0 4 + 16[ 𝑥2 2 ] 4 8 = 64 + 8 (82 − 42 ) = 64 + 384 = 448 ________ Answer 3.2 EXERCISE: 1) Find ∫ ∫ 𝑥 𝑦 𝑒−𝑥2 𝑑𝑥 𝑑𝑦. 𝑦 0 1 0 2) Evaluate the integral ∫ ∫ 𝑒 𝑥+𝑦 𝑑𝑥 𝑑𝑦 log 𝑦 0 log8 1 . 3) Evaluate ∫ ∫ 𝑥 𝑑𝑥 𝑑𝑦 𝑥2+𝑦2 𝑥 𝑥 𝑎 𝑎 0 .
  • 9. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 9 4) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦 √(1−𝑥2)(1−𝑦2) 1 0 1 0 . 5) Evaluate ∬ √ 𝑥𝑦 − 𝑦2 𝑑𝑦 𝑑𝑥𝑆 , where S is a triangle with vertices (0, 0), (10, 1), and (1, 1). 6) Evaluate ∬( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦 over the area of the triangle whose vertices are (0, 1), (1, 0), (1, 2). 7) Evaluate ∬ 𝑦 𝑑𝑥 𝑑𝑦 over the area bounded by 𝑥 = 0, 𝑦 = 𝑥2 , 𝑥 + 𝑦 = 2 in the first quadrant. 8) Evaluate ∬ 𝑥𝑦 𝑑𝑥𝑑𝑦 over the region R given by 𝑥2 + 𝑦2 − 2𝑥 = 0, 𝑦2 = 2𝑥, 𝑦 = 𝑥. 4.1 CHANGE OF ORDER OF INTEGRATION: On changing the order of integration, the limits of the integration change. To find the new limits, draw the rough sketch of the region of integration. Some of the problems connected with double integrals, which seem to be complicated can be made easy to handle by a change in the order of integration. 4.2 Examples: Example 1: Evaluate ∫ ∫ 𝑒 −𝑦 𝑦 𝑑𝑥 𝑑𝑦 ∞ 𝑥 ∞ 0 . Solution: We have, ∫ ∫ 𝑒−𝑦 𝑦 𝑑𝑥 𝑑𝑦 ∞ 𝑥 ∞ 0 Here the elementary strip 𝑃𝑄 extends from 𝑦 = 𝑥 to 𝑦 = ∞ and this vertical strip slides from 𝑥 = 0 𝑡𝑜 𝑥 = ∞. The shaded portion of the figure is, therefore, the region of integration. On changing the order of integration, we first integrate w.r.t 𝑥 along a horizontal strip 𝑅𝑆 which extends from 𝑥 = 0 to 𝑥 = 𝑦. To cover the given region, we then integrate w.r.t ′𝑦′ from 𝑦 = 0 𝑡𝑜 𝑦 = ∞.
  • 10. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 10 Thus ∫ 𝑑𝑥 ∞ 0 ∫ 𝑒−𝑦 𝑦 ∞ 𝑥 𝑑𝑦 = ∫ 𝑒−𝑦 𝑦 𝑑𝑦 ∫ 𝑑𝑥 𝑦 0 ∞ 0 = ∫ 𝑒−𝑦 𝑦 𝑑𝑦 [ 𝑥]0 𝑦∞ 0 = ∫ 𝑦 ∞ 0 𝑒−𝑦 𝑦 𝑑𝑦 = ∫ 𝑒−𝑦 𝑑𝑦 ∞ 0 = [ 𝑒−𝑦 −1 ] 0 ∞ = −[ 1 𝑒 𝑦 ] 0 ∞ = −[ 1 ∞ − 1] = 1 ________ Answer Example 2: Change the order of integration in 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 2−𝑥 𝑥2 1 0 and hence evaluate the same. Solution: We have 𝐼 = ∫ ∫ 𝑥𝑦 𝑑𝑥 𝑑𝑦 2−𝑥 𝑥2 1 0 The region of integration is shown by shaded portion in the figure bounded by parabola 𝑦 = 𝑥2 , 𝑦 = 2 − 𝑥, 𝑥 = 0 (𝑦 − 𝑎𝑥𝑖𝑠). The point of intersection of the parabola 𝑦 = 𝑥2 and the line 𝑦 = 2 − 𝑥 is 𝐵(1,1). In the figure below (left) we draw a strip parallel to y-axis and the strip y, varies from 𝑥2 to 2 − 𝑥 and 𝑥 varies from 0 to 1.
  • 11. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 11 On changing the order of integration we have taken a strip parallel to x-axis in the area 𝑂𝐵𝐶 and second strip in the area 𝐶𝐵𝐴. The limits of 𝑥 in the area 𝑂𝐵𝐶 are 0 and √ 𝑦 and the limits of 𝑥 in the area 𝐶𝐵𝐴 are 0 and 2 − 𝑦. So, the given integral is = ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 + ∫ 𝑦 𝑑𝑦 ∫ 𝑥 𝑑𝑥 2−𝑦 0 2 1 √ 𝑦 0 1 0 = ∫ 𝑦 𝑑𝑦[ 𝑥2 2 ] 0 √ 𝑦 + ∫ 𝑦 𝑑𝑦[ 𝑥2 2 ] 0 2−𝑦2 1 1 0 = 1 2 ∫ 𝑦2 𝑑𝑦 + 1 2 ∫ 𝑦(2 − 𝑦)2 𝑑𝑦 2 1 1 0 = 1 2 [ 𝑦3 3 ] 0 1 + 1 2 ∫ (4𝑦 − 4𝑦2 + 𝑦3 ) 2 1 = 1 6 + 1 2 [ 96−128+48−24+16−3 12 ] = 1 6 + 5 24 = 9 24 = 3 8 ________ Answer 4.3 EXERCISE: 1) Change the order of the integration ∫ ∫ 𝑒−𝑥𝑦 𝑦 𝑑𝑦 𝑑𝑥 𝑥 0 ∞ 0 . 2) Evaluate ∫ ∫ 𝑑𝑥 𝑑𝑦 𝑒 𝑥 1 2 0 by changing the order of integration. 3) Change the order of integration and evaluate ∫ ∫ 𝑥2 𝑑𝑥 𝑑𝑦 √𝑥4−4𝑦2 2 √2𝑦 2 0 . 5.1 CHANGE OF VARIABLE: Sometimes the problems of double integration can be solved easily by change of independent variables. Let the double integral be as ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥𝑑𝑦𝑅 . It is to be changed by the new variables 𝑢, 𝑣. The relation of 𝑥, 𝑦 with 𝑢, 𝑣 are given as 𝑥 = ∅( 𝑢, 𝑣), 𝑦 = 𝜓(𝑢, 𝑣). Then the double integration is converted into. 1. ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦𝑅 = ∬ 𝑓{ 𝜙( 𝑢, 𝑣), 𝜓(𝑢, 𝑣)}𝑅′ | 𝐽| 𝑑𝑢 𝑑𝑣, [𝑑𝑥 𝑑𝑦 = 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) 𝑑𝑢 𝑑𝑣]
  • 12. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 12 ∬ 𝒇( 𝒙,𝒚) 𝒅𝒙 𝒅𝒚 = ∬ 𝒇{ 𝒙( 𝒖, 𝒗), 𝒚(𝒖, 𝒗)} | 𝝏 (𝒙,𝒚) 𝝏 (𝒖,𝒗) |𝑫𝑹 𝒅𝒖 𝒅𝒗 5.2 Example 1: Using 𝑥 + 𝑦 = 𝑢, 𝑥 − 𝑦 = 𝑣, evaluate the double integral over the square R ∬ ( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦𝑅 Integration being taken over the area bounded by the lines 𝑥 + 𝑦 = 2, 𝑥 + 𝑦 = 0, 𝑥 − 𝑦 = 2, 𝑥 − 𝑦 = 0. Solution: 𝑥 + 𝑦 = 𝑢 ________(1) 𝑥 − 𝑦 = 𝑣 ________(2) On solving (1) and (2), we get 𝑥 = 1 2 ( 𝑢 + 𝑣), 𝑦 = 1 2 ( 𝑢 − 𝑣) 𝐽 = 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) = | 𝜕𝑥 𝜕𝑢 𝜕𝑥 𝜕𝑣 𝜕𝑦 𝜕𝑢 𝜕𝑦 𝜕𝑣 | = | 1 2 1 2 1 2 − 1 2 | = − 1 4 − 1 4 = − 1 2 ∬ ( 𝑥2 + 𝑦2) 𝑑𝑥 𝑑𝑦 = ∫ ∫ [ 1 4 (𝑢 + 𝑣)2 + 1 4 (𝑢 − 2 0 2 0𝑅 𝑣)2 ] | 𝜕 (𝑥,𝑦) 𝜕 (𝑢,𝑣) | 𝑑𝑢 𝑑𝑣 = ∫ ∫ 1 2 ( 𝑢2 + 𝑣2)|− 1 2 | 𝑑𝑢 𝑑𝑣 2 0 2 0 = − 1 4 ∫ 𝑑𝑣∫ ( 𝑢2 + 𝑣2) 𝑑𝑢 2 0 2 0 = − 1 4 ∫ 𝑑𝑣 [ 𝑢3 3 + 𝑢𝑣2 ] 0 22 0 = − 1 4 ∫ 𝑑𝑣( 8 3 + 2𝑣2 ) 2 0 = − 1 4 ∫ ( 8 3 + 2𝑣2 ) 2 0 𝑑𝑣
  • 13. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 13 = − 1 4 [ 8 3 𝑣 + 2 3 𝑣3 ] 0 2 = − 1 4 [ 8 3 (2) + 2 3 (2)3 ] = − 1 4 ( 16 3 + 16 3 ) = − 1 4 ( 32 3 ) = − 8 3 ________ Answer 5.3 EXERCISE: 1) Using the transformation 𝑥 + 𝑦 = 𝑢, 𝑦 = 𝑢𝑣 show that ∫ ∫ 𝑒 𝑦 (𝑥+𝑦)⁄ 𝑑𝑦 𝑑𝑥 = 1 2 (𝑒 − 1) 1−𝑥 0 1 0 2) Evaluate ∬ (𝑥 + 𝑦)2 𝑑𝑥 𝑑𝑦𝑅 , where R is the parallelogram in the xy-plane with vertices (1,0), (3,1), (2,2), (0,1), using the transformation 𝑢 = 𝑥 + 𝑦 and 𝑣 = 𝑥 − 2𝑦. 6.1 AREA IN CARTESIAN CO-ORDINATES: Area = ∫ ∫ 𝒅𝒙 𝒅𝒚 𝒚 𝟐 𝒚 𝟏 𝒃 𝒂 6.2 Example 1: Find the area bounded by the lines 𝒚 = 𝒙 + 𝟐 𝒚 = −𝒙 + 𝟐 𝒙 = 𝟓 Solution: The region of integration is bounded by the lines 𝑦 = 𝑥 + 2 _________(1) 𝑦 = −𝑥 + 2 _________(2) 𝑥 = 5 _________(3) On solving (1) and (2), we get the point 𝐴(0,2) On solving (2) and (3), we get the point 𝐶(5,−3) On solving (1) and (3), we get the point 𝐸(5,7)
  • 14. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 14 We draw a strip parallel to 𝑦-axis. On this strip the limits of 𝑦 are 𝑦 = −𝑥 + 2 and 𝑦 = 𝑥 + 2, and the limit of 𝑥 are 𝑥 = 0 and 𝑥 = 5. Required area = Shaded portion of the figure = ∬ 𝑑𝑥 𝑑𝑦 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 𝑥+2 –𝑥+2 5 0 = ∫ 𝑑𝑥 [ 𝑦]−𝑥+2 𝑥+25 0 = ∫ 𝑑𝑥 [ 𝑥 + 2 − (−𝑥 + 2)] 5 0 = ∫ [2𝑥] 𝑑𝑥 5 0 = [ 2𝑥2 2 ] 0 5 = [ 𝑥2]0 5 = [25− 0] = 25 Sq. units ________ Answer Example 2: Find the area betweenthe parabolas 𝒚 𝟐 = 𝟒𝒂𝒙 and 𝒙 𝟐 = 𝟒𝒂𝒚. Solution: We have, 𝑦2 = 4𝑎𝑥 ________ (1) 𝑥2 = 4𝑎𝑦 ________ (2) On solving the equations (1) and (2) we get the point of intersection (4a, 4a). Divide the area into horizontal strips of width 𝛿𝑦, 𝑥 varies from 𝑃, 𝑦2 4𝑎 𝑡𝑜 𝑄,√4𝑎𝑦 and then 𝑦 varies from 𝑂 ( 𝑦 = 0) 𝑡𝑜 𝐴 (𝑦 = 4𝑎). ∴ The required area = ∫ 𝑑𝑦 ∫ 𝑑𝑥 √4𝑎𝑦 𝑦2 4𝑎⁄ 4𝑎 0
  • 15. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 15 = ∫ 𝑑𝑦 [ 𝑥] 𝑦2 4𝑎 √4𝑎𝑦4𝑎 0 = ∫ 𝑑𝑦 [√4𝑎𝑦 − 𝑦2 4𝑎 ] 4𝑎 0 = [√4𝑎 𝑦3 2⁄ 3 2 − 𝑦3 12𝑎 ] 0 4𝑎 = 4√𝑎 3 (4𝑎)3 2⁄ − (4𝑎)3 12𝑎 = 16 3 𝑎2 ________ Answer 7.1 VOLUME OF SOLIDS BY DOUBLE INTEGRAL: Let a surface 𝑆′ be 𝑧 = 𝑓(𝑥, 𝑦) The projection of 𝑠′ on 𝑥 − 𝑦 plane be 𝑆. Take infinite number of elementary rectangles 𝛿𝑥 𝛿𝑦. Erect vertical rod on the 𝛿𝑥 𝛿𝑦 of height 𝑧. Volume of each vertical rod = Area of the base × height = 𝛿𝑥 𝛿𝑦 . 𝑧 Volume of the solid cylinder on S = lim 𝛿𝑥→0 𝛿𝑦→0 ∑ ∑ 𝑧 𝑑𝑥 𝑑𝑦 = ∬ 𝑧 𝑑𝑥 𝑑𝑦 = ∬ 𝑓( 𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 Here the integration is carried out over the area S.
  • 16. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 16 Example 1: Find the volume bounded by the 𝒙𝒚-plane, the paraboloid 𝟐𝒛 = 𝒙 𝟐 + 𝒚 𝟐 and the cylinder 𝒙 𝟐 + 𝒚 𝟐 = 𝟒. Solution: Here, we have 2𝑧 = 𝑥2 + 𝑦2 ⇒ 2𝑧 = 𝑟2 ⇒ 𝑧 = 𝑟2 2 (Paraboloid) ______(1) 𝑥2 + 𝑦2 = 4 ⇒ 𝑟 = 2, 𝑧 = 0, (circle) ______(2) Volume of one vertical rod = 𝑧. 𝑟 𝑑𝑟 𝑑𝜃 Volume of the solid = ∬ 𝑧 𝑟 𝑑𝑟 𝑑𝜃 = 2 ∫ 𝑑𝜃 ∫ 𝑟2 2 𝑟 𝑑𝑟 2 0 𝜋 0 = 2 2 ∫ 𝑑𝜃 ∫ 𝑟3 𝑑𝑟 2 0 𝜋 0 = ∫ 𝑑𝜃 ( 𝑟4 4 ) 0 2𝜋 0 = ∫ 𝑑𝜃 ( 16 4 ) 𝜋 0 = 4∫ 𝑑𝜃 𝜋 0 = 4[ 𝜃]0 𝜋 = 4𝜋 ________ Answer 8.1 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE INTEGRAL): When the area enclosed by a curve 𝑦 = 𝑓(𝑥) is revolved about an axis, a solid is generated; we have to find out the volume of solid generated. Volume of the solid generated about x-axis = ∫ ∫ 2𝜋 𝑃𝑄 𝑑𝑥 𝑑𝑦 𝑦2(𝑥) 𝑦1(𝑥) 𝑏 𝑎
  • 17. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 17 Example 1: Find the volume of the torus generatedby revolving the circle 𝒙 𝟐 + 𝒚 𝟐 = 𝟒 about the line 𝒙 = 𝟑. Solution: 𝑥2 + 𝑦2 = 4 𝑉 = ∬(2𝜋 𝑃𝑄) 𝑑𝑥 𝑑𝑦 = 2𝜋 ∬(3 − 𝑥) 𝑑𝑥 𝑑𝑦 = 2𝜋 ∫ 𝑑𝑥 (3𝑦 − 𝑥𝑦) −√4−𝑥2 +√4−𝑥22 −2 (3 − 𝑥) 𝑑𝑦 = 2𝜋 ∫ 𝑑𝑥 [3√4 − 𝑥2 − 𝑥√4 − 𝑥2 + 3√4 − 𝑥2 − 𝑥√4 − 𝑥2] +2 −2 = 4𝜋∫ [3√4 − 𝑥2 − 𝑥√4 − 𝑥2] +2 −2 𝑑𝑥 = 4𝜋[3 𝑥 2 √4 − 𝑥2 + 3 × 4 2 sin−1 𝑥 2 + 1 3 (4 − 𝑥2)3 2⁄ ] −2 +2 = 4𝜋 [6 × 𝜋 2 + 6 × 𝜋 2 ] = 24𝜋2 ________ Ans. 8.2 EXERCISE: 1) Find the area of the ellipse 𝑥2 𝑎2 + 𝑦2 𝑏2 = 1 2) Find by double integration the area of the smaller region bounded by 𝑥2 + 𝑦2 = 𝑎2 and𝑥 + 𝑦 = 𝑎. 3) Find the volume bounded by 𝑥𝑦 − 𝑝𝑙𝑎𝑛𝑒, the cylinder 𝑥2 + 𝑦2 = 1 and the plane 𝑥 + 𝑦 + 𝑧 = 3. 4) Evaluate the volume of the solid generated by revolving the area of the parabola 𝑦2 = 4𝑎𝑥 bounded by the latus rectum about the tangent at the vertex.
  • 18. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 18 9.1 TRIPLE INTEGRATION (VOLUME) : Let a function 𝑓(𝑥, 𝑦, 𝑧) be a continuous at every point of a finite region 𝑆 of three dimensional spaces. Consider 𝑛 sub-spaces 𝛿𝑠1, 𝛿𝑠2, 𝛿𝑠3,… . 𝛿𝑠 𝑛 of the spaceS. If (𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) be a point in the rth subspace. The limit of the sum ∑ 𝑓(𝑥 𝑟, 𝑦𝑟, 𝑧 𝑟) 𝑛 𝑟=1 𝛿𝑠𝑟, 𝑎𝑠 𝑛 → ∞, 𝛿𝑠𝑟 → 0 is known as the triple integral of 𝑓(𝑥, 𝑦, 𝑧) over the spaceS. Symbolically, it is denoted by ∭𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑆 𝑆 It can be calculated as ∫ ∫ ∫ 𝑓( 𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑧2 𝑧1 𝑦2 𝑦1 𝑥2 𝑥1 . First we integrate with respect to 𝑧 treating 𝑥, 𝑦 as constant between the limits 𝑧1 𝑎𝑛𝑑 𝑧2 . The resulting expression (function of 𝑥, 𝑦) is integrated with respect to 𝑦 keeping 𝑥 as constant between the limits 𝑦1 𝑎𝑛𝑑 𝑦2. At the end we integrate the resulting expression (function of 𝑥 only) within the limits 𝑥1 𝑎𝑛𝑑 𝑥2. First we integrate from inner most integral w.r.t z, and then we integrate w.r.t 𝑦, and finally the outer most w.r.t 𝑥. But the above order of integration is immaterial provided the limits change accordingly. Example 1: Evaluate ∭ ( 𝑥 − 2𝑦 +𝑅 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1 0 ≤ 𝑦 ≤ 𝑥2 0 ≤ 𝑧 ≤ 𝑥 + 𝑦
  • 19. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 19 Solution: ∭ ( 𝑥 − 2𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 ∫ (𝑥 − 2𝑦 + 𝑧)𝑑𝑧 𝑥+𝑦 0 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 (𝑥𝑧 − 2𝑦𝑧 + 𝑧2 2 ) 0 𝑥+𝑦𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥 ( 𝑥 + 𝑦) − 2𝑦( 𝑥 + 𝑦) + (𝑥+𝑦)2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2 + 𝑥𝑦 − 2𝑥𝑦 − 2𝑦2 + (𝑥+𝑦)2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [𝑥2 − 𝑥𝑦 − 2𝑦2 + 𝑥2 2 + 𝑥𝑦 + 𝑦2 2 ] 𝑥2 0 1 0 = ∫ 𝑑𝑥 ∫ 𝑑𝑦 [ 3𝑥2 2 − 3𝑦2 2 ] 𝑥2 0 1 0 = 3 2 ∫ 𝑑𝑥 1 0 ∫ ( 𝑥2 − 𝑦2) 𝑑𝑦 𝑥2 0 = 3 2 ∫ 𝑑𝑥 1 0 (𝑥2 𝑦 − 𝑦3 3 ) 0 𝑥2 = 3 2 ∫ 𝑑𝑥 1 0 (𝑥4 − 𝑥6 3 ) = 3 2 ( 𝑥5 5 − 𝑥7 21 ) 0 1 = 3 2 ( 1 5 − 1 21 ) = 8 35 ________Answer Example 2: Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑥+𝑦 0 𝑥 0 𝑙𝑜𝑔 2 0 Solution: 𝐼 = ∫ ∫ 𝑒 𝑥+𝑦 [ 𝑒 𝑧]0 𝑥+𝑦 𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0 = ∫ ∫ 𝑒 𝑥+𝑦 (𝑒 𝑥+𝑦 − 1)𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0 = ∫ ∫ [𝑒2(𝑥+𝑦) − 𝑒 𝑥+𝑦 ] 𝑑𝑥 𝑑𝑦 𝑥 0 𝑙𝑜𝑔 2 0
  • 20. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 20 = ∫ [𝑒2𝑥 . 𝑒2𝑥 2 − 𝑒 𝑥 . 𝑒 𝑦 ] 0 𝑥 𝑑𝑥 𝑙𝑜𝑔 2 0 = ∫ [ 𝑒4𝑥 2 − 𝑒2𝑥 − 𝑒2𝑥 2 + 𝑒 𝑥 ] 0 𝑥 𝑑𝑥 𝑙𝑜𝑔 2 0 = [ 𝑒4𝑥 8 − 𝑒2𝑥 2 − 𝑒2𝑥 4 + 𝑒 𝑥 ] 0 log2 = [ 𝑒4 𝑙𝑜𝑔2 8 − 𝑒2 log2 2 − 𝑒2 log2 4 + 𝑒log 2 ] − ( 1 8 − 1 2 − 1 4 + 1) = [ 𝑒 𝑙𝑜𝑔16 8 − 𝑒log4 2 − 𝑒log4 4 + 𝑒log 2 ] − ( 1 8 − 1 2 − 1 4 + 1) = ( 16 8 − 4 2 − 4 4 + 2) − ( 1 8 − 1 2 − 1 4 + 1) = 5 8 ________ Answer 9.2 EXERCISE: 1) Evaluate ∭ ( 𝑥 + 𝑦 + 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑅: 0 ≤ 𝑥 ≤ 1, 1 ≤ 𝑦 ≤ 2, 2 ≤ 𝑧 ≤ 3.𝑅 2) Evaluate ∫ ∫ ∫ 𝑒 𝑥+𝑦+𝑧𝑥+log 𝑦 0 𝑑𝑧 𝑑𝑦 𝑑𝑥 𝑥 0 log 2 0 . 3) Evaluate∭ ( 𝑥2 + 𝑦2 + 𝑧2) 𝑑𝑥 𝑑𝑦 𝑑𝑧𝑅 where 𝑅: 𝑥 = 0, 𝑦 = 0, 𝑧 = 0 𝑥 + 𝑦 + 𝑧 = 𝑎, (𝑎 > 0)
  • 21. Unit: 3 MULTIPLE INTEGRAL RAI UNIVERSITY, AHMEDABAD 21 10.1REFERENCE BOOK: 1) Introduction to EngineeringMathematics By H. K. DASS. & Dr. RAMA VERMA 2) www.bookspar.com/wp-content/uploads/vtu/notes/1st-2nd- sem/m2-21/Unit-5-Multiple-Integrals.pdf 3) http://www.mathstat.concordia.ca/faculty/cdavid/EMAT212/sol integrals.pdf 4) http://studentsblog100.blogspot.in/2013/02/anna-university- engineering-mathematics.html